UN THÉORÈME SUR LA CARACTÉRISTIQUE DE LA JACOBIENNE DES SYSTÈMES LINÉAIRES DE QUADRIQUES

L. DEGOLI

On démontre une condition nécessaire et suffisante pour qu'un système linéaire irréductible de quadriques de S_r soit à Jacobienne de caractéristique r-k.

Dans l'espace linéaire complexe S_r dec oordonnées projéctives homogènes x_1 (i = 0, 1, ..., r) choisissons d + 1 quadriques linéairement indépendantes :

$$f_0 = 0, f_1 = 0, ..., f_d = 0$$

avec:

$$f_q = \sum_{i,k=0}^r a_q^{ik} x_i x_k.$$

Le système linéaire $L_{d/m}$ de dimension d et Jacobienne de caractéristique m est exprimé par l'équation :

$$\sum_{q=0}^d \lambda_q f_q = 0.$$

Supposons que la matrice Jacobienne à r+1 lignes ed d+1 colonnes :

$$J = \left\| \frac{\partial f_q}{\partial x_i} \right\| \begin{pmatrix} q = 0, 1, ..., d \\ i = 0, 1, ..., r \end{pmatrix}$$

soit à caractéristique $m \leq d$.

Souvent si $m \le r$ nous mettons m = r - k et le système sera indiqué avec : $L_{d/r - k}$.

Si la matrice Jacobienne est identiquement nulle, cela signifie que tout l'éspace est donc le lieu des point conjugués par rapport à toutes les quadriques du système. Si la caractéristique de la Jacobienne est r-k, un point générique P est conjugué avec un S_k .

98 L. DEGOLI

Le problème de déterminer les systèmes linéaires de quadriques $L_{d/r-k}$ est assez complexe parce-que les systèmes subordonnés de $L_{d/r-k}$ sont de diverse nature.

Pour réussir à donner une réponse définitive à cett'ancienne question nous avons subdivisé les systèmes en : réductibles et irréductibles et ces dernier en : irréductibles de première et de seconde espèce.

Nous dirons qu'un système de quadriques $L_{d/m}$ est réductibles, quand ils existent des systèmes subordonnés sans quadriques en commun :

$$L_{d_1/m_1}$$
 , L_{d_2/m_2} ,..., L_{d_S/m_S}

et éventuellement p ($p \ge 0$) quadriques fonctionellement indépendantes, de manière qu'ils soient satisfaites les égalités :

$$d = d_1 + d_2 + \dots + d_s + s + p - 1$$

$$m = m_1 + m_2 + \dots + m_s + p.$$

Autrement dit il sera nommé irréductible.

Un système irréductible $L_{d/m}$ possède toujours des systèmes subordonnés "banaux" $L_{h/n}$ avec :

$$m-1 \le h \le d-1$$
 , $n=m$.

Mais on ne dit pas que $L_{d/m}$ possède toujours les systèmes subordonnés "essentiels" $L_{g/c}$ avec :

$$2 \le g \le d-1$$
, $2 \le c \le m-1$, $c < g$.

Quand ces dernièrs systèmes existent, ils imposent à c+1 quadriques linéairement indépendantes, choisies dans $L_{g/c}$ d'être fonctionellement dépendantes.

Nous dirons systèmes irréductibles de première espèce les systèmes, qui ne possèdent pas des systèmes subordonnés essentiels, et systèmes irréductibles de seconde espèce les systèmes qui, n'étant pas réductibles, possèdent toutefois des systèmes subordonnés essentiels.

Dans ce cas ils ne peuvent pas evidemment exister dans eux des quadriques fonctionellement indépendantes, ni des systèmes subordonnés essentiels isoles, qui n'ont pas des quadriques en commun avec les autres, autrement dit le système serait réductible.

