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NOTES ON BOUNDARIES
N. ERGUN

Some certain properties of boundary sets in ordinary topological spaces are
established in this note. Sample results are: 1) (AU B) =04} OB iff
AN B @EANIB) S AU B), 2) 33(4\U By AU B, 3) 34N IB
(A1 B) implies 33(A\J BY= 38 4\ 99B.

Introduction

Some certain properties of boundary sets in ordinary topological spaces
are established in this note. X denotes the fixed topological space with no

specific property or separation axiom. A=int A, A=cl A are the interior
and the closure of the subset 4 in X as usually. The boundary of A is

well known that if 4 is open or closed then g94 — A holds, i.e. 34 is nowhere
dense. '

A more general saternent could also be proved : Nowhere dense subsets
are preciesely the subsets of those special boundary sets with form (4 v 38B)
where A is semi-open or semi-closed after remembering the basic inclusion
Hd U 8B) < 94 Y 998,

Recall that a subset A4 is called semi-open (resp. semi-closed) iff there exists

an open G (resp. a closed K) with G © 4 = G (resp. Kecdc K) [’]. Hence
boundaries of semi-open or semi-closed subsets are also nowhere dense since
34 < 3G or 94 < 9K hold respectively. In fact boundariss of semi-open (resp.
semi-closed) sets are precisely boundaries of open sets since g4 = 334 =
= (X ~ 3A4) hold if 4 is semi-open or semi-closed. Notice also that in any
space with a dense subset D with empty interior, closed subsets are nothing

but boundaries since a((lg' 0y D) U 3K) = K hoelds for any closed K in such
spaces. Thus closed subsets are boundaries in Euclidean spaces, see 3B of [*].

The following basic facts will be vsed frequently throughout the note with-
out any explicit mentioning :

GocX isopeniff d(GNA)=cl(Gn A4 forall 4<X (1)
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KcX is closed iff int(KUA)—int(KUA) forall Ac X (2

ANBcd(AdnB) , int(AUuB cAUEB 3)

AcdB iff A=B and ANnB=¢ 4)

(AN BYyU 34 U B) < 94 U 3B. , (5)
Results

Any result at the sequel stated without any additional condition or hypot-
hesis is true for all subsets of X.

Proposition 1. We have the inclusions :
(34 — BYU (8B - A) < (A U B) = (34 — B) U (9B — A) U (34 n 9B),
(@AVB V@B D CcAAN B < @A B)u @BN DU (adn aB),
AUBVIBUAcIHAUB) < d4dUB)UIBU AU (@40 3B),

HANBYUIBAANcaANBY S AN B)yU BN A) U (ad N 3B).

Proof. The right side of the second formula is a consequence of the
following

AN B (34N BYU(ABN 4)

which is well known or easy to cbtain and its left side follows by
IANBc@BNA) -int(4n B).

The left side of the fourth formula is straightforward after (4) and its right
side could be obtained by using firstly the right and then the left side of the
second fermula. The first and the third formulas follow respectively by the
second and the fourth. Notice that all the unions of the first two formulas are
mutually disjoint and the second formula is a constiderable improvement of a
formula by Bourbaki {'], page 118. The following also follows from the second:

3d —B < 34 — B) < &4 — B).
Proposition 2,
3(3.4 N 3By = (334 N 3B) V (34 N 33B),
3(3A4 U 3B) < (394 — int 3B) U (238 — int 34) ,
(@4 VaB) < (A U B)u(4d N aB) v (Bn 3d),

34U 3B) = (AN B)U (34— B)U (3B — A) .
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Proof. Notice that the inclusion
(34 0 gB) < (994 n dB) U (03B n 3A)

has already been stated in the proof of the Proposition I. The reverse inclusion
follows easily by (4). The second formula is obtained by the right side of the
first formula of Proposition 1 after noticing

394 N 998 < JoA —int 9B,
Notice also that, one gets the following by the first formula of Proposition 1:
334V 3B) — (A 0 B) = ((34 v 3B) — A) U ((34 Y 3B) — B)
< (3B — A) U (34 — B) = 3(4 U B).

Hence, vielding the third formula of this proposition is not difficult. The fourth
follows directly from the third.

Remark 1. If A (or B) is open or closed, then

a4 v 3B) = (304 — int 3B) U (938 — int 34) .
Proof. Let A be an open or a closed subset. Then int 34 = ¢ and there-

fore the intersection of the right side of the second inclusion formula of the
Proposition 2 with int (34 U 3B) is equal to

{008 W (994 — int 3B)) N int (int 34 N 9B) = ¢

and so this inclusion becomes an equality by (4).

Corollary 1. 3(394 U 39B) — 334 U 3982 3(34 v 3B),
8994 N JIB) = 334 0 J3B = 3(34 N 3B),
394 U 3B) =94 U 3B = 3(dd N 3B) = 94 n 3B.
Proposition 3. 94 U 3B = 3(4 n B)U 3(4 U B),
34 U B = A B)u a4 U B),

AU B —3dA—B)U B —A).

