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THE GEOMETRIC INTERPRETATION OF THE SECTIONAL
CURVATURE OF A FINSLER SPACE

S. DRAGOMIR - B. CASCIARO

Given a generalized Finsler space M the manifold V(M) = T(M)—0
of all tangent directions on A admits a naturally induced pseudo-Riemannian
structure. Also, there is a linear connection on V(M) corresponding to the

- Miron connection 1°] of M; in terms of the associated exponential formalism
on V(M) the following geometric Interpretation of the vertical sectional
curvature ¢ occwrs: if p Is a Finslerian 2-plane on M then s (p) approximates
the difference between the length of a circumference centred at the origin in
p and the length of its exponential projection on P(AM).

1. NOTATIONS, CONYENTIONS AND BASIC FORMULAE

Let M be an n-dimensional C=-differentiable manifold and «n: V(M) > M
the natural projection, where V(M) = T(M} — 0, while T(M) — M stands for
the tangent bundle over M. Let ! T(M) — V(M) be the pullback bundle of
T(M) by =. This is a real differentiable vector bundle of rank 7.

A generalized metrical Finsler structure on M is a non-degenerated symmetric
Finsler (0,2)-tensor field g, ge T'(V(M), o~ T*(M) @ =~ T*(M)). Throughout,
if E— N is a given vector bundle over the manifold N, then I'(¥, E} denotes the
module (over the ring C=(N) of all real valued smooth functions on N) of
all smooth cross-sections in E. A pair (M, g) is a generalized Finsler space,
of. RMIRON, [°]. A rnon-linear connection on V(M) is a differential system
N:u— N,c T,(V(M)) on V(M) such that:

T, (V(M)) = N, & Ker (d, =) (L.1)

for each tangent direction ue V(M) on M. See W.BARTHEL, [']. Consequently
(V(M), N} turns to be a non-holonomic space, in the sense of G.YRANCEANU,

‘[1(}] .

Next we consider the bundle epimorphism L given by L: T(V(M))—» 71 T(M),
L, X=(u,(d, =) X), for any ue V(M), X T, (V(M)). Note that Ker(L)=Ker(d r);
thus, if some nou-linear connection A on V(M) is fixed, each L, : Nu—>n;‘1 T(M)
is a IR-linear isomorphism, where w0, T(M) = {u} X Toy (M) denotes the fibre
over u in w1 T(M). We set B, = (L|n)", ue V(M). The resulting bundle
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isomorphism B :a ' T(M)—= N is refered to as the horizontal lift associated
with N.

Let (U, x') be a local coordinate system on M and let (w1 (U), x', %) be
the induced local coordinates on P(M). Locally, cf. ['], a non-linear connection
N on V(M) is given by a Pfaffian system :

dyi=dy 4+ Nj(x,y)dxi = 0. (1.2)
To state this in modern language, let X;: =% (U)— o' T(M), X,() =
(u ) % ) , for any we w1 (U). Next, let us set 8, = B X;,1=i=n. Let us put
X |l
J; = %-, é,- = 5(1; for simphcity. Then there exists a uniquely determined
X »

system of #? smooth functions Nje C* (n™* (U)) such that §, = 3, — N} ; and
Nj are usually termed the coefficients of the non-linear connection N with
respect to (U, xf). Now (1.2) means that, for any ue =7 (U), N, is spanned by
{8;]u}1i<n over the reals. '

The vertical lift is the bundle isomorphism y defined by y: « ™" T(M)—Ker(dr),
¥(X;) = 3, . The definition of y does not depend upon the choice of local
coordinates, . _ .

Let Py, Pz, be the natural projections associated with the direct sum
decomposition (1.1). We shall need the bundle morphisms :

P,=vyeL, P,=f°G (1.3)

where G : T(V(M)) >t ‘T(M } denotes the Dombrowski mapping, ie. _ G,,f =
=y, ' X,, where X, = P, X, Xe T,(V(M)), ue V(M). Cf. .DOMBROWSKI,
1.

