THE GEOMETRIC INTERPRETATION OF THE SECTIONAL CURVATURE OF A FINSLER SPACE

S. DRAGOMIR - B. CASCIARO

Abstract

Given a generalized Finsler space M the manifold $V(M)=T(M)-0$ of all tangent directions on M admits a naturally induced pseudo-Riemannian structure. Also, there is a linear connection on $\gamma(M)$ corresponding to the Miron connection $\left[{ }^{9}\right]$ of M; in terms of the associated exponential formalism on $V(M)$ the following geometric interpretation of the vertical sectional curvature s occurs: if p is a Finslerian 2-plane on M then $s(p)$ approximates the difference between the length of a circumference centred at the origin in p and the length of its exponential projection on $V(M)$.

1. NOTATIONS, CONVENTIONS AND BASIC FORMULAE

Let M be an n-dimensional C^{∞}-differentiable manifold and $\pi: V(M) \rightarrow M$ the natural projection, where $V(M)=T(M)-0$, while $T(M) \rightarrow M$ stands for the tangent bundle over M. Let $\pi^{-1} T(M) \rightarrow V(M)$ be the pullback bundle of $T(M)$ by π. This is a real differentiable vector bundle of rank n.

A generalized metrical Finsler structure on M is a non-degenerated symmetric Finsler (0,2)-tensor field $g, g \in \Gamma\left(V(M), \pi^{-1} T^{*}(M) \otimes \pi^{-1} T^{*}(M)\right.$). Throughout, if $E \rightarrow N$ is a given vector bundle over the manifold N, then $\Gamma(N, E)$ denotes the module (over the ring $C^{\infty}(N)$ of all real valued smooth functions on N) of all smooth cross-sections in E. A pair (M, g) is a generalized Finsler space, cf. R.MIRON, ${ }^{9}$]. A non-linear connection on $V(M)$ is a differential system $N: u \rightarrow N_{u} \subset T_{u}(V(M))$ on $V(M)$ such that:

$$
\begin{equation*}
T_{u}(V(M))=N_{u} \oplus \operatorname{Ker}\left(d_{u} \pi\right) \tag{1.1}
\end{equation*}
$$

for each tangent direction $u \in V(M)$ on M. See W.BARTHEL, [']. Consequently $(V(M), N)$ turns to be a non-holonomic space, in the sense of G.VRANCEANU, $\left[^{10}\right]$.

Next we consider the bundle epimorphism L given by $L: T(V(M)) \rightarrow \pi^{-1} T(M)$, $L_{u} \tilde{X}=\left(u,\left(d_{u} \pi\right) \tilde{X}\right)$, for any $u \in V(M), \tilde{X} \in T_{u}(V(M))$. Note that $\operatorname{Ker}(L)=\operatorname{Ker}(d \pi)$; thus, if some nou-linear connection N on $\mathscr{V}(M)$ is fixed, each $L_{u}: N_{u} \rightarrow \pi_{u}^{-1} T(M)$ is a $I R$-linear isomorphism, where $\pi_{u}^{-1} T(M)=\{u\} \times T_{\pi(u)}(M)$ denotes the fibre over u in $\pi^{-1} T(M)$. We set $\beta_{u} \equiv\left(\left.L\right|_{N_{u}}\right)^{-1}, u \in V(M)$. The resulting bundle
isomorphism $\beta: \pi^{-1} T(M) \rightarrow N$ is refered to as the horizontal lift associated with N.

Let (U, x^{i}) be a local coordinate system on M and let $\left(\pi^{-1}(U), x^{i}, y^{i}\right)$ be the induced local coordinates on $V(M)$. Locally, cf. [${ }^{1}$], a non-linear connection N on $V(M)$ is given by a Pfaffian system :

$$
\begin{equation*}
\delta y^{i} \equiv d y^{i}+N_{j}^{i}(x, y) d x^{j}=\mathbf{0} \tag{1.2}
\end{equation*}
$$

To state this in modern language, let $X_{i}: \pi^{-1}(U) \rightarrow \pi^{-1} T(M), X_{i}(u)=$ $\left(u,\left.\frac{\partial}{\partial x^{i}}\right|_{\pi(u)}\right)$, for any $u \in \pi^{-1}(U)$. Next, let us set $\delta_{i}=\beta X_{l}, 1 \leqq i \leqq n$. Let us put $\partial_{i}=\frac{\partial}{\partial x^{i}}, \dot{\partial}_{i}=\frac{\partial}{\partial y^{i}}$ for simphcity. Then there exists a uniquely determined system of n^{2} smooth functions $N_{j}^{i} \in C^{\infty}\left(\pi^{-1}(U)\right)$ such that $\delta_{i}=\partial_{i}-N_{i}^{j} \dot{\partial}_{j}$ and N_{j}^{i} are usually termed the coefficients of the non-linear connection N with respect to (U, x^{i}). Now (1.2) means that, for any $u \in \pi^{-1}(U), N_{u}$ is spanned by $\left\{\left.\delta_{i}\right|_{u}\right\}_{1 \leq i \leq n}$ over the reals.

The vertical lift is the bundle isomorphism γ defined by $\gamma: \pi^{-1} T(M) \rightarrow \operatorname{Ker}(d \pi)$, $\gamma\left(X_{i}\right)=\dot{\partial}_{i}$. The definition of γ does not depend upon the choice of local coordinates.

Let $P_{1, u}, P_{2, u}$ be the natural projections associated with the direct sum decomposition (1.1). We shall need the bundle morphisms:

$$
\begin{equation*}
P_{3}=\gamma^{\circ} L, \quad P_{4}=\beta^{\circ} G \tag{1.3}
\end{equation*}
$$

where $G: T(V(M)) \rightarrow \pi^{-1} T(M)$ denotes the Dombrowski mapping, i.e. $G_{u} \tilde{X}=$ $=\gamma_{n}^{-1} \tilde{X}_{v}$, where $\tilde{X}_{v}=P_{2, u} \tilde{X}, \tilde{X} \in T_{u}(V(M)), u \in V(M)$. Cf. P.DOMBROWSKI, [3].

