Istanbul Vniv. Fen Fak. Mec. Seii A, **47 (1983-1986), 7-14 7**

ON THE MODULUS CONTINUITY OF RANDOM VECTOR FIELDS

AL-MADAN I M. GHALE B

We give a number of results with respect to the modulus of continuity of random vector fields.

1. INTRODUCTION

Modulus continuity of random vector fields has not yet been sufficiently investigated.

In this paper, an attempt has been made to investigate modulus continuity of random vector fields. Let $X(x)$ be a seperable random *n* vector field on $[0,1]^n$ (See for instance $[\![1]\!]$, $[\![2]\!]$). We consider $t = (l_1, l_2, ..., l_i)^{-1}$, where $\{l_s\}$ is a sequence of integers and $I_s \geq 1$. We may take $X(x)$ to be a column vector and X' the corresponding row vector.

2. MAIN RESULTS

Theorem 1. Let $X(x)$ be a seperable random *n* vector field on $[0,1]^n$ and let

$$
\sup_{|\widetilde{t}_i| \leq t} P\left\{ \left| \left| X(x + \widetilde{t}) - X(x) \right| \right| \geq f(t) \right\} \leq h(t) \,, \tag{1}
$$

where $f(t)$ is a positive nondecreasing even function on $(0, +\infty)$ such that

$$
\sum_{i=1}^{\infty} f(t_i) < \infty \tag{2}
$$

and $h(t)$ is a nondecreasing even function on $(0, +\infty)$ such that

$$
\sum_{i=1}^{\infty} t_{i+1}^{-n} h(t_i) < +\infty
$$
 (3)

then with probability one, there exists a random variable $T(w)$ such that

 $P\{T(w) > 0\} = 1$

$$
\quad\text{and}\quad
$$

$$
\left| \left| X(x + \tilde{t}) - X(x) \right| \right| \le h(t), \tag{4}
$$

for $|\tilde{t}_i| \le t < T(w)$, where

$$
h(t) = 2\sum_{i=N}^{\infty} f(t_i)
$$

and *N* is determined from the relation

$$
t_N \le t \le t_{N-1} \tag{5}
$$

Proof. By (1) the random vector field is stochastically continuous and therefore any dense set which is countable everywhere may be regarded as a **CO** separability set. For the separability set, we choose $Q = \iint Q_i$, where $i = 1$

$$
Q_i = \{K.t_i : K = 0, 1, ..., t_i^{-1}\}
$$

$$
Q_i^n = Q_i \dots \dots \dots Q_i.
$$

We will also consider the sets

$$
S_{i,s} = \{ x : S_m \cdot t_i \le x_m < (S_m + 1) \cdot t_i, m = 1, n \},
$$

$$
M_{i+1,\bar{s}} = Q_{i+1}^n \cap S_{i,\bar{s}},
$$

where $S = (S_1, \ldots, S_n)$, $S_m = 0$, $t_i^{-1} - 1$. An easy calculation shows that the number of points in the set $M_{i+t,\bar{s}}$ is equal to I_{i+1}^n . We introduce the sequence of random events

$$
B_{i} = \{ \omega : \sup || X(S_{1} \cdot t_{i} ,..., S_{n} \cdot t_{i}) - X(x) || > f(t_{i}) \}
$$

$$
0 \leq S_{m} < t_{i}^{-1}
$$

$$
x \in M_{i+1, \bar{s}}
$$

$$
m = \bar{1}, n
$$

We observe that by (1)

$$
P(B_i) \leq \sum_{s,x} P\{ || X(S_1 \cdot t_i, ..., S_n \cdot t_i) - X(x) || > f(t_i) \} \leq t_{i+1}^{-n} \cdot h(t_i)
$$

and by the Borel-Cantelli lemma (see for example $\lceil \frac{3}{2} \rceil$), it follows from (3) that there exists an event *B* such that $P(B) = 1$ and for $\omega \in B$ we may find a number $N₁$ (ω) such that the inequalities

$$
|| X(S_1, t_i, ..., S_n, t_i) - X(x) || \le f(t_i)
$$
 (6)

hold for all

$$
i > N_1(\omega), S = (S_1, t_1, ..., S_n, t_i), 0 \le S_m < t_i^{-1}
$$
 and $x \in M_{i+1,\bar{s}}$.

By the seperability of $X(x)$,

ON THE MODULUS CONTINUITY OF RANDOM VECTOR FIELDS 9

$$
\sup || X(x') - X(x'') || = \sup || X(x') - X(x'') ||
$$

$$
| X'_{m} - x''_{m} | \le t \qquad | x'_{m} - x''_{m} | \le t
$$

$$
m = \overline{1,n} \qquad m = \overline{1,n}
$$

with probability one, where $x^r, x^r \in Q$.