Let (M, g) be a generalized Finsler space. Each fibre ®, ' T(M), ue V(M),
of the pullback bundle carries a semi-definite inner product g, and u—g is

smooth. Therefore =t T(M) — P(M) turns into a pseudo-Riemannian vector
bundle. Moreover V(M) admits the pseudeo-Riemannian metric :

g, D) =g@X,LT)+2(GX,GT) (1.4)
for a_ny X, Ye (VM) , T(W(M))) and some fixed non-linear connection N on
V(M) (with respect to which the Dombrowski map G is derived). If g is

positive-definite then (V (M), g) turns to be a 2n-dimensional smooth Riemannian
manifold. . '

Let V be a connection in-the pullback bundle w*7'(M) of a given generalized
Finsler space (M, g). In contrast with the general situation of a connection in an
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arbitrary vector bundle, given a non-linear connection N on V{M), two concepts
of torsion might be associated with V: s

T(X,¥)=VyLY—VgLX—L[X,V]
' . ‘ (1.5)
T,(X,V)=V3GY -V GX~—G[X,7]
for any tangent vector flelds X, Y on V(M). Nevertheless, note that only the
definition of T depends on the choice of N. Next we consider :
TX,N=TEX,pY), S X, N=T0XyY) (1.6)
for any X, Ye T'(V(M)., = T(M)). We shall need the following result, cf. []:
Theorem 1.1. There exists a unique comnection V in the pullback bundle
T T(M) of the generalized Finsler space (M , & N) such that the following axioms
are satisfied :
' Vg=10 (1.7)
T=0, St=0. (1.8)
Moreover V is expressed by : '
26(VoxY,Z)=g(Z,LIBX,PY) —g(X,LBYBZ)—
—g(Y,BX.BZD~PNEY.Z) - (1.9
—BNEZ, N+ PBDEE,Y)
—gY, GIvX v ZD-(v X, Z)— - (110
~0NEEZ )+ L) (EX, )
Sor any X, Y, ZeT(V(M), 5 T(M)).
Next we consider the linear connection V on V(M) defined by :
Ve ¥ =pV4 LY +1V3GY (1.11)

where V is the connection in 3:‘1 T (M) furnished by Theorem 1.1. The following
result holds : .

Theorem 1.2. Let (M,g) be a generalized Finsler space carrying the non-
linear connection N. Then the linear connection (1.11} is subject to :

Vg=0. (1.12)
VP =0, je{l,2,3,4). ' (1.13)
If A is the torsion 2-form of V then :
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AX, D=8TX,DH+v, (X, D) (2.14)

Jor any tangent vector fields X, ¥ on V(M).

The proof of Theorem 1.2, being straightforward, is left as an exercise to
the reader.

2. EXPONENTIAL FORMALISM ON A GENERALIZED FINSLER
SPACE

Let (M, g) be a generalized Finsler space carrying the non-linear connection
N: Consider the linear connection (1.11) on the pseudo-Riemannian manifold

(V(M), g). Let u,e V(M) be a fixed tangent direction on M. Let :
expy, i W = Wi, 2.1)

be the exponential mapping associated with the linear connection (1.11), where
W,ﬁ. and W, are suitable chosen open neighborhoods of the zero tangent vector

0in T (V(M)), and of u, in V(M), respectively. On the other hand, for any Finsler
space M, there is an exponential formalism associated with the Cartan connection
of M, such as developed in B.THASSAN, [’. This might be related to (2.1)
as follows: Let E. T{(M)}— [0, + o) be a fixed Finsler energy on M. If the
generalized Finsler metric g is positive-definite and its (local) components are

. 1. .
subject to gi; = ‘2’3: 9; E, then (M, g} is a Finsler space. Moreover suppose that

N is (locally) given by :

i_ 1.
N;= 7 s Yoo (2.2)

where :
Yoo= YR VIVE . vk = g™ jk, B
. 1
17k, k| ="E(akg}k + 38— 3 8n)

Then the Miron connection (1.9)-(1.10) coincides with the unique regular Cartan
connection of (M, E), such as introduced in E.CARTAN, [4.

Let x, = 1 (uy), X, € M. Put next L(z) = E(u)'/2, for any ue V(M). We shall
use the following, []:

Theorem 2.1. Let (M, E) be a Finsler space and V its Cartan conmnection.
Then there exists & > 0 such that the following second, order ordinary differential
system : : ’

lti:
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aC

4T gy
dr

0 (2.3)

admits a unigue solution C = Cx,,Cx,:(—2,2) = M satisfying the initial
conditions Cy,(0) = x, , and il% 0 =X, , X, € Ty, (M), provided that

. t .
LX) <e.

