Istanbul Üniv. Fen Fak. Mat. Der. 48 (1987-1989), 85-97

THE GEOMETRIC INTERPRETATION OF THE SECTIONAL CURVATURE OF A FINSLER SPACE

S. DRAGOMIR-B. CASCIARO

Given a generalized Finsler space M the manifold V(M) = T(M) - 0of all tangent directions on M admits a naturally induced pseudo-Riemannian structure. Also, there is a linear connection on V(M) corresponding to the Miron connection [⁸] of M; in terms of the associated exponential formalism on V(M) the following geometric interpretation of the vertical sectional curvature s occurs: if p is a Finslerian 2-plane on M then s(p) approximates the difference between the length of a circumference centred at the origin in p and the length of its exponential projection on V(M).

1. NOTATIONS, CONVENTIONS AND BASIC FORMULAE

Let *M* be an *n*-dimensional C^{∞} -differentiable manifold and $\pi: V(M) \to M$ the natural projection, where V(M) = T(M) - 0, while $T(M) \to M$ stands for the tangent bundle over *M*. Let $\pi^{-1}T(M) \to V(M)$ be the pullback bundle of T(M) by π . This is a real differentiable vector bundle of rank *n*.

A generalized metrical Finsler structure on M is a non-degenerated symmetric Finsler (0,2)-tensor field $g, g \in \Gamma(V(M), \pi^{-1}T^*(M) \otimes \pi^{-1}T^*(M))$. Throughout, if $E \to N$ is a given vector bundle over the manifold N, then $\Gamma(N, E)$ denotes the module (over the ring $C^{\infty}(N)$ of all real valued smooth functions on N) of all smooth cross-sections in E. A pair (M, g) is a generalized Finsler space, cf. R.MIRON, [⁹]. A non-linear connection on V(M) is a differential system $N: u \to N_u \subset T_u(V(M))$ on V(M) such that:

$$T_{u}(V(M)) = N_{u} \oplus \operatorname{Ker}\left(d_{u} \pi\right) \tag{1.1}$$

for each tangent direction $u \in V(M)$ on M. See W.BARTHEL, [¹]. Consequently (V(M), N) turns to be a non-holonomic space, in the sense of G.VRANCEANU, [¹⁰].

Next we consider the bundle epimorphism L given by $L: T(V(M)) \to \pi^{-1}T(M)$, $L_u \tilde{X} = (u, (d_u \pi) \tilde{X})$, for any $u \in V(M)$, $\tilde{X} \in T_u(V(M))$. Note that $\operatorname{Ker}(L) = \operatorname{Ker}(d\pi)$; thus, if some nou-linear connection N on V(M) is fixed, each $L_u: N_u \to \pi_u^{-1} T(M)$ is a *IR*-linear isomorphism, where $\pi_u^{-1} T(M) = \{u\} \times T_{\pi(u)}(M)$ denotes the fibre over u in $\pi^{-1} T(M)$. We set $\beta_u \equiv (L|_{N_u})^{-1}$, $u \in V(M)$. The resulting bundle

85

and a state of the state of the

isomorphism $\beta : \pi^{-1} T(M) \to N$ is referred to as the *horizontal lift* associated with N.

Let (U, x^i) be a local coordinate system on M and let $(\pi^{-1}(U), x^i, y^i)$ be the induced local coordinates on V(M). Locally, cf. [¹], a non-linear connection N on V(M) is given by a Pfaffian system :

$$\delta y^{i} \equiv d y^{i} + N_{j}^{i}(x, y) \, d \, x^{j} = 0 \,. \tag{1.2}$$

To state this in modern language, let $X_i: \pi^{-1}(U) \to \pi^{-1} T(M), X_i(u) = \begin{pmatrix} u, \frac{\partial}{\partial x^i} \\ \pi(u) \end{pmatrix}$, for any $u \in \pi^{-1}(U)$. Next, let us set $\delta_i = \beta X_i, 1 \leq i \leq n$. Let us put $\partial_i = \frac{\partial}{\partial x^i}, \dot{\partial}_i = \frac{\partial}{\partial y^i}$ for simplicity. Then there exists a uniquely determined system of n^2 smooth functions $N_j^i \in C^{\infty}(\pi^{-1}(U))$ such that $\delta_i = \partial_i - N_i^j \dot{\partial}_j$ and N_j^i are usually termed the *coefficients* of the non-linear connection N with respect to (U, x^i) . Now (1.2) means that, for any $u \in \pi^{-1}(U), N_u$ is spanned by

 $\{\delta_i | u\}_{1 \le i \le n}$ over the reals. The vertical lift is the bundle isomorphism γ defined by $\gamma: \pi^{-1} T(M) \rightarrow \text{Ker}(d\pi)$, $\gamma(X_i) = \partial_i$. The definition of γ does not depend upon the choice of local coordinates.

Let $P_{1,u}$, $P_{2,u}$ be the natural projections associated with the direct sum decomposition (1.1). We shall need the bundle morphisms :

$$P_3 = \gamma \circ L , \quad P_4 = \beta \circ G \tag{1.3}$$

where $G: T(V(M)) \to \pi^{-1} T(M)$ denotes the Dombrowski mapping, i.e. $G_u \widetilde{X} = -\gamma_u^{-1} \widetilde{X}_v$, where $\widetilde{X}_v = P_{2,u} \widetilde{X}$, $\widetilde{X} \in T_u(V(M))$, $u \in V(M)$. Cf. P.DOMBROWSKI, [³].

