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O N THE GEOMETRIC M E A N A N D T H E ZEROS OF A N INTEGRAL 

S.N. S R I V A S T A V A - M.I . R I Z V I L> 

In this paper it has been investigated the geometric mean and the 
zeros of an integral function and has been found some inequalities, which are 
best possible, in terms of exponent of convergence and its lower orders. 

1. Let f(z) be an. integral function, and let 

] . m s u p l o g + i « = p 1 ( J l ) 

r-*™ inf log r Xx 

n(r) being the number o f zeros of \f(z) | in \ z\ <r, Jet G(r) and gs(r) denote the 
geometric means of | / (z ) | , defined as 

G(r) = e x p - i - / log \f(rei0)\dQ (1.2) 

o 
and 

gs(r) = exp J j \og\f(xe^)\xsdxd%. 

0 0 

Various authors have studied the properties of geometric mean values. Shah 
[ ' ] has extended the results of Polya and Szego [ 2 ] . Srivastava [ 3 ] and Bose and 
Srivastava [ 4 ] have also studied some of the properties of these mean values. 
Kuldip Kumar [ s ] has generalized the result of Shah f 1 ] . In this paper we have 
derived some inequalities, which are best possible, in terms of exponent o f con
vergence and its lower orders. We have also generalized the Result of Titchmarsh 

2. Theorem 1. I f f(z) is an integral function, then 

sup (gB(r)) Pi V'1) l im . 
inf log r Xj 

*) This work has been supported by Junior Research Fellowship of C . S . I . R . , New 
Delhi, India. 
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Proof. Let {Z„}" denote the zeros of | f(z) | , | Z„ | = r„ and suppose 
0 = rt = ... = rq < r q + t < rq+2 ... (q > 0) . 

Let n > q + 1, rn < /• < r „ + 1 , / (z ) = 2 " ^ ( z ) , 
then 

and 

Therefore 

further 

exp 
G(r) ) ( 5 + 1 (5 + \)n(r) ^ \ r 

I 

(rv)s+1= Jxs+1dn(x) 

o 
r 

= rs+* n(r) - (5 + 1) j xsn(x)dx. 

Hence 
1 

G(r) ) ( r 
o 

(See [ 5 , p. 40]) and for 8 = 1 see f 1 ] ) . 
Therefore 

i r 
G(r) tB<+I = e r B ' + l j xsn(x)dx (2.2) 

o 

< e 
«(r) 

5 + 1 

and also 
1 IT 

<W> = e < ^ « f x ° n ( x ) d x ( 2 . 3 ) 

I 

y xs n(x) dx 

gs(2r) 
o 

1 2r 

Mr) 
^ + T / 2 8 + 1 - l 

> e 
6 + 1 

Taking limits in (2.2), (2.3) and using (1.1), we get 
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l o g l o g ^ > 
l i m

 S U P ( g 8(Y) ) = P i t 

inf log r X x 

Corollary. We have 

e*l-Egs(r)<G(r)<e^+sg8(r), 

for r > r 0 . 

3. Let us set 

log W 
H m

s u P (gs(r)\ P . (3-D 

sup n(r) c l im — = , 
r̂ ™ inf 0 {r)rPi d 

where <£(r) is a positive, continuous and indefinitely increasing function of r and 
<$>{lr) ~ <£(r) as r-> co for every constant / > 0. We now prove the following : 

Theorem 2. I f f(z) is an integral function then, 
d c 

(i) < q < p < 
(8 + P l + l ) (S + P i + 0 

(») 

*_±i V — ) - 1 , 

dj H ~ (5 + P l + l ) ' ( 5 + 1 

(5 + 1) {c~d) + c P l > c 

Proof. From (2.2), we have for h > 0 
• u 

{ ( l + ft^'+Mog0^1 + A " = f x3n{x)dx + f xs n(x)dx + 
g B {/•(! +A)} J J 

0 r 0 

r 

<j>(x)xs'^dx + n[r(l+h)] ^ ^ " 
S + 1 

~ (c + 6) - p — — + « M I + A)} r + ^ , >-5+i • 
(5 + p j + l ) f 5 + 1 ) 

(Using [ 6 , Lemma 5]) 
Taking limits, we get 
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(1 + hf+?i+1p< + c{\ + A)". \ ( l + f e ) S + 1 ' ) (3.2) 
( S + P x + D ( 5 + 1 ) 

and 

( I + h)s+Pi+1 q< + d(\ + hY> VL±J*tl l i 

(5 + P l + l ) I 5 + 1 S 
(3.3) 

Similarly we obtain 

(5 + pj + 1) ( 6 + 1 S 

and 

(5 + P l + l ) ? P l + 1 i 

I t can be seen that the minimum of the right hand expressions of (3.2) and 

(3.3) occur at h = 0 and (1 + h)^ = . Substituting h = 0 in (3.2) and 

(1 + hfL = ~j-m (3.3), we get 2nd parts of (i) and (ii) respectively. Taking 

( i + hf+1 = ( 5 + 1 ) ( c ^ d f > + c P - i n ( 3 i 4 ) and /, = 0 in (3.5) we get (Hi) and 
c P l 

first part of (/) respectively. 