Let (M, g) be a generalized Finsler space. Each fibre $\pi_{u}^{-1} T(M), u \in V(M)$, of the pullback bundle carries a semi-definite inner product g_{u} and $u \rightarrow g$ is smooth. Therefore $\pi^{-1} T(M) \rightarrow V(M)$ turns into a pseudo-Riemannian vector bundle. Moreover $V(M)$ admits the pseudo-Riemannian metric :

$$
\begin{equation*}
\tilde{g}(\tilde{X}, \tilde{Y})=g(L \tilde{X}, L \tilde{Y})+g(G \tilde{X}, G \tilde{Y}) \tag{1.4}
\end{equation*}
$$

for any $\tilde{X}, \tilde{Y} \in \Gamma(V(M), T(V(M)))$ and some fixed non-linear connection N on $V(M)$ (with respect to which the Dombrowski map G is derived). If g is positive-definite then $(V(M), \widetilde{g})$ turns to be a $2 n$-dimensional smooth Riemannian manifold.

Let ∇ be a connection in the pullback bundle $\pi^{-1} T(M)$ of a given generalized Finsler space (M, g). In contrast with the general situation of a connection in an
arbitrary vector bundle, given a non-linear connection N on $V(M)$, two concepts of torsion might be associated with ∇ :

$$
\begin{align*}
& \tilde{T}(\tilde{X}, \tilde{Y})=\nabla_{\tilde{X}} L \tilde{Y}-\nabla_{\tilde{Y}} L \tilde{X}-L[\tilde{X}, \tilde{Y}] \tag{1.5}\\
& \widetilde{T}_{1}(\tilde{X}, \tilde{Y})=\nabla_{\tilde{X}} G \tilde{Y}-\nabla_{\tilde{Y}} G \tilde{X}-G[\tilde{X}, \tilde{Y}]
\end{align*}
$$

for any tangent vector fields \tilde{X}, \tilde{Y} on $V(M)$. Nevertheless, note that only the definition of \widetilde{T}_{1} depends on the choice of N. Next we consider :

$$
\begin{equation*}
T(X, Y)=\tilde{T}(\beta X, \beta Y), \quad S^{1}(X, Y)=\tilde{T}_{1}(\gamma X, \gamma Y) \tag{1.6}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(V(M), \pi^{-1} T(M)\right)$. We shall need the following result, cf. [$\left.{ }^{[}\right]$:
Theorem 1.1. There exists a unique connection ∇ in the pullback bundle $\pi^{-1} T(M)$ of the generalized Finsler space (M, g, N) such that the following axioms are satisfied:

$$
\begin{gather*}
\nabla g=0 \tag{1.7}\\
T=0, \quad S^{1}=0 . \tag{1.8}
\end{gather*}
$$

Moreover ∇ is expressed by:

$$
\begin{align*}
2 g\left(\nabla_{\beta X} Y, Z\right) & =g(Z, L[\beta X, \beta Y])-g(X, L[\beta Y, \beta Z])- \\
& -g(Y,[\beta X, \beta Z])-(\beta X)(g(Y, Z))- \tag{1.9}\\
& -(\beta Y)(g(Z, X))+(\beta Z)(g(X, Y)) \\
2 g\left(\nabla_{\gamma X} Y, Z\right) & =g(Z, G[\gamma X, \gamma Y])-g(X, G[\gamma Y, \gamma Z)- \\
& -g(Y, G[\gamma X, \gamma Z])-(\gamma X)(g(Y, Z))- \tag{1.10}\\
& -(\gamma Y)(g(Z, X))+(\gamma Z)(g(X, Y))
\end{align*}
$$

for any $X, Y, Z \in \Gamma\left(V(M), \pi^{-1} T(M)\right)$.
Next we consider the linear connection $\tilde{\nabla}$ on $V(M)$ defined by:

$$
\begin{equation*}
\tilde{\nabla}_{\tilde{X}} \tilde{Y}=\beta \nabla_{\widetilde{X}} L \tilde{Y}+\gamma \nabla_{\tilde{X}} G \tilde{Y} \tag{1.11}
\end{equation*}
$$

where ∇ is the connection in $\pi^{-1} T(M)$ furnished by Theorem 1.1. The following result holds :

Theorem 1.2. Let (M, g) be a generalized Finsler space carrying the nonlinear connection N. Then the linear connection (1.11) is subject to :

$$
\begin{gather*}
\tilde{\nabla} \tilde{g}=0 \tag{1.12}\\
\tilde{\nabla} P_{j}=0, j \in\{1,2,3,4\} \tag{1.13}
\end{gather*}
$$

If \tilde{A} is the torsion 2-form of $\tilde{\nabla}$ then:

$$
\begin{equation*}
\tilde{A}(\tilde{X}, \tilde{Y})=\beta \tilde{T}(\tilde{X}, \tilde{Y})+\gamma \tilde{T}_{1}(\tilde{X}, \tilde{Y}) \tag{2.14}
\end{equation*}
$$

for any tangent vector fields \tilde{X}, \tilde{Y} on $V(M)$.
The proof of Theorem 1.2, being straightforward, is left as an exercise to the reader.