Let (M, g) be a generalized Finsler space. Each fibre $\pi_u^{-1} T(M)$, $u \in V(M)$, of the pullback bundle carries a semi-definite inner product g_u and $u \to g$ is smooth. Therefore $\pi^{-1} T(M) \to V(M)$ turns into a pseudo-Riemannian vector bundle. Moreover V(M) admits the pseudo-Riemannian metric :

$$\tilde{g}(\tilde{X}, \tilde{Y}) = g(L\,\tilde{X}, L\,\tilde{Y}) + g(G\,\tilde{X}, G\,\tilde{Y}) \tag{1.4}$$

for any \tilde{X} , $\tilde{Y} \in \Gamma(V(M), T(V(M)))$ and some fixed non-linear connection N on V(M) (with respect to which the Dombrowski map G is derived). If g is positive-definite then $(V(M), \tilde{g})$ turns to be a 2n-dimensional smooth Riemannian manifold.

Let ∇ be a connection in the pullback bundle $\pi^{-1}T(M)$ of a given generalized Finsler space (M, g). In contrast with the general situation of a connection in an

86

1997년 - 11 (1999) 1997년 - 11 (1999)

arbitrary vector bundle, given a non-linear connection N on V(M), two concepts of torsion might be associated with ∇ :

$$\widetilde{T}(\widetilde{X}, \widetilde{Y}) = \nabla_{\widetilde{X}} L \widetilde{Y} - \nabla_{\widetilde{Y}} L \widetilde{X} - L[\widetilde{X}, \widetilde{Y}]$$

$$\widetilde{T}_{i}(\widetilde{X}, \widetilde{Y}) = \nabla_{\widetilde{\tau}} G \widetilde{Y} - \nabla_{\widetilde{\tau}} G \widetilde{X} - G[\widetilde{X}, \widetilde{Y}]$$
(1.5)

for any tangent vector fields \tilde{X} , \tilde{Y} on V(M). Nevertheless, note that only the definition of \tilde{T}_1 depends on the choice of N. Next we consider :

$$T(X, Y) = \widetilde{T}(\beta X, \beta Y), \quad S^{1}(X, Y) = \widetilde{T}_{1}(\gamma X, \gamma Y)$$
(1.6)

for any X, $Y \in \Gamma(V(M), \pi^{-1}T(M))$. We shall need the following result, cf. [9]:

Theorem 1.1. There exists a unique connection ∇ in the pullback bundle $\pi^{-1} T(M)$ of the generalized Finsler space (M, g, N) such that the following axioms are satisfied:

$$\nabla g = 0 \tag{1.7}$$

$$T = 0$$
, $S^1 = 0$. (1.8)

Moreover ∇ is expressed by :

$$2 g (\nabla_{\beta X} Y, Z) = g (Z, L [\beta X, \beta Y]) - g (X, L [\beta Y, \beta Z]) - - g (Y, [\beta X, \beta Z]) - (\beta X) (g (Y, Z)) - (1.9)- (\beta Y) (g (Z, X)) + (\beta Z) (g (X, Y))
$$2 g (\nabla_{\gamma X} Y, Z) = g (Z, G [\gamma X, \gamma Y]) - g (X, G [\gamma Y, \gamma Z) - - g (Y, G [\gamma X, \gamma Z]) - (\gamma X) (g (Y, Z)) - (1.10)- (\gamma Y) (g (Z, X)) + (\gamma Z) (g (X, Y))$$$$

for any X, Y, $Z \in \Gamma(V(M), \pi^{-1}T(M))$.

Next we consider the linear connection $\tilde{\nabla}$ on V(M) defined by :

$$\widetilde{\nabla}_{\widetilde{X}} \ \widetilde{Y} = \beta \, \nabla_{\widetilde{X}} \, L \ \widetilde{Y} + \gamma \, \nabla_{\widetilde{X}} \, G \ \widetilde{Y} \tag{1.11}$$

where ∇ is the connection in $\pi^{-1} T(M)$ furnished by Theorem 1.1. The following result holds:

Theorem 1.2. Let (M, g) be a generalized Finsler space carrying the nonlinear connection N. Then the linear connection (1.11) is subject to :

$$\tilde{\nabla} \tilde{g} = 0.$$
 (1.12)

$$\widetilde{\nabla} P_j = 0$$
, $j \in \{1, 2, 3, 4\}$. (1.13)

If \tilde{A} is the torsion 2-form of $\tilde{\nabla}$ then :

87

$$\widetilde{A}(\widetilde{X}, \widetilde{Y}) = \beta \ \widetilde{T}(\widetilde{X}, \widetilde{Y}) + \gamma \ \widetilde{T}_1(\widetilde{X}, \widetilde{Y})$$
(2.14)

for any tangent vector fields \tilde{X} , \tilde{Y} on V(M).

The proof of Theorem 1.2, being straightforward, is left as an exercise to the reader.