Soient:

$$L_{d_1}$$
 , L_{d_2} ,..., L_{d_S}

les systèmes essentiels contenus dans L_{dlm} . Ils devront former une chaine, c'est à dire :

- 1°) aucun d'eux est réductible,
- 2°) L_{d_1} a au moins une quadrique en commun avec un autre, par exemple L_{d_2} , et leur système-union L_a a au moins une quadrique en commun avec un troisième, par exemple L_{d_3} , et le système-union de L_a avec L_{d_3} a au moins une quadrique en commun avec un quatrieme systeme et toujours ainsi jusqu'à épuiser tout $L_{d/m}$. Dans L_d il pourra exister plus qu'une chaine.

Il existe le LEMME:

Si le système L_d possède les systèmes subordonnés : L_{d_1} , L_{d_2} , ..., L_{d_3} qui forment une chaine il est toujours possible choisir parmi les quadriques de ces systèmes, qui passent par un point générique P de S_r , d quadriques linéairement indépendantes de manière d'individualiser le système L_{d-1} de quadriques de L_d , qui passent par P.

Nous pouvons écrire les équations de L_d et L_d ainsi :

$$\lambda_{0} f_{0} + \lambda_{1} f_{4} + \dots + \lambda_{h} f_{h} + \dots + \lambda_{d_{1}} f_{d_{1}} = 0$$

$$\mu_{0} g_{0} + \mu_{1} g_{1} + \dots + \mu_{h} g_{h} + \dots + \mu_{d_{2}} g_{d_{2}} = 0$$
(1)

L'équation du système-union L_a résulte :

$$v_0 f_0 + v_1 f_1 + \dots + v_h f_h + \dots + v_{d_1} f_{d_1} + \omega_0 g_0 + \omega_1 g_1 + \dots + \omega_h g_h + \dots + \omega_{d_2} g_{d_2}$$

$$= 0 \qquad (2)$$

Puisque L_{d_1} et L_{d_2} ont en commun au moins une quadrique nous pouvons supposer que f_h coincide avec g_h .

Soit P un point de S_r .

Notons avec: $f_0(P), f_1(P), ..., g_0(P), g_1(P), ...$ les valeurs des quadriques en P. En remplacant les coordonnées de P dans (1) on peut trouver les velaurs de λ_h et μ_h en fonction des λ_i et μ_i restants, après quoi les deux systèmes deviennent:

$$\lambda_{0} \left(f_{0} + \frac{f_{0}(P)}{f_{h}(P)} f_{h} \right) + \lambda_{1} \left(f_{1} + \frac{f_{1}(P)}{f_{h}(P)} f_{h} \right) + \dots + \lambda_{d_{t}} \left(f_{d_{t}} + \frac{f_{d_{1}}(P)}{f_{h}(P)} f_{h} \right) = 0$$

$$\mu_{0} \left(g_{0} + \frac{g_{0}(P)}{f_{h}(P)} f_{h} \right) + \mu_{1} \left(g_{1} + \frac{g_{1}(P)}{f_{h}(P)} f_{h} \right) + \dots + \mu_{d_{t}} \left(g_{d_{t}} + \frac{g_{d_{t}}(P)}{f_{h}(P)} f_{h} \right) = 0.$$

$$(3)$$

Ces systèmes manquent par rapport aux premiers des paramètres λ_h et μ_h . Ils résultent les systèmes L_{d_1-1} , L_{d_2-1} de quadriques de L_{d_1} et L_{d_2} , qui passent par P. En opérant de même façon dans le système (2) et en éliminant le paramètre $(v_h + \omega_h)$ on obtient :