To make the notation in (2.3} clear, we mention that given a regular curve
C: I-» M, for some open interval / IR, one denotes by C:1 - V(M) the

natural lift of C,ie. C () = %g(t), t € I. We shall need the following :
t

Theorem 2.2. The natural lift C of any solution C of (2.3), i.e. of any geod-
esic of the Finsler space (M, E), is a horizontal auto-parallel curve of the linear
connection (L.11). That is:

- dC

Vo —? =0 (2.4)
rTH

dC

—-—-—dt (t) € N&-'(f) (25)

Jor any value of the parameter t.

See [*. There is 8 > 0 such that the open set :

{ Xe T,,(V(MD)| g, (X, XD < 8}
is contained in W5 . If u e V(M) is chosen such that L(y) <Cs, then according
to Theorem 2.1., there is a unique solution C,, :(— 2,2} — M of (2.3} with
initial data (x,,#,). We may put :

XDy, Uy = Gy (1) : (2.6)

By our Theorem 2.2. the natural lift E,,D of C,isa éolution of (2.4). Note also that
dC,,

Cy, (0) = u, . Next we set X, — (0), X,e T, (V(M)). Let p=min (&,5)>0.

dt
We establish firstly the following :

Lemma 2.1, If L{u)} << p then )?0 e Wy .

Proof. It is enough to prove that g, (X,, X,)'2<p. Let v be the Liouville
vector field on M, ie v e D(V(M), ntT(M)), v(u)= (u,u), ue V{M). We
use now the property (2.5} of C,, and the definition (1.4). By the classical Fuler
theorem on positively homogeneous functions one has :
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-~ ~ T d 5}! , dé-‘ll()
gh'u (XD N XD) — guo (L u (0), L "—‘—;"— (0)) =

dt d

dC,, dC,, _
(45 0} (450

— 2o (7 (1) ¥ (i) = E ()

and the proof is complete.

By our Lemma 2.1., if L(u'u') < p then:
- expu, X, = C,y (1) . _ (2.7)
Therefore, the link between the exponentials (2.6) - (2.7) is expressed by :

T (eXPy, fo) = €XPy, Uy - ‘ (2.8)

3. SECTIONAL CURVATURE OF GENERALIZED FINSLER SPACES

Let (M, g) be a generalized Finsler space. Suppose from now on that g is
positive-definite. The 2-dimensional linear subspaces of the fibres of the pullback
bundle ™ T(M) give rise to a bundle GF, (M) over ¥(M), with projection
p: GF, (M) - V(M) and standard fibre the Grassman manifold G,, of all
2-planes in IR". The synthetic object GF, (M) (V(M), p,G,,,) is called the
Finsler-Grassmann bundle of M. Let u,e V(M) be a fixed tangent direction
on M and pe GF, (M), p (p) = u, . Let N be a non-hnear connection on V(M)
and P the corresponding horizontal lift. Let p: G, (F(M)) —» V(M) be the
Grassmann bundle of all 2-planes tangent to ¥(M), We set v (p) ={y X]Xe p},
and B(p) = {P X{ Xep}. Then v(p), P(p) € G, (V(M)). Moreover, if {X,¥}
is an orthonormal basis of p (with respect to g,,) then {y X,y Y}, {BX,B ¥}
are basis in v (p), B(p) respectively (orthonormal with respect to the inmer

product g,.). Let B be the curvature 2-form of the linear connection (1.11). As

P

verifies :

e T

3.1

— e e e —~ o mr e e

BEVZ W)+ BEXZ W =0.

Since (3.1) holds, we may consider the (well-defined) map & : G, (V¥(M)) —IR,
Hp) = B‘; (X, ¥, X, V), pe G,(V(M)), for any orthonormal (with respect to g,,)
linear basis {X, ¥} in p,u =p (p). Next we define r,s : GF,(M) - IR, by
Hp) = b(B(p), s(p) = b(¥(p), pe GF,(M). The maps r, s are the horizontal
(resp. vertical) sectionqgl curvarures of the Finsler space (M, E), such as
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introduced in {*1, provided that g is given by g; = —;— é,. 3 ; E. Indeed, let R
be the curvature 2-form of the Miron connection (1.9)-(1.10). Consider the
tensor fields R(X,Y,Z, W) = ¢(R(Z, W)Y, X), and R(X,Y,Z, W) =
=R, Y,BZBW), S(X,Y,Z, W)= R(X, Y,y Z,v W). Then the following
identities hold :

BXVWZ=BR(X,YVLZ+yR(X,Y)GZ

P

(3.2)

and consequently r(p) = R(X, Y, X, Y), s(p)=S(X, Y, X, Y), for pe GE,(M)
and for any orthonormal linear basis {X, Y} in p.