2. EXPONENTIAL FORMALISM ON A GENERALIZED FINSLER SPACE

Let (M, g) be a generalized Finsler space carrying the non-linear connection N. Consider the linear connection (1.11) on the pseudo-Riemannian manifold $(V(M), \tilde{g})$. Let $u_0 \in V(M)$ be a fixed tangent direction on M. Let :

$$\exp_{u_0} \colon W_{\widetilde{0}} \to W_{u_0} \tag{2.1}$$

be the exponential mapping associated with the linear connection (1.11), where $W_{\widetilde{0}}$ and W_{u_0} are suitable chosen open neighborhoods of the zero tangent vector $\widetilde{0}$ in $T_{u_0}(V(M))$, and of u_0 in V(M), respectively. On the other hand, for any Finsler space M, there is an exponential formalism associated with the Cartan connection of M, such as developed in B.T.HASSAN, [7]. This might be related to (2.1) as follows: Let $E: T(M) \rightarrow [0, +\infty)$ be a fixed Finsler energy on M. If the generalized Finsler metric g is positive-definite and its (local) components are subject to $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j E$, then (M, g) is a *Finsler space*. Moreover suppose that N is (locally) given by :

$$N_{j}^{i} = \frac{1}{2} \dot{\partial}_{j} \gamma_{00}^{i}$$
 (2.2)

where :

$$\gamma_{00}^{i} = \gamma_{jk}^{i} y^{j} y^{k} , \quad \gamma_{jk}^{i} = g^{ih} | jk, h |$$
$$|jk, h| = \frac{1}{2} (\partial_{k} g_{jh} + \partial_{j} g_{kh} - \partial_{h} g_{jk})$$

Then the *Miron connection* (1.9)-(1.10) coincides with the unique regular Cartan connection of (M, E), such as introduced in E.CARTAN, [²].

Let $x_0 = \pi(u_0)$, $x_0 \in M$. Put next $L(u) = E(u)^{1/2}$, for any $u \in V(M)$. We shall use the following, [⁷]:

Theorem 2.1. Let (M, E) be a Finsler space and ∇ its Cartan connection. Then there exists $\varepsilon > 0$ such that the following second order ordinary differential system :

한만에 걸음을 넣는다.

$$\nabla_{\underline{d\tilde{C}}\atop dt} L \frac{d\tilde{C}}{dt} = 0$$
(2.3)

201 T **(20**12) (2012)

admits a unique solution $C = C_{X_0}$, $C_{X_0} : (-2, 2) \rightarrow M$ satisfying the initial conditions $C_{X_0}(0) = x_0$, and $\frac{dC_{X_0}}{dt}(0) = X_0$, $X_0 \in T_{x_0}(M)$, provided that $L(X_0) < \varepsilon$.

To make the notation in (2.3) clear, we mention that given a regular curve $C: I \rightarrow M$, for some open interval $I \subset IR$, one denotes by $\tilde{C}: I \rightarrow V(M)$ the *natural lift* of C, i.e. $\tilde{C}(t) = \frac{dC}{dt}(t), t \in I$. We shall need the following:

Theorem 2.2. The natural lift \tilde{C} of any solution C of (2.3), i.e. of any geodesic of the Finsler space (M, E), is a horizontal auto-parallel curve of the linear connection (1.11). That is:

$$\tilde{\nabla}_{\underline{d\tilde{C}}\atop dt} \frac{d\tilde{C}}{dt} = 0$$
(2.4)

$$\frac{d\tilde{C}}{dt}(t) \in N_{\tilde{C}(t)}$$
(2.5)

for any value of the parameter t.

See [4]. There is $\delta > 0$ such that the open set :

 $\{\tilde{X} \in T_{u_0}(V(M)) \mid \tilde{g}_{u_0}(\tilde{X}, \tilde{X})^{1/2} < \delta\}$

is contained in $W_{\tilde{0}}$. If $u_0 \in V(M)$ is chosen such that $L(u_0) < \varepsilon$, then according to Theorem 2.1., there is a unique solution $C_{u_0}: (-2, 2) \to M$ of (2.3) with initial data (x_0, u_0) . We may put:

$$\exp_{x_0} u_0 = C_{u_0} (1) . \tag{2.6}$$

By our Theorem 2.2. the natural lift \tilde{C}_{u_0} of C_{u_0} is a solution of (2.4). Note also that \tilde{C}_{u_0} (0) = u_0 . Next we set $\tilde{X}_0 = \frac{d \tilde{C}_{u_0}}{d t}$ (0), $\tilde{X}_0 \in T_{u_0}(V(M))$. Let $p = \min(\varepsilon, \delta) > 0$. We establish firstly the following :

Lemma 2.1. If $L(u_0) < p$ then $\widetilde{X}_0 \in W_{\widetilde{0}}$.

Proof. It is enough to prove that $\tilde{g}_{u_0}(\tilde{X}_0, \tilde{X}_0)^{1/2} < p$. Let v be the Liouville vector field on M, i.e. $v \in \Gamma(V(M), \pi^{-1}T(M)), v(u) = (u, u), u \in V(M)$. We use now the property (2.5) of \tilde{C}_{u_0} and the definition (1.4). By the classical Euler theorem on positively homogeneous functions one has:

$$\begin{split} \tilde{g}_{u_0} \left(\tilde{X}_0 , \tilde{X}_0 \right) &= g_{u_0} \left(L \frac{d \, \tilde{C}_{u_0}}{d \, t} \left(0 \right), L \frac{d \, \tilde{C}_{u_0}}{d \, t} \left(0 \right) \right) = \\ &= g_{u_0} \left(v \left(\frac{d \, C_{u_0}}{d \, t} \left(0 \right) \right), v \left(\frac{d \, C_{u_0}}{d \, t} \left(0 \right) \right) \right) = \\ &= g_{u_0} \left(v \left(u_0 \right), v \left(u_0 \right) \right) = E \left(u_0 \right) \end{split}$$

and the proof is complete.