100 L. DEGOLI

$$\begin{split} &v_{0}\bigg(f_{0}+\frac{f_{0}(P)}{f_{h}(P)}f_{h}\bigg)+v_{1}\bigg(f_{1}+\frac{f_{1}(P)}{f_{h}(P)}f_{h}\bigg)+\ldots+v_{d_{1}}\bigg(f_{d_{1}}+\frac{f_{d_{1}}(P)}{f_{h}(P)}f_{h}\bigg)+\\ &+\omega_{0}\bigg(g_{0}+\frac{g_{0}(P)}{f_{h}(P)}f_{h}\bigg)+\omega_{1}\bigg(g_{1}+\frac{g_{1}(P)}{f_{h}(P)}f_{h}\bigg)+\ldots+\omega_{d_{2}}\bigg(g_{d_{2}}+\frac{g_{d_{2}}(P)}{f_{h}(P)}f_{h}\bigg)=0\;. \end{split} \tag{4}$$

Puisque le système linéaire (4) est individualisé par les mêmes quadriques linéairement indépendantes des systèmes (3), il en résulte que le système L_{d-1} des quadriques de L_d , qui passent par P, est individualisé par a quadriques lineairement indépendantes de $L_{d,-1}$ et $L_{d,-1}$.

Mais par hypotèse les systèmes subordonnés de L_d forment une chaine. Donc le système-union L_a possède en commun avec L_{d_8} au moins une quadrique.

En opérant de même façon on prouvera que le système L_{b-1} de quadriques de L_b , système-union de $L_{\mathfrak{a}}$ avec $L_{d_{\mathfrak{a}}}$, qui passent par P, est individualisé par b quadriques linéairement indépendantes de L_{a-1} et $L_{d_{\mathfrak{a}}-1}$, c'est à dire de $L_{d_{\mathfrak{a}}-1}$, $L_{d_{\mathfrak{a}}-1}$, $L_{d_{\mathfrak{a}}-1}$.

En continuant de cette manière le lemme résulte démontré.

Maintenant nous pouvons démontrer le

THÉORÈME:

Une condition nécessaire et suffisante pour que le système linéaire irreductible de quadriques L_d soit à Jacobienne de caractéristique r-k $(k\geq 0)$ est que les quadriques de système qui passent par un point quelconque de S_r possèdent en commun un S_{k+1} .

DÉMONSTRATION:

Demontrons avant-tout la suffisance.

Si toutes les quadriques d'un système linéaire L_d de S_r , qui passent par un point générique P, ont en commun un S_{k+1} il est évident que le point P a pour conjugué le même S_{k+1} par rapport à toutes les quadriques du système L_{d-1} , qui passent par P. Une autre quadrique de L_d , qui ne passe pas par P, ne contient pas S_{k+1} , le quel n'est pas contenu dans l'hyperpian polaire de P par rapport à cette quadrique, autrement dit P serait contenu dans la quadrique.

Donc l'hyperpian coupera S_{k+1} dans un S_k et pour cela le point P a pour conjugué un S_k par rapport à toutes les quadriques du système L_d . Cela signifie que la Jacobienne a caractéristique r-k, comme il fallait démontrer.

Démontrons maintennant la nécessité.

1°) Formons l'hypotèse que le système soit irréductible de première espèce et supposons qu'il soit : $r \le d$.

Considérons avant-tout le cas particulier k = 0 et démontrons que :

Si le système L_d est à Jacobienne de caractéristique r les quadriques du système qui passent par un point on commun une droite.

Si la Jacobienne est de caractéristique r, cela signifie que tous les déterminants de la Jacobienne d'ordre r+1 sont identiquement nuls.

Considérons le déterminant individualisé par r+1 quadriques quelconques. Nous pouvons choisir les premières r+1 quadriques de système et on aura :

$$D = \left| \frac{\partial f_i}{\partial x_s} \right| \quad \begin{pmatrix} i = 0, 1, \dots, r \\ s = 0, 1, \dots, r \end{pmatrix}. \tag{5}$$

Les mineurs d'ordre r extraits d'une quelconque matrice constituee par r colonnes du déterminant D ne sont pas tous nuls, autrement dit il existerait dans $L_{d/r}$ le système subordonné essentiel $L_{r-1/r-1}$, contre l'hypotèse que L_d soit irréductible de première espèce.