2. EXPONENTIAL FORMALISM ON A GENERALIZED FINSLER SPACE

Let (M, g) be a generalized Finsler space carrying the non-linear connection N. Consider the linear connection (1.11) on the pseudo-Riemannian manifold ($V(M), \tilde{g}$). Let $u_{0} \in V(M)$ be a fixed tangent direction on M. Let :

$$
\begin{equation*}
\exp _{u_{0}}: W_{\check{\mathfrak{0}}} \rightarrow W_{u_{0}} \tag{2.1}
\end{equation*}
$$

be the exponential mapping associated with the linear connection (1.11), where $W_{\widetilde{0}}$ and $W_{u_{0}}$ are suitable chosen open neighborhoods of the zero tangent vector $\tilde{0}$ in $T_{u_{0}}\left(V(M)\right.$), and of u_{0} in $V(M)$, respectively. On the other hand, for any Finsler space M, there is an exponential formalism associated with the Cartan connection of M, such as developed in B.T.HASSAN, $\left[^{\dagger}\right]$. This might be related to (2.1) as follows: Let $E: T(M) \rightarrow[0,+\infty)$ be a fixed Finsler energy on M. If the generalized Finsler metric g is positive-definite and its (local) components are subject to $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} E$, then (M, g) is a Finsler space. Moreover suppose that N is (locally) given by :

$$
\begin{equation*}
N_{j}^{i}=\frac{1}{2} \dot{\partial}_{j} \gamma_{00}^{i} \tag{2.2}
\end{equation*}
$$

where :

$$
\begin{aligned}
& \gamma_{00}^{i}=\gamma_{j k}^{i} \cdot y^{i} \cdot y^{k} \quad, \quad \gamma_{j k}^{i}=g^{i h}|j k, h| \\
& |j k, h|=\frac{1}{2}\left(\partial_{k} g_{j h}+\partial_{j} g_{k h}-\partial_{h} g_{j k}\right)
\end{aligned}
$$

Then the Miron connection (1.9)-(1.10) coincides with the unique regular Cartan connection of (M, E), such as introduced in E.CARTAN, $\left[^{2}\right]$.

Let $x_{0}=\pi\left(u_{0}\right), x_{0} \in M$. Put next $L(u)=E(u)^{1 / 2}$, for any $u \in V(M)$. We shall use the following, $\left[{ }^{7}\right]$:

Theorem 2.1. Let (M, E) be a Finsler space and ∇ its Cartan connection. Then there exists $\varepsilon>0$ such that the following second order ordinary differential system:

$$
\begin{equation*}
\nabla_{\frac{d \tilde{C}}{d t}} L \frac{d \tilde{C}}{d t}=0 \tag{2.3}
\end{equation*}
$$

admits a unique solution $C=C_{X_{0}}, C_{X_{0}}:(-2,2) \rightarrow M$ satisfying the initial conditions $C_{X_{0}}(0)=x_{0}$, and $\frac{d C_{X_{0}}}{d t}(0)=X_{0}, X_{0} \in T_{x_{0}}(M)$, provided that $L\left(X_{0}\right)<\varepsilon$.

To make the notation in (2.3) clear, we mention that given a regular curve $C: I \rightarrow M$, for some open interval $I \subset I R$, one denotes by $\tilde{C}: I \rightarrow V(M)$ the natural lift of C, i.e. $\tilde{C}(t)=\frac{d C}{d t}(t), t \in I$. We shall need the following :

Theorem 2.2. The natural lift \tilde{C} of any solution C of (2.3), i.e. of any geodesic of the Finsler space (M, E), is a horizontal auto-parallel curve of the linear connection (1.11). That is :

$$
\begin{align*}
& \tilde{\nabla}_{\frac{d \widetilde{C}}{d t}} \frac{d \widetilde{C}}{d t}=0 \tag{2.4}\\
& \frac{d \widetilde{C}}{d t}(t) \in N_{\widetilde{C}(t)} \tag{2.5}
\end{align*}
$$

for any value of the parameter t.
See [${ }^{4}$]. There is $\delta>0$ such that the open set :

$$
\left\{\tilde{X} \in T_{u_{0}}(V(M)) \mid \tilde{g}_{u_{0}}(\tilde{X}, \tilde{X})^{1 / 2}<\delta\right\}
$$

is contained in $W_{\tilde{0}}$. If $u_{0} \in V(M)$ is chosen such that $L\left(u_{0}\right)<\varepsilon$, then according to Theorem 2.1., there is a unique solution $C_{u_{0}}:(-2,2) \rightarrow M$ of (2.3) with initial data $\left(x_{0}, u_{0}\right)$. We may put :

$$
\begin{equation*}
\exp _{x_{0}} u_{0}=C_{u_{0}}(1) \tag{2.6}
\end{equation*}
$$

By our Theorem 2.2. the natural lift $\widetilde{C}_{u_{0}}$ of $C_{u_{0}}$ is a solution of (2.4). Note also that $\widetilde{C}_{u_{0}}(0)=u_{0}$. Next we set $\widetilde{X}_{0}=\frac{d \widetilde{C}_{u_{0}}}{d t}(0), \tilde{X}_{0} \in T_{u_{0}}(V(M))$. Let $\mathrm{p}=\min (\varepsilon, \delta)>0$. We establish firstly the following :

Lemma 2.1. If $L\left(u_{0}\right)<\mathrm{p}$ then $\tilde{X}_{0} \in W_{\widetilde{0}}$.
Proof. It is enough to prove that $\tilde{g}_{u_{0}}\left(\tilde{X}_{0}, \tilde{X}_{0}\right)^{1 / 2}<\mathrm{p}$. Let v be the Liouville vector field on M, i.e. $v \in \Gamma\left(V(M), \pi^{-1} T(M)\right), v(u)=(u, u), u \in V(M)$. We use now the property (2.5) of $\widetilde{C}_{u 0}$ and the definition (1.4). By the classical Euler theorem on positively homogeneous functions one has:

$$
\begin{aligned}
\tilde{g}_{u_{0}}\left(\tilde{X}_{0}, \tilde{X}_{0}\right) & =g_{u_{0}}\left(L \frac{d \tilde{C}_{u_{0}}}{d t}(0), L \frac{d \tilde{C}_{u_{0}}}{d t}(0)\right)= \\
& =g_{u_{0}}\left(v\left(\frac{d C_{u_{0}}}{d t}(0)\right), v\left(\frac{d C_{u_{0}}}{d t}(0)\right)\right)= \\
& =g_{u_{0}}\left(v\left(u_{0}\right), v\left(u_{0}\right)\right)=E\left(u_{0}\right)
\end{aligned}
$$

and the proof is complete.
By our Lemma 2.1., if $L\left(u_{0}\right)<\rho$ then :

$$
\begin{equation*}
\exp _{u_{0}} \tilde{X}_{0}=\tilde{C}_{u_{0}}(1) \tag{2.7}
\end{equation*}
$$