By our Lemma 2.1., if $L(u_0) < \rho$ then :

$$\exp_{u_0} \tilde{X}_0 = \tilde{C}_{u_0}(1) . \tag{2.7}$$

Therefore, the link between the exponentials (2.6) - (2.7) is expressed by :

$$\pi\left(\exp_{u_0}\tilde{X}_0\right) = \exp_{x_0}u_0. \tag{2.8}$$

3. SECTIONAL CURVATURE OF GENERALIZED FINSLER SPACES

Let (M, g) be a generalized Finsler space. Suppose from now on that g is positive-definite. The 2-dimensional linear subspaces of the fibres of the pullback bundle $\pi^{-1} T(M)$ give rise to a bundle $GF_2(M)$ over V(M), with projection p: $GF_2(M) \rightarrow V(M)$ and standard fibre the Grassman manifold $G_{2,n}$ of all 2-planes in IR^n . The synthetic object $GF_2(M) (V(M), p, G_{2,n})$ is called the Finsler-Grassmann bundle of M. Let $u_0 \in V(M)$ be a fixed tangent direction on M and $p \in GF_2(M), p(p) = u_0$. Let N be a non-hnear connection on V(M)and β the corresponding horizontal lift. Let $\tilde{p}: G_2(V(M)) \rightarrow V(M)$ be the Grassmann bundle of all 2-planes tangent to V(M). We set $\gamma(p) = \{\gamma X \mid X \in p\}$, and $\beta(p) = \{\beta X \mid X \in p\}$. Then $\gamma(p), \beta(p) \in G_2(V(M))$. Moreover, if $\{X,Y\}$ is an orthonormal basis of p (with respect to g_{u_0}) then $\{\gamma X, \gamma Y\}, \{\beta X, \beta Y\}$ are basis in $\gamma(p), \beta(p)$ respectively (orthonormal with respect to the inner product \tilde{g}_{u_0}). Let \tilde{B} be the curvature 2-form of the linear connection (1.11). As a consequence of (1.12) the (0,4)-tensor field $\tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}) = \tilde{g}(\tilde{B}(\tilde{Z}, \tilde{W}), \tilde{Y}, \tilde{X})$ verifies :

$$\widetilde{B}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{W}) + \widetilde{B}(\widetilde{X}, \widetilde{Y}, \widetilde{W}, \widetilde{Z}) = 0$$

$$\widetilde{B}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}, \widetilde{W}) + \widetilde{B}(\widetilde{Y}, \widetilde{X}, \widetilde{Z}, \widetilde{W}) = 0.$$
(3.1)

Since (3.1) holds, we may consider the (well-defined) map $b: G_2(V(M)) \to IR$, $b(\tilde{p}) = \tilde{B}_u(\tilde{X}, \tilde{Y}, \tilde{X}, \tilde{Y}), \ \tilde{p} \in G_2(V(M))$, for any orthonormal (with respect to \tilde{g}_u) linear basis $\{\tilde{X}, \tilde{Y}\}$ in $\tilde{p}, u = \tilde{p}(\tilde{p})$. Next we define $r, s: GF_2(M) \to IR$, by $r(p) = b(\beta(p)), \ s(p) = b(\gamma(p)), \ p \in GF_2(M)$. The maps r, s are the horizontal (resp. vertical) sectional curvatures of the Finsler space (M, E), such as

tter T Plater

introduced in [5], provided that g is given by $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j E$. Indeed, let \tilde{R} be the curvature 2-form of the Miron connection (1.9) - (1.10). Consider the tensor fields $\tilde{R}(X, Y, \tilde{Z}, \tilde{W}) = g(\tilde{R}(\tilde{Z}, \tilde{W}) Y, X)$, and R(X, Y, Z, W) =

 $= \tilde{R} (X, Y, \beta Z, \beta W), S (X, Y, Z, W) = \tilde{R} (X, Y, \gamma Z, \gamma W).$ Then the following identities hold:

$$B(X, Y) Z = \beta R(X, Y) L Z + \gamma R(X, Y) G Z$$

$$\tilde{B}(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{W}) = \tilde{R}(L \tilde{X}, L \tilde{Y}, \tilde{Z}, \tilde{W}) + \tilde{R}(G \tilde{X}, G \tilde{Y}, \tilde{Z}, \tilde{W})$$
(3.2)

and consequently r(p) = R(X, Y, X, Y), s(p) = S(X, Y, X, Y), for $p \in GF_2(M)$ and for any orthonormal linear basis $\{X, Y\}$ in p.

4. MAIN RESULT

Let $p_0 \in GF_2(M)$, $u_0 = p(p_0)$, be fixed. Let $\{X, Y\}$ be an orthonormal basis in p_0 . Consider the curve $W: [0, 2\pi] \rightarrow p_0$ defined by $W(\theta) = (\cos \theta) X +$ $+ (\sin \theta) Y, 0 \le \theta \le 2\pi$. For simplicity we set $p_0^h = \beta(p_0), p_0^v = \gamma(p_0)$; therefore $\theta \rightarrow \beta(W(\theta))$ (resp. $\theta \rightarrow \gamma(W(\theta))$) is a curve in p_0^h (resp. in p_0^r). With standard arguments) there exists a number r > 0 such that :