Il est donc nécessaire qu'un au moins de ces mineurs soit $\neq 0$. Nous pouvons supposer qu'il soit le mineur obtenu en éliminant la dernière ligne et la dernière colonne de D. Nous l'indiquérons par A_r .

Prenons en considération la matrice extraite de D, constituée avec les premières r lignes et indiquons par :

$$A_0, A_1, ..., A_{r-1}$$

les mineurs d'ordre r qu'on obtient en remplaçant à la première, à la seconde, etc. colonne de A_r , la dernière colonne de la matrice.

Un seul de ces déterminants tout au plus, est nul, parce-que si deux déterminants étaient nuls, par un théorème de Kronecker [1] il seraient tous nuls, compris A_r , ce qui est impossible.

Puisque le déterminant D est identiquement nul le r+1 quadriques sont fonctionellement dépendantes. On aura, en choisissant une quadrique générique, par exemple f_r :

$$f_r = F(f_0, f_1, ..., f_{r-1}).$$
 (6)

Cette relation est exacte pour tous les groupes de r+1 quadriques choisies entre L_d , mais il n'est pas possible que des quadriques en nombre < r+1 soient fonctionellement dépendantes entre elles, autrement dit il existerait dans L_d des systèmes subordonnés essentiels contre l'hypotèse.

Pour cela une égalité analogue à (6) est impossible si le nombre des quadriques est < r + 1.

En dérivant (6) on obtient :

$$\sum_{i=0}^{r-1} \frac{\partial F}{\partial f_i} \frac{\partial f_i}{\partial x_k} = \frac{\partial f_r}{\partial x_k} \quad (k = 0, 1, ..., r-1)$$
 (7)

qui est un système algébrique de premier degré, qui donne les dérivées partielles de F:

$$\frac{\partial F}{\partial f_i} = -\frac{A_i}{A_r} \ (i = 0, 1, ..., r - 1) \tag{8}$$

Considérons un point x de S_r de coordonnées x_0 , x_1 ,..., x_r et soit x' $(x_0', x_1', ..., x_r')$ son conjugué par rapport à toutes les quadriques du système. La droite qui joint les deux points sera donnée par :

$$y_i = t_1 x_i + t_2 x_i \quad (i = 0, 1, ..., r)$$
 (9)

En remplaçant (9) dans toutes les quadriques on obtient pour la quadrique générique f_m :

$$f_m(y) = f_m(x) t_1^2 + f_m(x') t_2^2 \quad (m = 0, 1, ..., r)$$
 (10)

parce que les termes $2 a_m^{ik} x_i x_k'$ sont nuls, étant conjugués les points x et x'.

En remplaçant (10) dans (6) et aussitôt en dérivant par rapport à t_1 et t_2 on obtient :

$$\frac{\partial f_r}{\partial t_1} = \sum_{s=0}^{r-1} \frac{\partial F}{\partial f_s} \frac{\partial f_s}{\partial t_1}$$

$$\frac{\partial f_r}{\partial t_2} = \sum_{s=0}^{r-1} \frac{\partial F}{\partial f_s} \frac{\partial f_s}{\partial t_2}$$
(11)

En dérivant (10) on a:

$$\frac{\partial f_m}{\partial t_1} = 2t_1 f_m(x)$$

$$(m = 0, 1, ..., r)$$

$$\frac{\partial f_n}{\partial t_2} = 2t_2 f_m(x').$$

En remplaçant dans (11)

$$f_r(x) = \sum_{s=0}^{r-1} \frac{\partial F}{\partial f_s} f_s(x)$$

$$f_r(x') = \sum_{s=0}^{r-1} \frac{\partial F}{\partial f_s} f_s(x')$$

et enfin pour (8):

$$\sum_{i=0}^{r} A_i f_i(x) = 0$$

$$\sum_{i=0}^{r} A_i f_i(x') = 0.$$
(12)

Ces expressions sont des identités par rapport à t_1 et t_2 . Parce-que ces deux identités coexistent il faut qu'il soit :

$$f_m(x) = c f_m(x') \quad (m = 0, 1, ..., r)$$

avec c constante pas nulle.