Therefore, the link between the exponentials (2.6)-(2.7) is expressed by :

$$
\begin{equation*}
\pi\left(\exp _{u_{0}} \widetilde{X}_{0}\right)=\exp _{x_{0}} u_{0} \tag{2.8}
\end{equation*}
$$

3. SECTIONAL CURVATURE OF GENERALIZED FINSLER SPACES

Let (M, g) be a generalized Finsler space. Suppose from now on that g is positive-definite. The 2-dimensional linear subspaces of the fibres of the pullback bundle $\pi^{-1} T(M)$ give rise to a bundle $G F_{2}(M)$ over $V(M)$, with projection $\mathrm{p}: G F_{2}(M) \rightarrow V(M)$ and standard fibre the Grassman manifold $G_{2, n}$ of all 2-planes in $I R^{n}$. The synthetic object $G F_{2}(M)\left(V(M), \mathrm{p}, G_{2 ; n}\right)$ is called the Finsler-Grassmann bundle of M. Let $u_{0} \in V(M)$ be a fixed tangent direction on M and $p \in G F_{2}(M), \mathrm{p}(p)=u_{0}$. Let N be a non-hnear connection on $V(M)$ and β the corresponding horizontal lift. Let $\tilde{\mathrm{p}}: G_{2}(V(M)) \rightarrow V(M)$ be the Grassmann bundle of all 2-planes tangent to $V(M)$. We set $\gamma(p)=\{\gamma X \mid X \in p\}$, and $\beta(p)=\{\beta X \mid X \in p\}$. Then $\gamma(p), \beta(p) \in G_{2}(V(M))$. Moreover, if $\{X, Y\}$ is an orthonormal basis of p (with respect to $g_{u_{0}}$) then $\{\gamma X, \gamma Y\},\{\beta X, \beta Y\}$ are basis in $\gamma(p), \beta(p)$ respectively (orthonormal with respect to the inner product $\tilde{g}_{u_{0}}$). Let \widetilde{B} be the curvature 2 -form of the linear connection (1.11). As a consequence of (1.12) the (0,4)-tensor field $\widetilde{B}(\widetilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})=\tilde{g}(\widetilde{B}(\widetilde{Z}, \widetilde{W}) \widetilde{Y}, \tilde{X})$ verifies:

$$
\begin{align*}
& \tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})+\widetilde{B}(\tilde{X}, \tilde{Y}, \tilde{W}, \tilde{Z})=0 \\
& \tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})+\widetilde{B}(\tilde{Y}, \tilde{X}, \tilde{Z}, \tilde{W})=0 \tag{3.1}
\end{align*}
$$

Since (3.1) holds, we may consider the (well-defined) map $b: G_{2}(V(M)) \rightarrow I R$, $b(\tilde{p})=\tilde{B}_{u}(\tilde{X}, \tilde{Y}, \tilde{X}, \tilde{Y}), \tilde{p} \in G_{2}(V(M))$, for any orthonormal (with respect to \tilde{g}_{u}) linear basis $\{\tilde{X}, \tilde{Y}\}$ in $\tilde{p}, u=\tilde{\mathrm{p}}(\tilde{p})$. Next we define $r, s: G F_{2}(M) \rightarrow I R$, by $r(p)=b(\beta(p)), s(p)=b(\gamma(p)), p \in G F_{2}(M)$. The maps r, s are the horizontal (resp. vertical) sectional curvatures of the Finsler space (M, E), such as
introduced in [$\left.{ }^{5}\right]$, provided that g is given by $g_{i j}=\frac{1}{2} \dot{\partial}_{i} \dot{\partial}_{j} E$. Indeed, let \tilde{R} be the curvature 2 -form of the Miron connection (I.9)-(I.I0). Consider the tensor fields $\tilde{R}(X, Y, \tilde{Z}, \tilde{W})=g(\tilde{R}(\tilde{Z}, \tilde{W}) Y, X)$, and $R(X, Y, Z, W)=$ $=\widetilde{R}(X, Y, \beta Z, \beta W), S(X, Y, Z, W)=\widetilde{R}(X, Y, \gamma Z, \gamma W)$. Then the following identities hold:

$$
\begin{align*}
& \tilde{B}(\tilde{X}, \tilde{Y}) \tilde{Z}=\beta \tilde{R}(\tilde{X}, \tilde{Y}) L \tilde{Z}+\gamma \tilde{R}(\tilde{X}, \tilde{Y}) G \tilde{Z} \tag{3.2}\\
& \widetilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W})=\tilde{R}(L \tilde{X}, L \tilde{Y}, \tilde{Z}, \tilde{W})+\tilde{R}(G \tilde{X}, G \tilde{Y}, \tilde{Z}, \tilde{W})
\end{align*}
$$

and consequently $r(p)=R(X, Y, X, Y), s(p)=S(X, Y, X, Y)$, for $p \in G F_{2}(M)$ and for any orthonormal linear basis $\{X, Y\}$ in p.

4. MAIN RESULT

Let $p_{0} \in G F_{2}(M), u_{0}=\mathrm{p}\left(p_{0}\right)$, be fixed. Let $\{X, Y\}$ be an orthonormal basis in p_{0}. Consider the curve $W:[0,2 \pi] \rightarrow p_{0}$ defined by $W(\theta)=(\cos \theta) X+$ $+(\sin \theta) Y, 0 \leqq \theta \leqq 2 \pi$. For simplicity we set $p_{0}^{h}=\beta\left(p_{0}\right), p_{0}^{v}=\gamma\left(p_{0}\right)$; therefore $\theta \rightarrow \beta(W(\theta))$ (resp. $\theta \rightarrow \gamma(W(\theta))$) is a curve in p_{0}^{h} (resp. in p_{0}^{\prime}). With standard arguments) there exists a number $r>0$ such that :

$$
\begin{align*}
& t \beta W(\theta) \in W_{\tilde{\mathrm{o}}} \cap N_{u_{0}} \tag{4.1}\\
& t \gamma W(\theta) \in W_{\widetilde{\mathrm{o}}} \cap \operatorname{Ker}\left(d_{u_{0}} \pi\right)
\end{align*}
$$