Proof. Note that the inclusions
(@4 Vv aB) N (4 nB)c 4N B),
(04 Vv 3B) — (A " B)< 34 U B)

are derived respectively by (4) and the left side of the first formula of Proposi-
tion 1. Therefore the first equality follows. The others are comsequences of the
first,
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Remark 2. If A4 arid B are both open or both closed, then the basic
formula (5) becomes equality by Proposition 3.

Proposition 4. We have the expansions :
ANB) =34NBUAN 8,8 AN B,

dAUB) =94 —-BUANJBYU g4 UB).

Proof. Note that the disjoint subsets 9,4 = A-—A and 9, A =4A— Ao
have both empty interiors. They satisfy 94 = 3,4 U 3,4 for all 4 < X and
additionally the following equivalencies are clear :

A is open iff 9,4 =¢ iff 9,4 =234,
A is closed iff 9 A=¢ iff 9,4A=204.
Furthermore

AANB)—ANYB=c((AnB)— AN J,B)

cl((4 n B) — (A4 N B) — B))

In

= ¢l (A m _§) .
Therefore one could get

AANB) —aANnB)UAn 3,B.
Also note that
dANB =c(An B)—int(4 N B)

—(cl(4n B)Uadn B)—int (4N B)

—HANB)UINE
since cl (34 N 1;)) is disjoint with int 4 . Also note that

A —A) =34 , X —A)=2734.

Hence both of the expansions with respect to second set are now established.

Proposition 5. The following are equivalent :
(i) ANB=ANB

() 84 N dB < (4 N B)

(i) (A N B)=(4 N 3B) U (B N 3A)

(v) JANB)=3ANBYU AN B)U (34N IB).

£
i

i
&
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Proof, The implications (i) => (#) = (iff) = (iv) are straightforward. After

noticing An aB < a(Ao M B) by the second formula of Proposition 1, the
condition (iv) evidently implies

ANB—ANB UANIBUBNINUGANIB < AN B

and therefore (7) is obtained.

Proposition 6. The following are equivalent :

@) int(dUB)—AUB

DI A P L P A P N A A A R

() 94N 3B < 3(4 U B)

i) 3(4 U B) = (94 — B) U (8B — A)

(V) HAVUB) = a4 uUB)UdBUAL U@BAN 3B).

T

Proof. Use Proposition 5.

Proposition 7. The following are equivalent :
i) dA4vB)=94uaB
(#) @ANBU@BNA < AU B)

(i) int(ANB)=AUB and @ANB)U@BNA) < aAdU B)

Proof, The condition (iif) and (4) imply 34 < 8(4 U B) since 94 — B
and int (4 U B) are disjoint by (i).

Coroliary 2. g(4 N BYU (34N gB) < g(d v B) iff g(4 s B)=g4d W gB.

Proof. See the second formula of Proposition 1, Proposition 6 and Prop-
osition 7.

Corollary 3. (AN B)— 34N 3B and int(4UB)—=AUE imply
HA U B)= 4 U 3B.

Remark 3. The equality 3(4 U B) = 94 U gB deos not necessarily imply
the condition 3(4 N B) =34 N 3B. Just take the diadic rationals in [0,1] as 4
and all the triadic rationals in the same interval as B for a counter example
in R
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Proposition 8. 2) 3(4NB) = 34N 3B iff AnB= AnB and HANB)ANA—
— 34N BN B.
b) 8(84 N 3aB) = 334 n 3aB iff intg4 M B =int 3B N 9A.

Proof, a) Left to the reader.
b) Note that
8(34 N aB) < 394 iff int 34 N @B < int (34 N JB)
by (4). Then Corollary 1 is used.

Proposition 9. The following are equivalent :

() 9(a4 v 9B) =994 U 39B.

(#) 04 nNnint(dd U aB)=intd4d and 3B N int (34 U 9B) = int JB.
(i) 94 N 3B N int (34 U 9B) = int (34 N §B).

(i) 3(a4 N 3dB) = 394 N 98B and int (94 U 3B) = int 94 U int IB.
() 384 N 3B) < 394 N gaB N (oA U 3B).

Proof. (i) +-(ii): Note that the condition (f) implies 384 N int (34 U 9B) <
< int 84 and its dual one.

(i) <= (iii): Necessity is clear: For the proof of sufficiency note that one
gets the following by using the conditon (#i)

34 nint (g4 v 3aB8) = int (34 N 3B) U ((34 — 8B) N int (g4 Y 3B))
cintd4 U ((int 94 U 9B) — 3B) < int 3 4.
(#i) <> (iv): Note that the condition (i) = (ii) = ({) implies
804 N 39B < (o4 U 98B),
intdgd N gB=int 3B N 3A4.
So the required implication follows by the Propositions 6 and 8b).
() == (v): Clear by Proposition 6 since 984 N 33B < 3(84 v 9B) holds
by (iv).
(v) = (i): By usig (v) at the last inclusion in the following
294 N 39B N int (3.4 U 3B) < 3(34 N aB) N int (34 U 3B)
< 904 U 8B) Nint (34 U 3B) = ¢

one yields 884 N 39B < 394 U 9B) ie. int (34 v 3B) =int d4 U int §B. So
all the sufficient conditions of Corollary 3 for being the equality written (7)
hold are now satisfied after (v) and Corollary 1.
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Remark 4. Note the difference of Corollary 2 with the equivalency of the
conditions (f) and (#v) of Proposition 9.