4, MAIN RESULT

Let p,e GF, (M), u, = p(p,), be fixed. Let {X, ¥} be an orthonormal basis
in p,. Consider the curve W: [0,2n] — p, defined by W(0) = (cos ) X -
4+ (sin0) Y, 0 = 0 < 2r. For simplicity we set pf = B(p), 76 — 7(py);
therefore & — B (H(8) (resp. 0 — vy (W(B))) is a curve in po (resp. in py). With
standard arguments) there exists a number r > 0 such that :

tp W) e Wy N N,

ty W(®) e Wy n Ker (dy, ®)

(4.1)

for any 0 = ¢ =< r. Therefore, the following curves are well defined, i.c.
Ch, C::[0,r] = V(M) given by : .
Ga (1) = expy,, t P W(B), Cj (£) = exp,, 17 W(0) 4.2)

for any 0 =0 =2n , 0=t =r Morecover we consider the curves
Ch,C" [0, 2%] = V(M) given by: '

@) = CE(r), C'(®)=Ci(¥). (4.3)
Let L(C"), L(C% be respectively given by h

i
-~ fdC . dc
Len = f Fore (ﬁ ©, W(O))de,
1]

in
- fdeh o dCh N\
L(CH) — f Zohe (ﬁ" ®, == (e)) do.
0

We may formulate the following :
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Theorem 4.1. Let (M, g) be a generalized Finsler space carrying the non-
linear connection N. Let 5: GF,(M) — IR be the vertical sectional curvature asso-
ciated with the Miron connection determined by the pair (g, N}. Then :

s{py) = lim i; {I{CY — 2 mr} (4.4)
o T

Jor each py € GF,(M), where C" is given by (4.2).

It is an open problem to establish a geometrical interpretation similar to
(4.4} for the horizontal sectional curvature r of (M, g, N).

5. JACOBI FIELDS ON GENERALIZED FINSLER SPACES

Let us put o 0,5)=C) (¥), 0 =0 =2r, 0 = ¢ = r, with the notations
in §4. By (4.2) it follows that the family {Ci}ozox2~ consists of autoparallel
curves of V with the initial data (u, , v W(9)). Clearly o is a variation of Cj,in
the sense of [%, p.63], vol.IL Let then J7 be the infinitesimal variation induced
by the variation o' . We need to recall that J* is a vector field along the 2-para-
meter surface o’ in V(M) given by :

S (" (0, 1)) = Jo (t)
ae’

Jo () = 0,t
6 (2) ae( )
5.1
Ja’ d
—A{0,t) = (dyo0,)) —
ae( ) ={da0r,) )
Cay(® =a" (9, 1).
Note that :
Je(y=40 >, 0=0=2rn. (5.2)

Let u, € V(M) be fixed. Put for brevity W' = W _ n Ker(d,, =). Consider
9 ]

.foe Wi and the curve v, in V(M) defined by :
o : .

Yo (t) = CXDy, ¥ Xo (5.3)

for small values of the parameter . Next we consider the first order ordinary
differential system

—

4e Z=0 (5.4)
! . .
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where o : [0,1] = V(M) is a given differentiable curve in F(M). Let then
T :,, : gy (VM) > Ty (V(M)) be the parallel displacement operator along
¢, associated with (5.4). That is, if Z is the unique solution of (5.4) with initial
data Z(0) = Z, then T} (Z,) = Z(r), for any Z,& Ty, (V(M)). We cstablish :

Lemma 5.1. For an arbitrary smooth curve o {0, 1] - V(M) one has :

*

PooTo = Topo P, (5.5)
foranp 0 = ¢ = 1.

Proof. let ¥ e T,(V(#)) and Z the unique solution of (5.4) with
Z() =P,X Then 0 =P,V Z=V,, P, Z , by our (L13), ie. P, Z is a
dt dt
solution of (5.4). Moreover (P, Z)(0) = P, P, X = Z(0). Consequently P, Z = Z,
and (5.5) holds, Q.E.D.