for any $0 \leqq t \leqq r$. Therefore, the following curves are well defined, i.e. $C_{\theta}^{h}, C_{0}^{y}:[0, r] \rightarrow V(M)$ given by :

$$
\begin{equation*}
G_{\theta}^{h}(t)=\exp _{u_{0}} t \beta W(\theta), \quad C_{\theta}^{v}(t)=\exp _{u_{0}} t \gamma W(\theta) \tag{4.2}
\end{equation*}
$$

for any $0 \leqq \theta \leqq 2 \pi, 0 \leqq t \leqq r$. Moreover we consider the curves $C^{h}, C^{\nu}:[0,2 \pi] \rightarrow V(M)$ given by :

$$
\begin{equation*}
C^{h}(\theta)=C_{0}^{h}(r), C^{\nu}(\theta)=C_{0}^{\nu}(r) . \tag{4.3}
\end{equation*}
$$

Let $L\left(C^{\eta}\right), L\left(C^{h}\right)$ be respectively given by

$$
\begin{aligned}
& L\left(C^{\nu}\right)=\int_{0}^{2 \pi} \tilde{g}_{C^{v}(\theta)}\left(\frac{d C^{\nu}}{d \theta}(\theta), \frac{d C^{\mu}}{d \theta}(0)\right) d \theta, \\
& L\left(C^{h}\right)=\int_{0}^{2 \pi} \tilde{g}_{C^{h(\theta)}}\left(\frac{d C^{h}}{d \theta}(\theta), \frac{d C^{h}}{d \theta}(\theta)\right) d \theta .
\end{aligned}
$$

We may formulate the following :

Theorem 4.I. Let (M, g) be a generalized Finsler space carrying the nonlinear connection N. Let $s: G F_{2}(M) \rightarrow I R$ be the vertical sectional curvature associated with the Miron connection determined by the pair (g, N). Then :

$$
\begin{equation*}
s\left(p_{0}\right)=\lim _{\substack{r \rightarrow 0 \\ r \neq 0}} \frac{3}{\pi r^{3}}\left\{L\left(C^{v}\right)-2 \pi r\right\} \tag{4.4}
\end{equation*}
$$

for each $p_{0} \in G F_{2}(M)$, where C^{ν} is given by (4.2).
It is an open problem to establish a geometrical interpretation similar to (4.4) for the horizontal sectional curvature r of (M, g, N).

5. JACOBI FIELDS ON GENERALIZED FINSLER SPACES

Let us put $\alpha^{\nu}(\theta, t)=C_{ध}^{v}(t), 0 \leqq 0 \leqq 2 \pi, 0 \leqq t \leqq r$, with the notations in $\S 4$. By (4.2) it follows that the family $\left\{C_{0}^{\gamma}\right\}_{0 \leqq 0 \leqq 2 \pi}$ consists of autoparallel curves of $\tilde{\nabla}$ with the initial data $\left(u_{0}, \gamma W(\theta)\right)$. Clearly α^{ν} is a variation of C_{0}^{v}, in the sense of $\left[^{8}\right.$, p.63], vol.II. Let then J^{v} be the infinitesimal variation induced by the variation α^{ν}. We need to recall that J^{ν} is a vector field along the 2-parameter surface α^{ν} in $V(M)$ given by :

$$
\begin{align*}
& J^{\nu}\left(\alpha^{\nu}(\theta, t)\right)=J_{\theta}^{\nu}(t) \\
& J_{\theta}^{\nu}(t)=\frac{\partial \alpha^{\nu}}{\partial \theta}(\theta, t) \tag{5.1}\\
& \frac{\partial \alpha^{\nu}}{\partial \theta}(\theta, t)=\left.\left(d_{\theta} \alpha_{t}\right) \frac{d}{d \theta}\right|_{\theta} \\
& \alpha_{t}^{v}(\theta)=\alpha^{\nu}(\theta, t)
\end{align*}
$$

Note that :

$$
\begin{equation*}
J_{\theta}^{v}(0)=\theta \quad, \quad 0 \leqq \theta \leqq 2 \pi \tag{5.2}
\end{equation*}
$$

Let $u_{0} \in V(M)$ be fixed. Put for brevity $W_{\tilde{0}}^{v}=W_{\tilde{0}} \cap \operatorname{Ker}\left(d_{u_{0}} \pi\right)$. Consider $\tilde{X}_{0} \in W_{\tilde{0}}^{v}$ and the curve γ_{0} in $V(M)$ defined by :

$$
\begin{equation*}
\gamma_{0}(t)=\exp _{u_{0}} t \tilde{X}_{0} \tag{5.3}
\end{equation*}
$$

for small values of the parameter t. Next we consider the first order ordinary differential system :

$$
\begin{equation*}
\tilde{\nabla}_{\frac{d \sigma}{d t}} \tilde{Z}=0 \tag{5.4}
\end{equation*}
$$

where $\sigma:[0,1] \rightarrow V(M)$ is a given differentiable curve in $V(M)$. Let then $T_{\sigma, t}^{*}: T_{\sigma(0)}(V(M)) \rightarrow T_{\sigma(t)}(V(M))$ be the parallel displacement operator along σ, associated with (5.4). That is, if \tilde{Z} is the unique solution of (5.4) with initial data $\tilde{Z}(0)=\tilde{Z}_{0}$ then $T_{\sigma, t}^{*}\left(\tilde{Z}_{0}\right)=\tilde{Z}(t)$, for any $\tilde{Z}_{0} \in T_{\sigma(0)}(V(M))$. We establish :

Lemma 5.1. For an arbitrary smooth curve $\sigma:[0,1] \rightarrow V(M)$ one has:

$$
\begin{equation*}
P_{2} \circ T_{\sigma, t}^{*}=T_{\sigma, t}^{*} \circ P_{2} \tag{5.5}
\end{equation*}
$$

for any $0 \leqq t \leqq 1$.
Proof. Let $\tilde{X} \in T_{u}(V(M))$ and \tilde{Z} the unique solution of (5.4) with $\tilde{Z}(0)=P_{2} \tilde{X}$. Then $0=P_{2} \tilde{\nabla}_{\frac{d \sigma}{d t}} \tilde{Z}=\tilde{\nabla}_{\frac{d \sigma}{d t}} P_{2} \tilde{Z}$, by our (1.13), i.e. $P_{2} \tilde{Z}$ is a solution of (5.4). Moreover $\left(P_{2} \tilde{Z}\right)(0)=P_{2} P_{2} \tilde{X}=\tilde{Z}(0)$. Consequently $P_{2} \tilde{Z}=\tilde{Z}$, and (5.5) holds, Q.E.D.