En effet dans (12) les variables t_1 et t_2 se trouvent seulement dans les déterminants A_0 , A_1 ,..., A_{r-1} , A_r , qui résultent fonctions homogènes du même degré en t_1 et t_2 et un seul d'entre eux est au maximum nul.

Au rapport t_1/t_2 on peut donner infinis valeurs divers et par conséquent obtenir deux systèmes algébriques de premier degre aux r équations et r inconnues. Ces dérnières sont respectivement les quotients de $f_k(x)$, $f_k(x')$ par rapport à une quelconque d'entre elles, par exemple $f_r(x)$ et $f_r(x')$.

Il s'agît des rapports:

$$f_k(x)/f_r(x), f_k(x')/f_r(x')$$
 $(k = 0, 1, ..., r - 1).$ (13)

Puisque les deux systèmes ont les mêmes coefficients constants $A_0, A_1, ..., A_{r-1} A_r$, la solution des deux systèmes est la même.

Il en résulte:

$$\frac{f_k(x)}{f_r(x)} = \frac{f_k(x')}{f_r(x')} \quad (k = 0, 1, ..., r - 1). \tag{14}$$

Mais cette égalité est verifiée seulement si :

$$f_m(x) = c f_m(x') \quad (m = 0, 1, ..., r).$$
 (15)

104 L. DEGOLI

 λ vrai dire dans les cas qu'un des A_i (i = 0, 1, ..., r), par exemple A_j ($0 \le j < r$) etait nul, il ne serait pas possible pour la seule quadrique f_j déduire que :

$$f_j(x) = c f_j(x')$$

Mais, en ce cas, considérons toutes les r quadriques, dont les dérivées partielles paraissent en A_j et la matrice formée avec les colonnes du déterminant D dans les quelles ces quadriques paraissent.

Nous savons que au moins un determinant de cette matrice n'est pas nul. Notons ce dernier avec A_j' et répétons la démonstration en remplaçant A_r avec A_j' . Nous obtenons ainsi les déterminants A_0' , A_1' ,..., A_{r-1}' , $A_r' = A_j'$ et nous parvenons à des conclusions analogues, c'est à dire aux formules :

$$\sum_{i=0}^{r} A_{i}' f_{i}(x) = 0$$

$$(i = 0, 1, ..., r)$$

$$\sum_{i=0}^{r} A_{i}' f_{i}(x') = 0.$$
(16)

Mais cette fois la quadrique f_i satisfait à (15) parce que A_i n'est pas nul.

De cette manière la démonstration n'a pas des exceptions.

On en déduit que toutes les quadriques du système L_d qui passent par un point x passent aussi par son conjugué x' et réciproquement. Si x est situé sur la quadrique f_p , on aura :

$$f_{p}(x) = 0$$

et pour (15):

$$f_{p}\left(x^{\prime}\right) =0.$$

Il s'ensuit:

$$t_1^2 f_R(x) + t_2^2 f_R(x') = 0$$

et pour (10):

$$f_n(y) = 0$$

'où y est le point générique de la droite x x'.

Donc la droite en question appartient tout'entière à la quadrique f_p . Il en résulte que toutes les quadriques qui passent par x contiennent la droite x x'.

Supposons maintenant que la Jacobienne du système L_d soit à caractéristique r-k (k>0) cela signifie qu'un point x de S_r a pour conjugué un S_k par rapport à toutes les quadriques de L_d .

Le système L_d sera entrecoupé par un générique S_{r-k} , qui passe par x, suivant un système linéaire L_{d} de quadriques de S_{r-k} , qui à son tour coupera S_k dans un point x, qui résulte le conjugué de x par rapport a toutes les quadriques du système L_{d} .