Let us replace now o in (5.4) by the curve (5.3). By the very definition of

Y, » its tangent gives a solution of (5.4) (sincé ¥, is an auto-parallel curve of the

lincar connection (1.11} and

dd’iﬂ ‘(0) _J?O) . Applying Lemma 5.1. one has:

d'y % ey * Y * ¥ dY
d tg (t) = T'ru.t (Xy) = T‘ru,r (P, Xo) = Py TTO" (Xo) =P, dfo OF

It follows that (5.3) is a vertical curve provided that fo is vertical. Thus :

dy
(dyor ™) d: (=0
of © o Y, == constant, ie. the curve (53) lies entircly in the fibre
Vo = 71 (%) @ V(M), x, = = (#,). The result obtained in terms of the curve

(5.3) might be equally applied to the curve Cj given by (4.2). Therefore ;
eV, 0=20=2r, 02¢r.
In addition to (5.1) we consider : ‘
aa’
a1
o ()=a"(8,1).

d
0. 1) — " 4.
(®, 1) (d'%)dz

t

By (1.14) one has :
AXXyY) =75 (X,Y)=0 (5.6)
for any X, Y e I’ (W(M), =1 T(M)). Let us define;
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DX ~ =
e (9, t) = (VE Xr.)avw’;) (57)
afr ar

for any tangent vector field ¥ of V(M) defined along the 2-parameter surface
o’ in ¥(M). Since Cy lies entirely in Vy, , and Vy, is the maximal integral manifold
of the vertical distribution Ker (4 ) passing through u, , one obtains :

9% 0,0, 1% ®,1) € Ker (duon ™ 5.8)
at 00
for 0 =0 =<2m, 0=1¢=r Usng (56)-(58) we derive :

by
gt

oo (5.9)

(0: 0): % 6@’

sl

o

6. PROOF OF THE MAIN RESULT

Let = : T(V(M)) - V(M) be the natural projection of the tangent bundle
over V(M). We consider the natural imbedding n,; T(FV(M))— T(T(V(M))),t € IR,

defined as follows: Let )?u e T(V(M)). Consider the curve a(t) = t)?o in:
T(V(M)). Set:

w5 =20, @1

Actually, if & (fu) = Uy, ty€ V(M), then a(t) is a curve in 7, (V(M)). Therefore,

its tangent vector at a{t) is an element of T, ¥, (T, (V(M)) =Ker {d, 3, 'E), telR.
Let us consider now the curve (5.3) with X’o € Wiy not necessarily vertical. We
may rewrite it :

Yo (£) = expy, a (£) (6.2)
for small enough values of ¢ ; taking the differential of (6.2) at ¢ furnishes :
d ~
2O =Wy expa), (Ko) (6.3)

Take (6.3) at ¢ == 0; since 7, is an auto-parallel curve of (1.11) with initial data.
(g , X,) it follows : '

(dao expuo) Tg f.:) = X/‘u . (6.4)

We apply the results given by (6.3) - (6.4) to the curve C} . Thus one has :

s
5
i
|
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0<0=2x. (6.5)

Let (x =z, | = a=2nr be the natural local coordinitcs on F(M).
Let Ty, be the corresponding local coefficients of the linear connection (1.11).
The right hand side of (5.9) is locally given by :

%Vamva“”%“ a"’; (0,0 + T¥ @ O, 0))——(9 0) (e 0 (66)

where o' (0,1) = (a' (0, £),..., 02" (0, 1)), Let W (®) = X' cos8 4 ¥/ sin 0 be the
components of the Finslerian vector field W(#) on M. Our (6.5} leads to :

26.0—0, 29 @00 ~w @ 6.7
ot ot

for 1 £i=<n By (51)-(5.2) and (6.6)-(6.7}) one has

‘”v(e =47 = ©d,

iy
or :
DJr

-, 0)*7W(9+ ) (6.8)
For each ¥e T, (V(M)) we put || X|| =g, (f , ¥)2 We consider the function
Fr:10,7] = (0, + <o) given by :

Loy =10 . 0st=r. (6.9)

We develop (6.9 as a Taylor series :

4
v t* v
fo)= ) o (D) (0) + 0 (1) (6.10)
fo==0 ’
k
and compute Dtfy, where Dk = -%, 0 =< k = 4. By (5.2), (6.8) one obtains ;
fe(0)=0
(Df)(0) =0 (6.11)

(DS} (0 =0

since the connection (1.11} verifies (1.12). How (5.1) is the infinitesimal variation
induced by the variation o; by Theorem 1.2. in [%, p.64] one obtains :
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V"%Jv_f_f?‘%c:_vg(.]”, %O;V)Jrﬁ(r, %”;v)m-a‘f —0.  (6.12)
Take (6.12) at u, . By (5.1), (5.6), (5.8) it turns into :
- {V’g_a;s;_ Ty = 0. (6.13)
Consequently :
| D)) =0, (6.14)