Let us replace now σ in (5.4) by the curve (5.3). By the very definition of γ_{0}, its tangent gives a solution of (5.4) (since γ_{0} is an auto-parallel curve of the linear connection (1.11) and $\left.\frac{d \gamma_{0}}{d t}(0)=\tilde{X}_{0}\right)$. Applying Lemma 5.1. one has :

$$
\frac{d \gamma_{0}}{d t}(t)=T_{\gamma_{0, t}}^{*}\left(\widetilde{X}_{0}\right)=T_{\gamma_{0, t}}^{*}\left(P_{2} \tilde{X}_{0}\right)=P_{2} T_{\gamma_{0, t}}^{*}\left(\widetilde{X}_{0}\right)=P_{2} \frac{d \gamma_{0}}{d t}(t)
$$

It follows that (5.3) is a vertical curve provided that \tilde{X}_{0} is vertical. Thus :

$$
\left(d_{\gamma_{0}(t)} \pi\right) \frac{d \gamma_{0}}{d t}(t)=0
$$

or π o $\gamma_{0}=$ constant, i.e. the curve (5.3) lies entircly in the fibre $V_{x_{0}}=\pi^{-1}\left(x_{0}\right) \subset V(M), x_{0}=\pi\left(u_{0}\right)$. The result obtained in terms of the curve (5.3) might be equally applied to the curve C_{0}^{v} given by (4.2). Therefore :

$$
C_{0}^{v}(t) \in V_{x_{0}}, \quad 0 \leqq \theta \leqq 2 \pi, \quad 0 \leqq t \leqq r .
$$

In addition to (5.1) we consider :

$$
\begin{aligned}
& \frac{\partial \alpha^{v}}{\partial t}(\theta, t)=\left.\left(d_{t} \alpha_{\theta}^{v}\right) \frac{d}{d t}\right|_{t} \\
& \alpha_{0}^{v}(t)=\alpha^{v}(\theta, t)
\end{aligned}
$$

By (1.14) one has:

$$
\begin{equation*}
\tilde{A}(\gamma X, \gamma Y)=\gamma S^{1}(X, Y)=0 \tag{5.6}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(V(M), \pi^{-1} T(M)\right)$. Let us define:

$$
\begin{equation*}
\frac{D \tilde{X}}{\partial t}(\theta, t)=\left(\tilde{V}_{\frac{\partial \alpha^{v}}{}}^{\partial t} \tilde{X}_{)_{\alpha} v(\theta, t)}\right. \tag{5.7}
\end{equation*}
$$

for any tangent vector field \tilde{X} of $V(M)$ defined along the 2-parameter surface α^{ν} in $V(M)$. Since C_{θ}^{ν} lies entirely in $V_{x_{0}}$, and $V_{x_{0}}$ is the maximal integral manifold of the vertical distribution $\operatorname{Ker}(d \tau)$ passing through u_{0}, one obtains:

$$
\begin{equation*}
\frac{\partial \alpha^{v}}{\partial t}(\theta, t), \frac{\partial \alpha^{y}}{\partial \theta}(\theta, t) \in \operatorname{Ker}\left(d_{x} v^{v}(\theta, t) \pi\right) \tag{5.8}
\end{equation*}
$$

for $0 \leqq \theta \leqq 2 \pi, 0 \leqq t \leqq r$. Using (5.6)-(5.8) we derive :

$$
\begin{equation*}
\frac{D J^{v}}{\partial t}(0,0)=\left\{\tilde{\nabla}_{\frac{\partial \alpha^{v}}{}}^{\partial \theta} \frac{\partial \alpha^{\nu}}{\partial t}\right\}_{u_{0}} \tag{5.9}
\end{equation*}
$$

since $\left[\frac{\partial \alpha^{\nu}}{\partial t}, \frac{\partial \alpha^{\nu}}{\partial \theta}\right]=\theta$.

6. PROOF OF THE MAIN RESULT

Let $\tilde{\boldsymbol{\pi}}: T(V(M)) \rightarrow V(M)$ be the natural projection of the tangent bundle over $V(M)$. We consider the natural imbedding $\eta_{t}: T(V(M)) \rightarrow T(T(V(M))), t \in I R$, defined as follows: Let $\tilde{X}_{0} \in T(V(M))$. Consider the curve $a(t)=t \tilde{X}_{0}$ in $T(V(M))$. Set :

$$
\begin{equation*}
\mathfrak{1}_{t}\left(\tilde{X}_{0}\right)=\frac{d a}{d t}(t) . \tag{6.1}
\end{equation*}
$$

Actually, if $\tilde{\pi}\left(\tilde{X}_{0}\right)=u_{0}, u_{0} \in V(M)$, then $a(t)$ is a curve in $T_{u_{0}}(V(M))$. Therefore, its tangent vector at $a(t)$ is an element of $T_{t} \widetilde{X}_{0}\left(T_{i_{0}}(V(M))=\operatorname{Ker}\left(d_{t} \widetilde{X}_{0} \tilde{\pi}\right), t \in I R\right.$. Let us consider now the curve (5.3) with $\widetilde{X}_{0} \in W_{\tilde{0}}$ not necessarily vertical. We may rewrite it :

$$
\begin{equation*}
\gamma_{0}(t)=\exp _{u_{0}} a(t) \tag{6.2}
\end{equation*}
$$

for small enough values of t; taking the differential of (6.2) at t furnishes :

$$
\begin{equation*}
\frac{d \gamma_{0}}{d t}(t)=\left(d_{a(t)} \exp _{u_{0}}\right) \eta_{t}\left(\tilde{X}_{0}\right) \tag{6.3}
\end{equation*}
$$