Suppose that $\omega \in B$ and $T(\omega) = t_{N}$ (ω). Let $t < T(\omega)$ and determine the number *N* from the conditions $t_N \le t \le t_{N-1}$ and $|x_m - x_m \le t$ for all *m* where x' , $x'' \in Q$. With these assumptions, we may write the points x' and x'' in the form

$$
x' = (S'_i \cdot t_{N+1}, \dots, S'_n \cdot t_{N+1}),
$$

$$
x'' = (S''_1 \cdot t_{N+1}, \dots, S''_n \cdot t_{N+1})
$$

where $l > 0$.

We now estimate the norm $|| X(x') - X(x'') ||$. In the case where $x', x'' \in$ $S_{N+l-1,s}$,

$$
|| X(x') - X(x') || \leq 2 \cdot f(t_{N+1-1}).
$$

Otherwise we construct a sequence of cubes of the form $S_{\lambda \bar{s}}$ in the following way: Let $x'' = S_m''$. t_{N+1} and $\hat{x}'_m = S_m'$. t_{N+1} . If $S_m' < S_m''$, we choose the number of the form $\hat{x}_{m,1}'' = S_{m,i}''$ t_{N+1} which is nearest to \hat{x}_m'' on the left. We then choose the number of the form $x^{'}_{m,2} = S^{''}_{m,2}$. t_{N+1-2} which is nearest to $x^{'}_{m,1}$, and so on.

If $S'_m > S''_m$, we proceed similarly, moving to the right. We carry-out the procedure just described for every $m (m = 1, n)$, continuing to refine the partitions until the point x' belongs for the first time to some cube S_{N+1} _{*k*} with a vertex at the point $x''_r = (S''_{1,r} \cdot t_{N+r-r}, \dots, S''_{n,r} \cdot t_{N+r-r}).$ Note that the intermediate vertices of the cubes just constructed were at the points $x_k^{\prime\prime} = (S_{1,k}^{\prime\prime} \cdot t_{N+1-k}^{\prime}, \dots,$ S_{nk}^{\prime} , t_{n+1-k}), $K = \overline{1, r-1}$. If $x' \neq x''$, we construct an increasing sequence of cubes $S'_{\hat{i},\bar{s}}$ containing the point x' and the last term of this sequence must contain the point *xr .*

Let the vertices of the cubes of the sequence be denoted by x_j' ; then the inequality

$$
|| X(x^{n}) - X(x^{n}) || \le || X(x^{n}) - X(x^{n}) || + ... + || X(x^{n}) - X(x^{n}) || + ... + || X(x_{1}) - X(x^{n}) || \le 2 \sum_{i=N}^{\infty} f(t_{i}) = g(t)
$$
 (7)

completes the proof of the Theorem 1.

10 **AL MADANI M. GHALEB**

Theorem 2. Let $X(x)$ be a seperable random *n* vector field on $[0,1]^n$ with independent components, satisfying the conditions of Theorem 1. Then

$$
P \sup \{ || X(x') - X(x'') || > g(t) \} \le \lambda(t)
$$
\n
$$
| x'_{m} - x''_{m} | \le t
$$
\n
$$
m = \overline{1, n}
$$
\n(8)

where

$$
g(t) = 2 \sum_{i=N} f(t_i), \qquad (9)
$$

CONSUMING CONTRACTORS IN THE CONSUMING

$$
\lambda(t) = \sum_{i=N} t_{i+n}^{-n} \cdot h(t_i)
$$
\n(10)

and *N* is determined from (5) .

Proof. Let

$$
B_{t,\bar{s},x} = \{ \omega : || X(S_1, t_1, ..., S_n, t_i) - X(x) || \le f(t_i) \}
$$

and

$$
B_N = \prod_{i=N}^{\infty} \prod_{S} \prod_{x \in M_{i+1,s}} B_{i,\overline{s},x}.
$$

It follows from the proof of Theorem 1 that if $\omega \in B_N$, then

$$
|| X(x') - X(x'') || \le g(t) = 2 \sum_{i=N}^{\infty} f(t_i),
$$

 $|x'_m - x''_m| \le t_N, m = \overline{1,n}.$ Therefore

$$
\{\omega : \sup \left| \left| X(x') - X(x'') \right| \right| > g(t) \} \right| \subset \overline{B}_N \, .
$$
\n
$$
|x'_m - x''_m| \le t, m = \overline{1, n}
$$
\n
$$
x', x'' \in \mathcal{Q} \, .
$$
\n
$$
\tag{11}
$$

Since

$$
P(\overline{B}_N) \leq \sum_{m=N}^{\infty} \sum_{\overline{s}} \sum_{x} P(\overline{B}_{m,\overline{s},x}) \leq \sum_{j=N}^{\infty} t_{j+1}^{-n} h(t_j),
$$

(8) is implied by (11).