Corollary 4, AN gB=¢
implies

ANB=ANBEB,
int(4U B)=AU B,
a4 v aB) = 994 L 938,
A VB 4N BYy=2734 v 3B.

Proof. Obtaining the first three equalities are clear, see also [2]. Now
note that

04V 8B)— (3(4 U BYU (4 N B)) = (84 U §B) N (int (4 U B) — 4 N B)
always holds. The hypothesis makes the right side
@AV NA—BVB-D)=4.
Hence the basic formula (5) gives the last equality.

Propesition 10, d94 = aAO UdA4.

Proof. 994 — 94 — int 94 = (94 N cl A) U (34 N d (X — A))
—gduad.

Corollary 5. If 4 is open or closed then 994 = g4.

Proof. This well known result is a direct and easy consequence of Proposi-
tion 10. Let A4 be open. Then 894 = g4 U BZ= a4, since BZ < gA and

also aAo < dA are derived by the same proposition.
Proposition 11. §3(A N B) U 934 U B) < 3(34A U 3B) U (84 N 8B).

Proof. Note that
(30(4 v B) — 3(d4 v 3B)) — 34
= (33(4 v B) N int (34 v 9B)) — g4
= (int (34 Y 3B) — 3A) N (X - (int (4 U B) U int (4 U B)))
= ¢

since
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int (34 v 8B) — 84 = int (@4 vV 3B) — 3A) = int (3B — 94) =

= int 9B — 9d — int (3B — D) U (it dB N A) S it dA U B U A

by noticing
int (a4 —B) =int 4 N int (X — (4 U BY)
< intd U Bnint (X —int (4 U B)
=int 34 U B).
Therefore, one easily gets
28(4 U B)— 9(gd v 9B) = g4 n 3B

which yields the statement of the Proposition easily.

Corollary 6. 33(4d n B) U 33(4 u B) < 334 v 9B,
3(99(4 U B) — 3(dA U 3B)) < 94 N 3B .

Proof. Clear afier Proposition 11 and Proposition 2. Notice that
E=08(4 W B)— 304V 9B)=93(4 vV B) nini (34 v 3B) =
=int (94 v 8B8) — (int (4 v B) U int §(4 v B))

have empty interior and so one geis the following iruth

int (34U 9B < AU B — 39(A U B) = (4 U B) — 93(4 U B).
Hence this corollary says thai g4 n 3B contains 9Eif E = ¢ .

Corollary 7. gANaB AV D
implies
00(4 U B) = 334 v 398,
3(0d V3B Jo(d U BYU 34 N B).
Proof. First of all note that
33(A U B) < 94 U 3B, 93(4 U B) N int 9B < 94
hold by the dual of the first inclusion formula of Corollary 6. Hence

(88(4 v B) — 39A4) N int 9B

=((88(4 U B) — 94) n'int 3B) U (33(4 U B) N int (34 N 3R))

=(3(4 v B) nini (94 N 9B)) —int 3(4 U B)

are obtained. Now we are going to prove that this difference is empty under
the hypothesis. In fact
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34 U B)nint (34 N 3B) nint(4 U B)
= 9(int (4 U B)) N int (34 N §B)
c 3(int (4 UB N4 N B =¢

by Proposition 1, the hypothesis and Proposition 6. Therefore the required
result

A4 v B)nint (64 N gB) c int 4 U B — int(4 U B)
=int 9(4 U B)
has been derived and consequently all the conditions for being
90(4 v B) — 904 < 398
are now established after Corollary 6. Also, since
334 U 3B) Nint3(4 U B) = 384 U 3B) N int (34 U 3B) = ¢
holds always, one gets the following
384 v 3B) — 39(4 Y B) = 3(84 Y 98) — 8(4 U B)
= 3(EA U aB) Nint(4 U B).
So by using the hypothesis, this set is included by

HEAUB) A (AU B) =d(®@ANB)YU@BBAA)< 4N B).

‘Corollary 8. 94 N 3B < g(4 n B)
implies
33(4 N B) < 3394 Y 908,
304 v 9B) < go(Ad N B) U g(4 v B).

Proof. Use Corollary 7.

Proposition 12. If of = (4, )ee; is a discrete family of open (or a locally
finite of nowhere dense) subsets, then

B(QAG()=Q8AM.

Proof. If o is a discrete family of open subsets, then the inclusion

a(gAu)g !JHaA.,u uA
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evidently implies one of the inclusions which is necessary for the required
equality. The reverse inclusion is a consequence of (4) and the following
inclusions which are true for all aef

p. nint| 4. s |JAdndy =6

raef @t

The statement written in the parenthesis could be obtained by the following
truth : The union of a locally finite family of nowhere dense subsets have an
empty interior. '
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OZET

Bu gahgmada topolojik uwzaylarin sinirlar hakkinda bazi dzellik ve sonuglar
elde edilmektedir,