Take (6.3) at $t=0$; since γ_{0} is an auto-parallel curve of (1.11) with initial data (u_{0}, \widetilde{X}_{0}) it follows :

$$
\begin{equation*}
\left(d_{u_{0}} \exp _{u_{0}}\right) \eta_{0} \tilde{X}_{0}=\tilde{X}_{0} \tag{6.4}
\end{equation*}
$$

We apply the results given by (6.3)-(6.4) to the curve C_{θ}^{γ}. Thus one has:

$$
\begin{equation*}
\frac{\partial \alpha^{v}}{\partial t}(\theta, 0)=\gamma W(\theta), \quad 0 \leqq \theta \leqq 2 \pi \tag{6.5}
\end{equation*}
$$

Let $\left(x^{a}\right)=\left(x^{i}, y^{i}\right), 1 \leqq a \leqq 2 n$, be the natural local coordinates on $V(M)$. Let $\mathbf{T}_{b c}^{a}$ be the corresponding local coefficients of the linear connection (1.11). The right hand side of (5.9) is locally given by :

$$
\begin{equation*}
\left\{\tilde{\nabla}_{\frac{\partial \alpha \nu}{\partial \theta}} \frac{\partial \alpha^{\nu}}{\partial t}\right\}_{u_{0}}^{a}=\frac{\partial^{2} \alpha^{a}}{\partial \theta \partial t}(0,0)+\Gamma_{b c}^{a}\left(\alpha^{\nu}(0,0)\right) \frac{\partial \alpha^{b}}{\partial \theta}(\theta, 0) \frac{\partial \alpha^{c}}{\partial t}(\theta, 0) \tag{6,6}
\end{equation*}
$$

where $\alpha^{v}(\theta, t)=\left(\alpha^{1}(\theta, t), \ldots, \alpha^{2 n}(\theta, t)\right)$. Let $W^{1}(\theta)=X^{i} \cos \theta+Y^{i} \sin 0$ be the components of the Finslerian vector field $W(\theta)$ on M. Our (6.5) leads to :

$$
\begin{equation*}
\frac{\partial \alpha^{i}}{\partial t}(\theta, 0)=\theta, \quad \frac{\partial \alpha^{n+i}}{\partial t}(\theta, 0)=W^{i}(\theta) \tag{6.7}
\end{equation*}
$$

for $1 \leqq i \leqq n$. By (5.1)-(5.2) and (6.6)-(6.7) one has

$$
\frac{D J^{v}}{\partial t}(\theta, 0)=\left.\frac{d W^{1}}{d \theta}(\theta) \dot{\partial}_{i}\right|_{u_{0}}
$$

or:

$$
\begin{equation*}
\frac{D J^{\nu}}{\partial t}(\theta, 0)=\gamma W\left(\theta+\frac{\pi}{2}\right) \tag{6.8}
\end{equation*}
$$

For each $\tilde{X} \in T_{u}(V(M))$ we put $\|\tilde{X}\|=\tilde{g}_{u}(\tilde{X}, \tilde{X})^{1 / 2}$. We consider the function $f_{\theta}^{v}:[0, r] \rightarrow(0,+\infty)$ given by :

$$
\begin{equation*}
f_{\theta}^{v}(t)=\left\|J_{\theta}^{v}(t)\right\|^{2} \quad, \quad 0 \leqq t \leqq r . \tag{6.9}
\end{equation*}
$$

We develop (6.9) as a Taylor series :

$$
\begin{equation*}
f_{\theta}^{v}(t)=\sum_{k=0}^{4} \frac{t^{k}}{k!}\left(D^{k} f_{\theta}^{v}\right)(0)+o\left(t^{5}\right) \tag{6.10}
\end{equation*}
$$

and compute $D^{k} f_{8}^{v}$, where $D^{k}=\frac{\partial^{k}}{\partial t^{k}}, 0 \leqq k \leqq 4$. By (5.2), (6.8) one obtains:

$$
\begin{align*}
& f_{\theta}^{v}(0)=0 \\
& \left(D f_{\theta}^{v}\right)(0)=0 \tag{6.11}\\
& \left(D^{2} f_{\vartheta}^{v}\right)(0)=0
\end{align*}
$$

since the connection (1.11) verifies (1.12). How (5.1) is the infinitesimal variation induced by the variation α^{p}; by Theorem 1.2. in $\left[{ }^{8}, \mathrm{p} .64\right]$ one obtains:

$$
\begin{equation*}
\widetilde{\nabla}^{2} \frac{\partial \alpha^{\nu}}{\partial r} J^{\nu}+\tilde{\nabla}_{\frac{\partial \alpha^{\nu}}{} \partial} \tilde{A}\left(J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right)+\widetilde{B}\left(J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right) \frac{\partial \alpha^{\nu}}{\partial t}=0 . \tag{6.12}
\end{equation*}
$$

Take (6.12) at u_{0}. By (5.1), (5.6), (5.8) it turns into:

$$
\begin{equation*}
\left\{\tilde{\nabla}^{2} \frac{\partial \alpha^{\nu}}{\partial t} J^{v}\right\}_{u_{0}}=0 \tag{6.13}
\end{equation*}
$$

Consequently :

$$
\begin{equation*}
\left(\mathrm{D}^{3} f_{\theta}^{v}\right)(0)=0 \tag{6.14}
\end{equation*}
$$