Now let

$$
Z_X(t) = \sup \left| \left| X(x + \tilde{t}) - X(x) \right| \right|.
$$

$$
\left| t_m \right| < t, x \in [0,1]^n
$$

$$
m = \overline{1,n}
$$

Using Theorem 1 and 2, we have obtained estimates of $Z_X(t)$, valid with probability one, and estimates of the form

$$
P\left\{Z_{X}(t) > \overline{g(t)}\right\} \leq \overline{\lambda(t)},
$$

$$
P\left\{Z_{X}(t) > \nu\right\} < \mathfrak{a}(t, \nu),
$$

under the assumption that

$$
\sup E \left| \left| X(x + \tilde{t}) - X(x) \right| \right|^\alpha \le \gamma_\alpha^2(t),
$$

\n
$$
|t_m| \le t,
$$

\n
$$
m = \overline{1, n}, x
$$

where *E* denotes expectation.

In the table on p. 12 we give the results of calculations of the functions $\overline{\gamma(t)}$, $\overline{\lambda(t)}$ and $\alpha(t, v)$ for several functions $g_{\alpha}(t)$.

For example, let us state and prove the following assertion, implied by Theorem **1.**

Corollary 1. If $X(x)$ is a Gaussian random *n* vector field on $[0,1]^n$ an if

$$
\sup \{ E \, | \, |X(x + \tilde{t}) - X(x)| \}^2 \} \le \frac{1}{|\ln t|^{1+\epsilon}} \cdot C = \gamma_{\alpha}^2(t),
$$

$$
|t_m| \le t, m = \overline{1, n}
$$

$$
x \in [0,1]^n
$$

where $\varepsilon > 0$ and *C* is a positive constant and *E* denotes the expectation, then

$$
|\left| X(x+\tilde{t}) - X(x) \right| \leq \frac{1}{|\ln t|^{s/2}} \cdot a
$$

with probability one, where a is a positive constant.

 $\label{eq:R1} \begin{minipage}[t]{0.00\textwidth} \begin{minipage}[t$

 $\label{thm:main} We have the following expressions for the BMSP (MMSP) of the CMSP (MMSP) of the DMSP (M$

The second contract of the second cont

12

O N TH E MODULU S CONTINUIT Y O F RANDO M VECTO R FIELD S

 \sim \sim

Proof. Since the field is Gaussian, so

$$
P\left\{||X(x+\tilde{t})-X(x)|| > f(t)\right\} \leq \frac{1}{\sqrt{2\pi}}\frac{\gamma(t)}{f(t)}\cdot e^{-\frac{1}{2}\frac{f^2(t)}{\gamma^2(t)}}.
$$

Let

$$
f(t) = 2C_1 \sqrt{n} \left| \ln t \right|^{\frac{1}{2}} \cdot \gamma(t),
$$

where $C_1 \geq 1$. Then

$$
h(t) = (2 C \sqrt{2\pi n})^{-1} t. (\ln t)^{\frac{1}{2}})^{-1}.
$$

We now calculate $\overline{g(t)}$ and $\overline{\lambda(t)}$, choosing $t_i = 2^{-2^i}$.

We have

$$
g(t) = 2 \sum_{i=N}^{\infty} 2C_1 \sqrt{n \cdot C} |\ln t|^{\frac{1}{2}} \frac{1}{\left|\ln t\right|^{\frac{1}{2}}}
$$

$$
= 2^2 C_1 \sqrt{n \cdot C} \sum_{i=N}^{\infty} \frac{1}{\left|\ln \frac{1}{2^{2i}}\right|^{5/2}}
$$

$$
= 4 C_1 \sqrt{n \cdot C} \sum_{i=N}^{\infty} \left(\frac{1}{2^{5/2}}\right)^i
$$

$$
= \frac{C_1 \sqrt{n \cdot C}}{\left|\ln 2\right|^{5/2}} \cdot \frac{2^{\frac{5}{2} + 2}}{2^{\frac{5}{2}} \cdot 1} \cdot \frac{1}{2^{\frac{5}{2} \cdot \frac{N}{2}}}
$$

Taking account of (5), we get

$$
g(t) = C_1 \sqrt{n \cdot C} \frac{2^{\frac{\epsilon}{2} + 2}}{2^{\frac{\epsilon}{2}} - 1} \cdot \frac{1}{|\ln t|^{ \epsilon/2}}.
$$

 2^2 i 2

Similarly, we obtain

$$
\overline{\lambda}(t) = (C_1)^{-1} \cdot (2\sqrt{\pi n})^{-1} (\sqrt{2} - 1)^{-1} (\sqrt{\ln |t|})^{-1}.
$$

13

n men de la distribución de la completa de la comp

14 **AL-MADANI M. GHALEB**

BIBLIOGRAPH Y

- **['] G1HMAN , l.i. and : The theory of stochastic processes I , II . SKOROHOD, A.V.**
- [²] FRIEDMAN, A. **2 2 2 Example 3 Extending to Extending and Applications I (1975).**

[⁸] HALMOS, P.R. **:** Measure theory (1950).

MATHEMATIC S DEPARTMEN T COLLEG E O F ENGINEERIN G P.O.B. 9027 KING ABDULAZIZ UNIVERSITY JEDDAH , SAUD I ARABI A

OZE T

B u çalışmada, tesadüfi vektör alanlarının süreklilik modülü ile ilgili bir takım sonuçlar verilmektedir.