$$t \beta W(\theta) \in W_{\widetilde{0}}^{\perp} \cap N_{u_0}$$

$$t \gamma W(\theta) \in W_{\widetilde{0}}^{\perp} \cap \operatorname{Ker} (d_{u_0} \pi)$$

$$(4.1)$$

for any $0 \leq t \leq r$. Therefore, the following curves are well defined, i.e. $C_{\theta}^{h}, C_{0}^{v}: [0, r] \rightarrow V(M)$ given by:

$$G_{\theta}^{h}(t) = \exp_{u_{\theta}} t \beta W(\theta), \quad C_{\theta}^{v}(t) = \exp_{u_{\theta}} t \gamma W(\theta)$$
(4.2)

for any $0 \le \theta \le 2\pi$, $0 \le t \le r$. Moreover we consider the curves C^h , $C^{\nu}: [0, 2\pi] \to V(M)$ given by:

$$C^{h}(\theta) = C_{0}^{h}(r), \ C^{\nu}(\theta) = C_{0}^{\nu}(r).$$
 (4.3)

Let $L(C^{\nu})$, $L(C^{h})$ be respectively given by

$$L(C^{\nu}) = \int_{0}^{2\pi} \tilde{g}_{C^{\nu}(\theta)} \left(\frac{d C^{\nu}}{d \theta} (\theta), \frac{d C^{h}}{d \theta} (0) \right) d \theta ,$$
$$L(C^{h}) = \int_{0}^{2\pi} \tilde{g}_{C^{h}(0)} \left(\frac{d C^{h}}{d \theta} (\theta), \frac{d C^{h}}{d \theta} (\theta) \right) d \theta.$$

We may formulate the following :

- 91

Theorem 4.1. Let (M, g) be a generalized Finsler space carrying the nonlinear connection N. Let $s: GF_2(M) \rightarrow IR$ be the vertical sectional curvature associated with the Miron connection determined by the pair (g, N). Then :

$$s(p_0) = \lim_{\substack{r \to 0 \\ r \neq 0}} \frac{3}{\pi r^3} \left\{ L(C^{\nu}) - 2\pi r \right\}$$
(4.4)

for each $p_0 \in GF_2(M)$, where C^{ν} is given by (4.2).

It is an open problem to establish a geometrical interpretation similar to (4.4) for the horizontal sectional curvature r of (M, g, N).

5. JACOBI FIELDS ON GENERALIZED FINSLER SPACES

Let us put $\alpha^{\nu}(\theta, t) = C_{\theta}^{\nu}(t), \ 0 \leq 0 \leq 2\pi, \ 0 \leq t \leq r$, with the notations in § 4. By (4.2) it follows that the family $\{C_{0}^{\nu}\}_{0\leq 0\leq 2\pi}$ consists of autoparallel curves of $\tilde{\nabla}$ with the initial data $(u_{0}, \gamma W(\theta))$. Clearly α^{ν} is a variation of C_{0}^{ν} , in the sense of [⁸, p.63], vol.II. Let then J^{ν} be the infinitesimal variation induced by the variation α^{ν} . We need to recall that J^{ν} is a vector field along the 2-parameter surface α^{ν} in V(M) given by :

$$J^{\nu} (\alpha^{\nu} (\theta, t)) = J^{\nu}_{\theta} (t)$$

$$J^{\nu}_{\theta} (t) = \frac{\partial \alpha^{\nu}}{\partial \theta} (\theta, t)$$

$$\frac{\partial \alpha^{\nu}}{\partial \theta} (\theta, t) = (d_{\theta} \alpha_{t}) \frac{d}{d\theta} \Big|_{\theta}$$

$$\alpha^{\nu}_{t} (\theta) = \alpha^{\nu} (\theta, t) .$$
(5.1)

Note that :

$$J_{\theta}^{\nu}(0) = \theta \quad , \quad 0 \leq \theta \leq 2\pi \,. \tag{5.2}$$

Let $u_0 \in V(M)$ be fixed. Put for brevity $W_{\widetilde{0}}^{\nu} = W_{\widetilde{0}} \cap \operatorname{Ker}(d_{u_0}\pi)$. Consider $\widetilde{X}_0 \in W_{\widetilde{0}}^{\nu}$ and the curve γ_0 in V(M) defined by :

$$\gamma_0(t) = \exp_{u_0} t \, \widetilde{X}_0 \tag{5.3}$$

for small values of the parameter t. Next we consider the first order ordinary differential system :

$$\tilde{\nabla}_{\frac{d\sigma}{dt}}\tilde{Z}=0$$
(5.4)

where $\sigma: [0, 1] \to V(M)$ is a given differentiable curve in V(M). Let then $T_{\sigma,t}^*: T_{\sigma(0)}(V(M)) \to T_{\sigma(t)}(V(M))$ be the parallel displacement operator along σ , associated with (5.4). That is, if \tilde{Z} is the unique solution of (5.4) with initial data $\tilde{Z}(0) = \tilde{Z}_0$ then $T_{\sigma,t}^*(\tilde{Z}_0) = \tilde{Z}(t)$, for any $\tilde{Z}_0 \in T_{\sigma(0)}(V(M))$. We establish:

Lemma 5.1. For an arbitrary smooth curve $\sigma : [0, 1] \rightarrow V(M)$ one has:

$$P_2 \circ T^*_{\sigma,t} = T^*_{\sigma,t} \circ P_2 \tag{5.5}$$

REAL THE ACCEPTED AND A SECOND REPORT OF THE REAL PRODUCTS

for any $0 \leq t \leq 1$.