Nous pourrons choisir pour coordonnées de S_{r-k} les x_0 , x_1, \ldots, x_{r-k} , en annulant toutes les autre coordonnées, c'est à dire en écrivant

$$x_{r-k+1} = x_{r-k+2} = \dots = x_r = 0$$
.

Les équations des quadriques f_b , f_b ,..., f_r seront du type :

$$f_i(x_0, x_1, ..., x_{r-k}, 0, 0, ..., 0) = 0$$
.

Les dérivées partielles:

$$\frac{\partial f_i}{\partial x_c} \quad (i = 0, 1, ..., d)$$

pour:

$$x_{r-k+1} = x_{r-k+2} = \dots = x_r = 0$$

seront toutes nulles. La matrice Jacobienne du système L_d' :

$$\left\| \frac{\partial f_i}{\partial x_s} \right\| \quad \left(\begin{array}{c} i = 0, 1, ..., d \\ s = 0, 1, ..., r - k \end{array} \right)$$

sera identiquement nulle.

Elle ne pourra pas avoir de caractéristique supérieure à r-k, parce-que ses lignes ne sont qu'en nombre r-k+1, elle ne pourra pas avoir de caractéristique inférieure a r-k, sinon le point x aurait pour conjugue un S_g avec g>0 et non le seul point x'.

Il en résulte que le système L_{d}' de S_{r-k} a la caractéristique r-k. Cela porte à conclure pour la première partie du théorème que les quadriques de L_{d}' , qui passent par x, auront en commun la droite xx'.

Puisque nous pouvons dire la même chose pour tous les S_{r-k} qui passent par x, on en déduit que les quadriques de L_d , qui passent par x, auront en commun S_{k+1} joignant le point x avec S_k .

Toujours dans l'hypothèse que le système soit irréductible de première espèce, considérons les cas r>d, en soulignant la condition $r-k\le d$, qui jusqu'ici était superflue.

Il est evident que dans ce cas il doit être $k \ge 1$.

Supposons avant tout d=r-1. Considérons le système $L_{r-1/r-k}$ avec $k \ge 1$. Par un point générique P de S_r formons un hyperplan, qui coupe $L_{r-1/r-k}$ suivant un système L' de quadriques de S_{r-1} , qui a la même dimension r-1 et la même caractéristique r-k=(r-1)-(k-1) (voir: [3]).

Puisque la dimension du système est égale à celle de l'hyperplan, selon la première partie du théorème, les quadriques de L'_{r-2} , qui passent par P, ont en commun un S_k , non multiple. En variant l'hyperplan par P on obtient un infinité de S_k qui constituent une variété commune à totutes les quadriques de L_{r-1} donné, qui passent par P.

Cette variété ne peut pas être de dimension supérieure à k+1 et d'ordre plus grand que 1, autrement dit son intersection avec un hyperplan par P ne serait pas un seul S_k , non plus multiple. Donc cette variété est un S_{k+1} .

Supposons qu'on ait un système L_{r-2l_r-k} avec $k \ge 2$. Par un point générique P de S_r il passe un L_{r-3} qui appartient au système donné.

Menons par P un S_{r-1} , qui coupe le système donné suivant un $L'_{r-2/r-k}$ de S_{r-1} (voir : [3]).

Dans S_{r-1} par P menons un S_{r-2} , qui coupe le précédent système suivant un $L^{r}_{r-2/r-k}$.

D'après la première partie du théorème, nous pouvons déduire que les quadriques de L'', qui passent par P, ont en commun un S_{k-1} . En variant S_{r-2} dans S_{r-1} nous obtenons un S_k , commun à totes les quadriques de L' par P, en variant S_{r-1} on obtient un S_{k+1} commun à toutes les quadriques de L_{r-3} .

En continuant avec un raisonnement analogue, nous réussirons à démontrer le théorème pour un $L_{r-h/r-k}$ c'est à dire pour un $L_{d/r-k}$ avec $d \le r-1$, $r-k \le d$. En effet il suffit de supposer r-d=h et évidemment $L_{d/r-k}=L_{r-h/r-k}$.