Let S(X, Y)Z=R(y X,y Y)Z be the vertical curvature of the Miron connection,
X, Y, Ze T(V(M), ! T(M)). By (3.2) one obtains B (yX, vY)y Z=7S(X,Y)Z.
Using (1.12) we have :

(D4 i](;) (0) == 8 .Fg."uo ({vjﬁai: JV}”O ? {

Vaar J'},,) . (6.15)
3t
Take the covariant derivative of the Jacobi equation (6.12) in the direction

aafl . Moreover, take the inner produét of the resulting equation by {Vaav N 4 S
¢ ar
Then (6.15) becomes :

(DAY (0) = 8 g4y ("WE (J", da ) 3a ,VWJ”). (6.16)
Tar at) ot By
On the other hand :
s ~— L4 ¥ P v ¥
MB(J”,“)B“ —B(VMJ”,“)“. N CAT)
at at 81‘ o 81‘ at

WNow take {6.17) in #, and use (6.8). From the resulting equation let us substitute
in (6,16). We obtain ;

(D f7 (0) = — 8 7, (E(v W(e + %) v W(G))Y W), v W(o T g)) . (6.18)

Moreover, in terms of the vertical curvature tensor :

(D7) (0) = — 8.5, (W(G—l—%), W), W(Q—i—%) , W(B)). (6.19)

\

At this point we may substitute in (6.10) from the formulae (6.11), (6.14) and
{6.19). This procedure gives :

£ i) = 3231— ’3—2 S, (W (9 + %) , W (0), W (e + %) ,W(e))+ 0 (:2)§ . {6.20)

As (1 -2 =1~ % S 4+ 0 (3% we obtain :
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g
LC)=2mr+ f Sus ( W (e 4 —"25) , W(e),W(e 1 125) ,W(e)) d0+o() . (621)
0

Now EW(E}), W(e + %)g is an orthonormal basis in p,e GF, (M), 4, = p(py),
and thus (6.21) leads to (4.4), Q.E.D.

REFERENCES

['I BARTHEL, W. . Nichtlineare Zusammenhinge und deren Holonomie-
gruppen, J. Reine Angew. Math. 212 (1963), 120-149.
(1 .CARTAN, E. + Les espaces de Finsler, Act. Sei. 79, Paris, 1934, 41 p.
131 DOMBROWSKI, P. . On the geometry of the tancent bundles, J. Reine An-
gew. Math. 210 (1962), 73-88.
[*i DRAGOMIR, S. and : On the reducible Finsler Spaces with a vanishing ;k
CASCIARO, B. torsion tensor field, to appear in Acta Math. Hungari-
- ca, 1989.
1 DRAGOMIR, 8. and 1 On the holomorphic sectional curvature of Kaehlerian
TANUS, S. Finsler spaces, I-il, Tensor, N.5., 39 (1982), 95-98,
Rendiconti di Matem., (4) 3 (1983), 757-763.
[¥] GRIFONE, I . Structure presque langente ef connexions, I-H, An.
Inst. Tourier, (1) 22 (1972), 287-334, (3) 22 (1972),
291-338.
['1 HASSAN, B.T.M. 1 The theory of geodesies in Finsler spaces, Ph. D. thesis,
Southampton, 1967, 108 p.
[¥] KOBAYASHI, S. and : Foandations of differential geometry, Vol. IL-II, Inter-
NOMIZU, K. science Publ., New York, 1963, 1969.
1 MIRON, R. v Metrical Finsler structures and metrical Finsler connec-
tions, J. Math. Kyoto Univ., (2) 23 (1983), 219-224.
'] VRANCEANU, G. : Legons de géometrie differentielle, Ed. Acad. R.P.R.,

Bucuresti, 1957.

UNIVERSITA DEGLI STUDI DI BARI
DIPARTIMENTO DI MATEMATICA
VIA G.FORTUNATO, 70125 BARI
(CAMPUS UNIVERSITARIO)

ITALY

OZET

Bu calismada, genellestirilmis bir Af Finsler uzayi verildigine gire, A
tizerindeki biitlin teget dogrultularmm ¥ (M) = T(M)--0 manifoldummn
vapist incelenmektedir.