Proof. Let $\tilde{X} \in T_u(V(M))$ and \tilde{Z} the unique solution of (5.4) with $\tilde{Z}(0) = P_2 \tilde{X}$. Then $0 = P_2 \tilde{\nabla}_{\frac{d\sigma}{dt}} \tilde{Z} = \tilde{\nabla}_{\frac{d\sigma}{dt}} P_2 \tilde{Z}$, by our (1.13), i.e. $P_2 \tilde{Z}$ is a solution of (5.4). Moreover $(P_2 \tilde{Z})(0) = P_2 P_2 \tilde{X} = \tilde{Z}(0)$. Consequently $P_2 \tilde{Z} = \tilde{Z}$, and (5.5) holds, Q.E.D.

Let us replace now σ in (5.4) by the curve (5.3). By the very definition of γ_0 , its tangent gives a solution of (5.4) (since γ_0 is an auto-parallel curve of the linear connection (1.11) and $\frac{d\gamma_0}{dt}(0) = \tilde{X}_0$). Applying Lemma 5.1. one has:

$$\frac{d\gamma_0}{dt}(t) = T^*_{\gamma_0,t}(\tilde{X}_0) = T^*_{\gamma_0,t}(P_2\,\tilde{X}_0) = P_2\,T^*_{\gamma_0,t}(\tilde{X}_0) = P_2\,\frac{d\gamma_0}{dt}(t)\,.$$

It follows that (5.3) is a vertical curve provided that \overline{X}_0 is vertical. Thus :

$$(d_{\gamma_0(t)}\pi)\frac{d\gamma_0}{dt}(t)=0$$

or $\pi \circ \gamma_0 = \text{constant}$, i.e. the curve (5.3) lies entirely in the fibre $V_{x_0} = \pi^{-1}(x_0) \subset V(M), x_0 = \pi(u_0)$. The result obtained in terms of the curve (5.3) might be equally applied to the curve C_0^{ν} given by (4.2). Therefore :

$$C_0^{\mathsf{v}}(t) \in V_{\mathsf{x}_0}, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq t \leq r.$$

In addition to (5.1) we consider :

$$\frac{\partial \alpha^{\mathsf{v}}}{\partial t}(\theta, t) = (d_t \alpha_{\theta}^{\mathsf{v}}) \frac{d}{d t} \bigg|_{t}$$
$$\alpha_{\theta}^{\mathsf{v}}(t) = \alpha^{\mathsf{v}}(\theta, t).$$

By (1.14) one has :

$$\widetilde{A}(\gamma X, \gamma Y) = \gamma S^{1}(X, Y) = 0$$
(5.6)

for any $X, Y \in \Gamma(V(M), \pi^{-1}T(M))$. Let us define:

-93

$$\frac{D\,\widetilde{X}}{\partial t}(\theta, t) = (\widetilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}}\widetilde{X})_{\alpha^{\nu}(\theta, t)}$$
(5.7)

for any tangent vector field \tilde{X} of V(M) defined along the 2-parameter surface α^{ν} in V(M). Since C_0^{ν} lies entirely in V_{x_0} , and V_{x_0} is the maximal integral manifold of the vertical distribution Ker $(d\pi)$ passing through u_0 , one obtains :

$$\frac{\partial \alpha^{\nu}}{\partial t}(\theta, t), \frac{\partial \alpha^{\nu}}{\partial \theta}(\theta, t) \in \operatorname{Ker} \left(d_{\alpha^{\nu}(\theta, t)} \pi \right)$$
(5.8)

for $0 \leq \theta \leq 2\pi$, $0 \leq t \leq r$. Using (5.6) - (5.8) we derive :

$$\frac{D J^{\nu}}{\partial t}(0,0) = \left\{ \tilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial \theta}} \frac{\partial \alpha^{\nu}}{\partial t} \right\}_{u_0}$$
(5.9)

since $\left[\frac{\partial \alpha^{\nu}}{\partial t}, \frac{\partial \alpha^{\nu}}{\partial \theta}\right] = \theta.$

6. PROOF OF THE MAIN RESULT

Let $\tilde{\pi}: T(V(M)) \to V(M)$ be the natural projection of the tangent bundle over V(M). We consider the natural imbedding $n_t: T(V(M)) \to T(T(V(M))), t \in IR$, defined as follows: Let $\tilde{X}_0 \in T(V(M))$. Consider the curve $a(t) = t \tilde{X}_0$ in T(V(M)). Set:

$$\eta_t(\tilde{X}_0) = \frac{d\,a}{d\,t}(t)\,. \tag{6.1}$$

Actually, if $\tilde{\pi}(\tilde{X}_0) = u_0$, $u_0 \in V(M)$, then a(t) is a curve in $T_{u_0}(V(M))$. Therefore, its tangent vector at a(t) is an element of $T_t \tilde{\chi}_0(T_{u_0}(V(M))) = \text{Ker}(d_t \tilde{\chi}_0 \tilde{\pi}), t \in IR$. Let us consider now the curve (5.3) with $\tilde{X}_0 \in W_{\widetilde{0}}$ not necessarily vertical. We may rewrite it:

$$\gamma_0(t) = \exp_{u_0} a(t) \tag{6.2}$$

for small enough values of t; taking the differential of (6.2) at t furnishes :

$$\frac{d\gamma_0}{dt}(t) = (d_{a(t)} \exp_{u_0}) \eta_t(\tilde{X}_0) .$$
(6.3)