2°) Supposons maintenant que le système L_d soit irréductible de seconde espèce $(r \ge d)$.

Examinons le cas particulier où les systèmes subordonnées :

$$L_{d_1/m_1}, L_{d_2/m_2}, \dots, L_{d_s/m_s} (m_i \le d_i)$$

contenus dans L_d sont tous irréductibles de première espèce.

Puisque la caractéristique de la Jacobienne est $r-k \le d$ $(k \ge 0)$, parmi les d+1 quadriques linéairement indépendantes, qui individualisent L_d , il y en a r-k fonctionellement indépendantes.

Puisque L_{d_1/m_1} est un système irréductible de première espèce, il satisfait à la première partie du théorème. Pour cela les quadriques de L_{d_1} , qui passent par un générique point P de S_r , ont en commun un S_{r-m_1+1} .

Elles constituent un système $L_{d_{i-1}}$.

Considérons le système L_{d-1} de quadriques de L_d , qui passent par P. Les quadriques fonctionellement indépendantes de ce système, qui n'appartiennent pas à L_{d_1-1} sont $r-k-m_1$.

En effet soient:

$$\lambda_0 f_0 + \lambda_1 f_1 + \dots + \lambda_{d_1} f_{d_1} = 0$$

$$\mu_0 f_0 + \mu_1 f_1 + \dots + \mu_{d_1} f_1 + \mu_{d_1+1} f_{d_1+1} + \dots + \mu_{d_1} f_d = 0$$
(17)

les équations de L_{d_i} et de L_d .

Si nous imposons à les quadriques des deux systèmes de passer par P, en recherchant λ_0 et μ_0 , on obtient :

$$\lambda_{1}\left(f_{1} + \frac{f_{1}(P)}{f_{0}(P)}f_{0}\right) + \lambda_{2}\left(f_{0} + \frac{f_{2}(P)}{f_{0}(P)}f_{0}\right) + \dots + \lambda_{d_{1}}\left(f_{d_{1}} + \frac{f_{d_{1}}(P)}{f_{0}(P)}f_{0}\right) = 0$$

$$\mu_{1}\left(f_{1} + \frac{f_{1}(P)}{f_{0}(P)}f_{0}\right) + \mu_{2}\left(f_{0} + \frac{f_{2}(P)}{f_{0}(P)}f_{0}\right) + \dots + \mu_{d_{1}}\left(f_{d_{1}} + \frac{f_{d_{1}}(P)}{f_{0}(P)}f_{0}\right) + \dots + \mu_{d_{1}}\left(f_{d_{1}} + \frac{f_{d_{1}}(P)}{f_{0}(P)}f_{0}\right) + \dots + \mu_{d_{1}}\left(f_{d_{1}} + \frac{f_{d_{1}}(P)}{f_{0}(P)}f_{0}\right) = 0.$$

$$(18)$$

Ici le nombre des quadriques fonctionellement indépendantes de L_d , qui n'appartiennent pas à L_{d_1} , est évidemment la différence des rélatives caractéristiques, c'est à dire :

$$r-k-m_1$$
.

Mais (17) et (18) démontrent que ce nombre reste invarié en passant à L_{d-1} et L_{d_1-1} parce-que les quadriques qui individualisent L_{d_1-1} se trouvent toutes dans L_{d-1} .

Les hyperplan polaires de $r-k-m_1$ quadriques fonctionellement indépendantes de L_{d-1} , qui n'appartiennent pas à L_{d_1-1} , passent tous par P. Ils entrecoupent S_{r-m_1+1} suivant un S_{k+1} , qui résulte au moins tangente à toutes les quadriques de L_{d-1} .

Ce résultat est donc indépendant par rapport à d_1 et m_1 .