Let $S(X, Y) Z=\tilde{R}(\gamma X, \gamma Y) Z$ be the vertical curvature of the Miron connection, $X, Y, Z \in \Gamma\left(V(M), \pi^{-1} T(M)\right)$. By (3.2) one obtains $\widetilde{B}(\gamma X, \gamma Y) \gamma Z=\gamma S(X, Y) Z$. Using (1.12) we have :

$$
\begin{equation*}
\left(D^{4} f_{v_{\theta}}^{v}\right)(0)=8 \tilde{g}_{u_{0}}\left(\left\{\tilde{\nabla}^{3} \frac{\partial \alpha^{v}}{\partial t} J^{v}\right\}_{u_{0}},\left\{\tilde{\nabla}_{\frac{\partial \alpha^{\nu}}{}}^{\partial t} J^{v}\right\}_{u_{0}}\right) \tag{6.15}
\end{equation*}
$$

Take the covariant derivative of the Jacobi equation (6.12) in the direction $\frac{\partial \alpha^{y}}{\partial t}$. Moreover, take the inner product of the resulting equation by $\left\{\widetilde{\nabla}_{\frac{\partial \alpha \nu}{\partial t}} J^{v}\right\}_{u_{0}}$. Then (6.15) becomes :

$$
\begin{equation*}
\left(D^{4} f_{\theta}^{\nu}\right)(0)=8 \tilde{g}_{u_{0}}\left(\tilde{\nabla}_{\frac{\partial \alpha^{v}}{\partial t}} \tilde{B}\left(J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right) \frac{\partial \alpha^{\nu}}{\partial t}, \tilde{\nabla}_{\frac{\partial \alpha^{v}}{}}^{\partial t} J^{\nu}\right) \tag{6.16}
\end{equation*}
$$

On the other hand:

$$
\begin{equation*}
\tilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}} \tilde{B}\left(J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right) \frac{\partial \alpha^{\nu}}{\partial t}=\tilde{B}\left(\tilde{\nabla}_{\frac{\partial \alpha^{\nu}}{}}^{\partial t} J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right) \frac{\partial \alpha^{\nu}}{\partial t} . \tag{6.17}
\end{equation*}
$$

Now take (6.17) in u_{0} and use (6.8). From the resulting equation let us substitute in (6.16). We obtain :

$$
\begin{equation*}
\left(D^{4} f_{\theta}^{v}(0)=-8 \tilde{g}_{u_{0}}\left(\tilde{B}\left(\gamma W\left(\theta+\frac{\pi}{2}\right), \gamma W(\theta)\right) \gamma W(\theta), \gamma W\left(0+\frac{\pi}{2}\right)\right)\right. \tag{6.18}
\end{equation*}
$$

Moreover, in terms of the vertical curvature tensor :

$$
\begin{equation*}
\left(D^{4} f_{\theta}^{v}\right)(0)=-8 S_{u_{0}}\left(W\left(\theta+\frac{\pi}{2}\right), W(\theta), W\left(\theta+\frac{\pi}{2}\right), W(\theta)\right) \tag{6.19}
\end{equation*}
$$

At this point we may substitute in (6.10) from the formulae (6.11), (6.14) and (6.19). This procedure gives:
$f_{\theta}^{\nu}(t)=t^{2}\left\{1-\frac{t^{2}}{3} S_{u_{0}}\left(W\left(\theta+\frac{\pi}{2}\right), W(\theta), W\left(\theta+\frac{\pi}{2}\right), W(\theta)\right)+o\left(t^{2}\right)\right\}$.
As $(1-\delta)^{1 / 2}=1-\frac{1}{2} \delta+o\left(\delta^{2}\right)$ we obtain :
$L\left(C^{y}\right)=2 \pi r+\int_{0}^{2 \pi} S_{u_{0}}\left(W\left(\theta+\frac{\pi}{2}\right), W(\theta), W\left(\theta+\frac{\pi}{2}\right), W(\theta)\right) d \theta+o\left(r^{3}\right)$.
Now $\left\{W(\theta), W\left(\theta+\frac{\pi}{2}\right)\right\}$ is an orthonormal basis in $p_{0} \in G F_{2}(M), u_{0}=\rho\left(p_{0}\right)$, and thus (6.21) leads to (4.4), Q.E.D.

REFERENCES

[1] BARTHEL, W. : Nichtlineare Zusammenhänge und deren Holonomiegruppen, J. Reine Angew. Math. 212 (1963), 120-149.
[²] CARTAN, E.
: Les espaces de Finsler, Act. Sei. 79, Paris, 1934, 41 p.
${ }^{[8]}$] DOMBROWSKI, P. : On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.
[4] DRAGOMIR, S. and CASCIARO, B.
[] DRAGOMIR, S. and IANUS, S.
: On the reducïble Finsler spaces with a vanishing $R_{j k}^{i}$ torsion tensor field, to appear in Acta Math. Hungarica, 1989.
: On the holomorphic sectional curvature of Kaehlerian Finsler spaces, I-Il, Tensor, N.S., 39 (1982), 95-98, Rendiconti di Matem., (4) 3 (1983), 757-763.
[$\left.{ }^{6}\right]$ GRIFONE, J.
: Structure presque tangente et connexions, 1-1I, An. Inst. Fourier, (1) 22 (1972), 287-334, (3) 22 (1972), 291-338.
[7] HASSAN, B.T.M.
: The theory of geodesies in Finsler spaces, Ph. D. thesis, Southampton, 1967, 108 p.
[8] KOBAYASHI, S. and
: Foundations of differential geometry, Vol. I-II, Interscience Publ., New York, 1963, 1969.
[9] MIRON, R. : Metrical Fïnsler structures and metrical Finsler connections, J. Math. Kyoto Univ., (2) 23 (1983), 219-224.
[$\left.{ }^{10}\right]$ VRANCEANU, G.
: Leçons de géometrie differentielle, Ed. Acad. R.P.R., Bucuresti, 1957.

UNIVERSITA DEGLI STUDI DI BARI
DIPARTIMENTO DI MATEMATICA
VIA G.FORTUNATO, 70125 BARI
(CAMPUS UNIVERSITARIO)
ITALY

ÖZET

Bu çalışmada, genelleştirilmiş bir M Finsler uzayı verildiğine göre, M üzerindeki bütün teğet doğrultularının $V(M)=T(M)--0$ manifoldumm yapısı incelenmektedir.