Take (6.3) at t = 0; since γ_0 is an auto-parallel curve of (1.11) with initial data (u_0, \tilde{X}_0) it follows:

$$(d_{u_0} \exp_{u_0}) \eta_0 \tilde{X}_0 = \tilde{X}_0$$
 (6.4)

We apply the results given by (6.3) - (6.4) to the curve C_{θ}^{ν} . Thus one has:

$$\frac{\partial \alpha^{\nu}}{\partial t}(\theta, 0) = \gamma W(\theta), \quad 0 \leq \theta \leq 2\pi.$$
(6.5)

Let $(x^{a}) = (x^{i}, y^{i}), 1 \leq a \leq 2n$, be the natural local coordinates on V(M). Let T_{bc}^{a} be the corresponding local coefficients of the linear connection (1.11). The right hand side of (5.9) is locally given by :

$$\left\{ \widetilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial \theta}} \frac{\partial \alpha^{\nu}}{\partial t} \right\}_{u_{0}}^{a} = \frac{\partial^{2} \alpha^{a}}{\partial \theta \partial t} (0,0) + \Gamma_{bc}^{a} (\alpha^{\nu}(0,0)) \frac{\partial \alpha^{b}}{\partial \theta} (\theta,0) \frac{\partial \alpha^{c}}{\partial t} (\theta,0) \quad (6.6)$$

where $\alpha^{\nu}(\theta, t) = (\alpha^{1}(\theta, t), ..., \alpha^{2^{n}}(\theta, t))$. Let $W^{1}(\theta) = X^{i} \cos \theta + Y^{i} \sin \theta$ be the components of the Finslerian vector field $W(\theta)$ on M. Our (6.5) leads to :

$$\frac{\partial \alpha^{i}}{\partial t}(\theta, 0) = \theta, \quad \frac{\partial \alpha^{n+i}}{\partial t}(\theta, 0) = W^{i}(\theta)$$
(6.7)

for $1 \le i \le n$. By (5.1) - (5.2) and (6.6) - (6.7) one has

$$\frac{D J^{\gamma}}{\partial t}(\theta, 0) = \frac{d W^{1}}{d \theta}(\theta) \dot{\partial}_{i} \bigg|_{\mu}$$

or:

$$\frac{D J^{\gamma}}{\partial t}(\theta, 0) = \gamma W\left(\theta + \frac{\pi}{2}\right).$$
(6.8)

For each $\tilde{X} \in T_{\mu}(V(M))$ we put $||\tilde{X}|| = \tilde{g}_{\mu}(\tilde{X}, \tilde{X})^{1/2}$. We consider the function $f_{\theta}^{\nu}: [0, r] \to (0, +\infty)$ given by:

$$f_{\theta}^{\nu}(t) = ||J_{\theta}^{\nu}(t)||^{2} , \ 0 \leq t \leq r.$$
 (6.9)

We develop (6.9) as a Taylor series :

$$f_{\theta}^{\nu}(t) = \sum_{k=0}^{4} \frac{t^{k}}{k!} \left(D^{k} f_{\theta}^{\nu} \right)(0) + o(t^{5})$$
(6.10)

and compute $D^k f_{\theta}^{\nu}$, where $D^k = \frac{\partial^k}{\partial t^k}$, $0 \le k \le 4$. By (5.2), (6.8) one obtains:

$$f_{\theta}^{\nu}(0) = 0$$

$$(D f_{\theta}^{\nu})(0) = 0$$

$$(D^{2} f_{\theta}^{\nu})(0) = 0$$
(6.11)

since the connection (1.11) verifies (1.12). How (5.1) is the infinitesimal variation induced by the variation α^{ν} ; by Theorem 1.2. in [⁸, p.64] one obtains :

-95

NEWSCHER STATES ST STATES STAT

$$\widetilde{\nabla}^{2}_{\frac{\partial}{\partial t}a^{\nu}}J^{\nu} + \widetilde{\nabla}_{\frac{\partial}{\partial t}a^{\nu}}\widetilde{A}\left(J^{\nu}, \frac{\partial}{\partial t}a^{\nu}\right) + \widetilde{B}\left(J^{\nu}, \frac{\partial}{\partial t}a^{\nu}\right) - \frac{\partial}{\partial t}a^{\nu} = 0. \quad (6.12)$$

Take (6.12) at u_0 . By (5.1), (5.6), (5.8) it turns into:

$$\{\widetilde{\nabla}^2_{\frac{\partial \alpha^{\nu}}{\partial t}} J^{\nu}\}_{u_0} = 0.$$
(6.13)

Consequently :

$$(D^{3}f_{\theta}^{\nu})(0) = 0. \qquad (6.14)$$

Let $S(X, Y)Z = \tilde{R}(\gamma X, \gamma Y)Z$ be the vertical curvature of the Miron connection, X, Y, Z \in $\Gamma(V(M), \pi^{-1} T(M))$. By (3.2) one obtains $\widetilde{B}(\gamma X, \gamma Y) \gamma Z = \gamma S(X, Y) Z$. Using (1.12) we have :

$$(D^4 f^{\nu}_{0})(0) = 8 \,\widetilde{g}_{u_0} \left(\{ \widetilde{\nabla}^3_{\frac{\partial \alpha^{\nu}}{\partial t}} J^{\nu} \}_{u_0}, \, \{ \widetilde{\nabla}^3_{\frac{\partial \alpha^{\nu}}{\partial t}} J^{\nu} \}_{u_0} \right). \tag{6.15}$$

Take the covariant derivative of the Jacobi equation (6.12) in the direction $\frac{\partial \alpha^{\nu}}{\partial t}$. Moreover, take the inner product of the resulting equation by $\{\overline{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}} J^{\nu}\}_{u_0}$.