Pour cela en raisonnant analoguement sur : $L_{d_v l m_2}$, $L_{d_s l m_s}$,..., $L_{d_s l m_s}$ on obterra les espaces :

$$S_{r-m_1+1}, S_{r-m_2+1}, ..., S_{r-m_n}$$
,

qui entrecoupés par les hyperplans polaires des restantes quadriques fonctionellement indépendantes de L_{d-1} , donnent toujours le même S_{k+1} .

 S_{k+1} résulte commun respectivement à toutes les quadriques de L_{d_1-1} , L_{d_2-1} , ..., L_{d_2-1} parce-qu'il est contenu dans les :

$$S_{r-m,+1}$$
, $S_{r-m,+1}$,..., $S_{r-m,+1}$

précédents.

Mais puisque L_{d_1} , L_{d_2} ,..., L_{d_s} forment dans L_d une chaine, pour le LEMME il est toujours possible choisir dans : L_{d_1-1} , L_{d_1-1} ,..., L_{d_3-1} , d quadriques linéairement indépendantes, qui individualisent L_{d-1} .

Ces d quadriques possèdent en commun l' S_{k+1} et pour cela toutes les quadriques de L_{d-1} auront en commun S_{k+1} , comme il fallait démontrer.

Le raisonnement précédent a été fait dans l'hypothèse que le système linéaire irréductible de seconde espèce possède seulement des systèmes linéaires subordonnés irréductibles de première espèce. Maintenant nous pouvons supposer que les systèmes subordonnés soient tous où en partie de seconde espèce, en possédant ces derniers des systèmes irréductibles de première espèce.

COLORS CONTROL (COLORS COLORS COLORS

Pour la démonstration faite rien change dans le raisonnement précédent et pour cela la démonstration est la même aussi dans ce cas. Ainsi continuant il est évident que rien change dans le raisonnement précédent quand même les systèmes subordonnés des systèmes subordonnés sont d'un'espèce quelconque et que la démonstration est valable pour tous les systèmes de seconde espece avec $r \geq d$.

De cette manière le théorème résulte démontré complètement.

BIBLIOGRAPHIE

[1] KRONECKER, L. : Werke, Leipzig (1885), pag. 238.

[2] BONFERRONI, G. : Sui sistemi lineari di quadriche la cui Jacobiana ha dimensione irregolare, Atti R. Acc. Scienze di Torino 50 (1914-15).

[⁸] TERRACINI, A. : Alcune questioni sugli spazi tangenti e osculatori ad una verietà, Atti R. Acc. Scienze di Torino Nota II, 51 (1916), III, 55

(1919-20).

[4] MURACCHINI, L. : Sulle verietà V₅ i eui spazi tangenti ricoprono una verietà W di dimensione inferiore all'ordinaria (parte II), Riv.Mat.Univ.

di Parma 3 (1952), 75-89.

[⁸] XAMBO, S.	:	On projective varieties of minimal degree, Collectanea Mathematica (Barcelona), XXXII (1981).
[⁶] DEGOLI, L.	:	Un théorème sur les systèmes linéaires de quadriques à Jaco- bienne indéterminée, Studia Scientiarum Mathematicarum Hungarica (Budapest), 17 (1982), 325-330.
[⁷] DEGOLI, L.	:	Due nuovi teoremi sui sistemi lineari di quadriche a Jacobia- na identicamente nulla, Collectanea Mathematica (Barcelona), XXXIII (1982).
[⁸] DEGOLI, L.	:	Trois nouveaux théorèmes sur les systèmes linéaires de quadriques à Jacobienne identiquement nulle, Demonstratio Mathematica (Warzawa), 15 (1983), no. 3.

PROF. LANDO DEGOLI VIA BERENGARIO 82/C 41012 CARPI (MODENA), ITALY

ÖZET

Bu çalışmada S_r kuadriğinin bir indirgenemez lineer sisteminin r-k karakteristiğinde Jakobiyeninin olması için bir gerek ve yeter koşul verilmektedir.