Theorem 3. I f f(z) is an integral function, then 
i 

SUpiG(r))r»(r) £  
ec(6+p,+i> < hm J > < erf (8+f.i+i) . 

r~«> inf fg-sO')) 

Proof. From (3.1), we have for s > 0 

(g - b) rp< # • ) < log < (/> + 8) ft 4>{r) (4.1) 

and 

(rf - e K ' (f>(r) < n(r) < (c + £)r p ' <£(r) . (4.2) 

Combining (4.1) and (4.2), we have 

( g - e ) < J _ , TO) < (P+e) 
(c+e) n(r) (g5(r)) (d-z) 

for r > r0 . 

Taking the limit and using (/) of Theorem 2, we get the result. 
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Corollary. I f c ~ d, in the above theorem, then 

l im ^ = e ( 5 + 0 L + '> . 
r — (gain) 

5. Theorem 4. I f f(0) # 0 and log ^ - pr^(j>(r\ then 
gB0') 

« ( r ) - ( 8 + P i + l ) / ; / - p ^ 0 - ) 
and conversely. 

Proof. From (/) of the Theorem 2, i f c = d, p — q — — — — .Suppose 

now p = q, we shall show that c ~ d. 

I f 0 < n < 1, we have from (2.2) 
r+n r 

Hence 

= 0 + n ) - . o g j ^ ± ^ | - i o g ^ 

- + T 1 ) 8 + P I + 1 r p i 0(r + i i r) - p rp> <f>(r) + 0 ( r p i 4>(r)) . 

lim sup < P 0 + P l + 1) + M , 

where p is a constant. Since n is arbitrary, we get 

l im sup ^ P (8 + p! + 1) • 

By considering the integral 

we get 

log ^ - ( l - ^ + M o g G ^ 4 , 
M**)) - i l r) 

lim i n f - ^ - >/>(o + P l + D 
,->«> r i <p(r) 

and hence the result. 

6. Theorem 5. I f f(z) is an integral function of order p and 

l im ™ P " W = ^ ( ( U ) 
/-*» inf i p %z 

then 
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sup log f(x) 
nX2 cosec Tip < hm • < %Kl cosec jtp . 

inf x p 

Proof. From (6.1) we have, for any s > 0, 
(X2 - e) tp < n(t)< (X1 + e) t° 

for t > tQ . 

Now / (z) = > log 1 + 

log 1 + 

t(z + 0 

log 1 + 

«(0 
iff 

= Z 
n(0 

dt . 

I f z is a real number then, 

logf(x) = x 
n{t) 

t(x + 0 

«(0 dt 

for / > r 0 (e), applying (6.2) we get 

t(x + / ) J t(x-\-t) 
0 t0 

n(t) 

J t(x + t) J t(x + t) 

J i (x + i ) 

« ( 0 ~ ( ^ i + s ) i f 

" (X t + s ) 

putting i = xu in the 2nd term, we get 
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log/(x) < 0(1) + (X, + e) 7i cosec Tip, 

proceeding to limit, we get 

fix) 
l im sup < %ki cosec i t p . 

On the other hand, for t > tQ (e) 

io g / (x )>x i y + JC / Y , ^ 
0 / 0 

i dt 

" i » ( Q - ( X 2 - e ) f / (X2 - R ) 
X 5 -r~ X 

t(x + 0 J t(x + r) 
0 0 

to 

+ x f ( ^ - 6 ) ^ 

0 

Again putting t — xu in the second term and integrating we get 

log / (x) > 0(1) H- xp (X2 ~ s)it cosec TU p , 

proceeding to l imit we get , 

l im inf ° g > nl2 cosec n p . 

Combining the results (6.3) and (6.4), we get 

sup log/be) 
nX2 cosec 7cp < l im < T C ^ cosec Ttp 

inf „TP 

Corollary. I f in the above theorem l im = X holds, 

then (6.5) leads to conclude A,x = Xz — X 

log/foe) ~ 7i A. x p cosec TCp 

which is the result ( [ 7 , p. 185]). 
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Ö Z E T 

B u çal ışmada bir tam fonksiyonun geometrik ortalaması ve sıfır yer
leri incelenmekte, yakınsaklık eksponenti ve onun alt mertebeleri cinsinden 
bazı, m ü m k ü n olan en iyi eşitsizlikler elde edilmektedir. 