Then (6.15) becomes :

$$(D^4 f^{\nu}_{\theta})(0) = 8 \,\widetilde{g}_{u_0} \left(\widetilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}} \widetilde{B} \left(J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t} \right) \frac{\partial \alpha^{\nu}}{\partial t}, \widetilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}} J^{\nu} \right). \tag{6.16}$$

On the other hand :

$$\widetilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}} \widetilde{B}\left(J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right) \frac{\partial \alpha^{\nu}}{\partial t} = \widetilde{B}\left(\widetilde{\nabla}_{\frac{\partial \alpha^{\nu}}{\partial t}} J^{\nu}, \frac{\partial \alpha^{\nu}}{\partial t}\right) \frac{\partial \alpha^{\nu}}{\partial t}.$$
(6.17)

Now take (6.17) in u_0 and use (6.8). From the resulting equation let us substitute in (6.16). We obtain :

$$(D^4 f^{\nu}_{\theta}(0) = -8 \tilde{g}_{\mu_0} \left(\tilde{B} \left(\gamma \ W \left(\theta + \frac{\pi}{2} \right), \gamma \ W(\theta) \right) \gamma \ W(\theta), \ \gamma \ W \left(0 + \frac{\pi}{2} \right) \right).$$
(6.18)

Moreover, in terms of the vertical curvature tensor:

$$(D^{4}f_{\theta}^{\nu})(0) = -8 S_{\mu_{\theta}}\left(W\left(\theta + \frac{\pi}{2}\right), W(\theta), W\left(\theta + \frac{\pi}{2}\right), W(\theta)\right). \quad (6.19)$$

At this point we may substitute in (6.10) from the formulae (6.11), (6.14) and (6.19). This procedure gives :

$$f_{\theta}^{\nu}(t) = t^{2} \left\{ 1 - \frac{t^{2}}{3} S_{\mu_{0}} \left(W \left(\theta + \frac{\pi}{2} \right), W(\theta), W \left(\theta + \frac{\pi}{2} \right), W(\theta) \right) + o(t^{2}) \right\}.$$
(6.20)
As $(1 - \delta)^{1/2} = 1 - \frac{1}{2} \delta + o(\delta^{2})$ we obtain :

and the second sec

$$L(C^{\nu}) = 2 \pi r + \int_{0}^{2\pi} S_{\mu_{0}}\left(W\left(\theta + \frac{\pi}{2}\right), W(\theta), W\left(\theta + \frac{\pi}{2}\right), W(\theta)\right) d\theta + o(r^{3}). \quad (6.21)$$

Now $\left\{ W(\theta), W\left(\theta + \frac{\pi}{2}\right) \right\}$ is an orthonormal basis in $p_0 \in GF_2(M), u_0 = \rho(p_0)$, and thus (6.21) leads to (4.4), Q.E.D.

REFERENCES

[¹]	BARTHEL, W.	:	Nichtlineare Zusammenhänge und deren Holonomie- gruppen, J. Reine Angew. Math. 212 (1963), 120-149.
[²]	CARTAN, E	:	Les espaces de Finsler, Act. Sei. 79, Paris, 1934, 41 p.
[⁸]	DOMBROWSKI, P.	:	On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.
[*]	DRAGOMIR, S. and	:	On the reducible Finsler spaces with a vanishing R_{ik}^{i}
	CASCIARO, B.		torsion tensor field, to appear in Acta Math. Hungari- ca, 1989.
[5]	DRAGOMIR, S. and	:	On the holomorphic sectional curvature of Kaehlerian
	IANUS, S.		Finsler spaces, I-11, Tensor, N.S., 39 (1982), 95-98, Rendiconti di Matem., (4) 3 (1983), 757-763.
[⁶]	GRIFONE, J.	:	Structure presque tangente et connexions, I-II, An. Inst. Fourier, (1) 22 (1972), 287-334, (3) 22 (1972), 291-338.
[7]	HASSAN, B.T.M.	:	The theory of geodesies in Finsler spaces, Ph. D. thesis, Southampton, 1967, 108 p.
[⁸]	KOBAYASHI, S. and	:	Foundations of differential geometry, Vol. I-II, Inter-
	NOMIZU, K.		science Publ., New York, 1963, 1969.
[⁹]	MIRON, R.	:	Metrical Finsler structures and metrical Finsler connec- tions, J. Math. Kyoto Univ., (2) 23 (1983), 219-224.
[10]	VRANCEANU, G.	:	Leçons de géometrie differentielle, Ed. Acad. R.P.R., Bucuresti, 1957.

UNIVERSITA DEGLI STUDI DI BARI DIPARTIMENTO DI MATEMATICA VIA G.FORTUNATO, 70125 BARI (CAMPUS UNIVERSITARIO) ITALY

ÖZET

Bu çalışmada, genelleştirilmiş bir M Finsler uzayı verildiğine göre, Müzerindeki bütün teğet doğrultularının $V(M) \approx T(M) - 0$ manifoldumm yapısı incelenmektedir. - 97

122