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O N POWER SERIES A N D MAHLER'S {/-NUMBERS 

M . H . ORYAN 

In the present paper it is proved that the function values of certain 
power series are S-numbers or 7"-nuinbers for some algebraic arguments 

according Mahler's ciassifification for transcendental numbers-

Let 

be a series with, non-zero rational coefficients cn ~ b„ / an (an , bH integers and 
an > 1) and let cn satisfy the following conditions 

l im in f I ° g f l " - 1 1 = a > 1, (2) 
log an 

lim sup I O g b * = G < i . (3) 
«->« log an 

Then the radius of convergence of (1) is infinity. 

By using a theorem of LeVeque [ 4 , Theorem 4-15, p.148] which is a gener­
alization of Thue-Siegel-Roth Theorem it is possible to prove that for a non­
zero algebraic number a of degree smaller than a (1 - 0) / (2u) the number / (a) 
is transcendental, where 

u = l im S u P * ° g 1 C- m- K » « L i ^ L (4) 
log an 

is a finite number with 1 < w < o- / (a- — 1) (Zeren [ 5 ] ) . 

I t is the purpose of the present paper to give a necessary and sufficient 
condition for f(a) to be a (7-number according to Mahler's classification for 
transcendental numbers. We prove 

Theorem. Let f(x) be a series as in (1) such that (2) and (3) hold. Suppose 
that a is a non-zero algebraic number of degree m < cr (1 — 0) / (2u). 



118 M . H . ORYAN 

1°) I f 

l im sup i ° g - « + L < + oo (5) 
«-« log aa 

then /(et) is not a İAnıımber, i.e. i t is either an S-number or a 7"-number. 

2°) I f 

l im sup İ Q g a , , + ± - = + ~ (6) 
log a„ 

then f(a) is a [/-number of degree < m . 

For the proof of the first part of the theorem we use essentially the follo­
wing theorem of Baker [ 2 , Theorem 1, p. 98] 

Theorem (Baker). Suppose that E, is a real or a complex number and 
JC > 2. Let a} , a2 , ... be a sequence of distinct numbers in an algebraic number 
field K with field heights HK{a^), FtK(a2), ... such that 

\£>-ai\<(HK(al)r" (7) 
and 

lim sup l o g ^ ^ < + 0 0 (8) 
\ogHK(a,) 

hold. Then i ; İs either an 5-number or a r-number. 

I would like to thank Professor Michel Waldschmidt for his valuable re­
marks. 

2. Lemmas 

The following lemmas are used İn the proof of the theorem. 

Lemma 1. Let aL, a 2 a k (k > 1) be algebraic numbers which belong 
to an algebraic number field K of degree g, and let F{y, x, xk) be a polyno­
mial with rational integral coefficients and with degree at least one in y. I f r| is 
an algebraic number such that F(r[, c t j a k ) = 0, then the degree of tj < dg, 
and 

H{r\) •< 3 2 i l s M c l i + - + d k ) s . H8.(H(aJ)diS ... (H (ak))d*g , 

where is the height of i] , H is the maximum of the absolute values of the 
coefficients of F, dt(i = 1,..., k) is the degree of F in x; (i = 1,..., k), d is the 
degree of F in y, and .//(a,-) is the height of a(-(7 = l , . . . , / c ) . 

Proof. See İçen [ ' , p.25] . 

Lemma 2. Suppose that K is an algebraic number field of degree N and 
that Z, is an algebraic number in K with field height HK(Q. Let the field 
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conjugates of £ be = t,, i ^ i 2 ) ,.••> QN} and let the coefficient of xN in the field 
equation of \ , with relatively prime integer coefficients, be h. Then 

h. J[ (l + \Xy>\)<6».Hx(Q. 
( = 1 

"I 
Further, i f j l ,...,js are s integers with 1 < j l < ... <js<N then 

is an algebraic integer. 

Proof. Se LeVeque [ 4 , Theorem 4-2, pp. 124-125, and Theorem 2-21, 
pp. 63-65 ] . 

Lemma 3. Let ^ and £,2 be different conjugates of an algebraic number 
of degree m and of height H. Then 

- y > (4m)-<" ' - 2 " 2 ((m + l)H)-u»>-W . 

Proof. See Guting [ 3 , Theorem 8, p. 158] . 

I n the remainder of this paper the inequalities hold for all sufficiently large 
indices and the real numbers e : , e2 ,... are positive and sufficiently small such 
that they are not depending on the varying indices. 

Lemma 4. Let f(x) be a series as in (1) such that (2), (3) and 1 < a (1 — 9) 
hold. Suppose that a is a non-zero algebraic number of degree m. Let 

n 

P „ = 2 c v a V ( » = 0, 1,...)- Then the numbers of the consecutive terms of the 
v=0 

sequence {[}„} which are of degree < m are bounded. 

Proof. Let K = Q (a), then [K : Q] - m, p„e K. I t follows from (2) that 
the sequence {#„} is monotonically increasing for all sufficiently large n and it 
holds 

l i m ! ? L 2 . = + . » . (9) 

I t follows further from (3) 

\ b n \ < a n ^ < a n ( 0 < B j < l - 0 ) . (10) 

We assume that the assertion of the lemma is not true. Then there must 
exist a sequence {£,} such that 

s * = { P«,+i >•••> P v K 1 («, > ^ 0 0 as i oo ) with deg p„ s = m and 
deg p\ < m for « s + 1 < v < ns + ^ , where deg p denotes the degree of the 
algebraic number ft . 
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Let py>> = p„ , jy'"> be the field conjugates of p„ . For a pair 
(f,j) ( I < i<j < the equations 

iV° Pv 0 ) (v = n, n + 1, n + 2) 

can not be satisfied simultaneously. For otherwise we would get from 

RC0 oO) a(j) R ( j ) 
P»+2 ~~ Pn + i _ Pn+2 ~ P„ + l 

o(0 o(0 o U ) o O ) 
Pn-f-1 ~~ P « PM + 1 ~ PH 

that a f f ) = a ( i i ) which is a contradiction. I t follows from here, qn~> °° and the 
f initeness of the number of the pairs (ij) that there exists an index pair (ij) and 
a subsequence of { Z j such that for every s i t is possible to find terms 

P„, , P « i + 1 e S ; with n ( + 1 > 2, p<? = p i j , p (,? + i = p$?+i and p<° * p?J 

< v < / 7 ( + J ) . Because of p^+ i * p i^ - i it follows that (oP)", + 1 # (a^)" £ + 1 . 

Furthermore we have 

o'i") oO") n(.i) o(J') 

P " i + i ~~ P " r — P " ( + l ~~ P " / 

and hence 

2 ((a«))'" + v - ( a 0 > ) ' " ^ ) = 0 . ( I I ) 

It follows from (2) and (10) 

Cn 

From 1 < a (1 - 8) we get (1 - 6 - E,) (a ~ e2) - 1 > 0 . By (11) and (12) 

we obtain 

Cnt + 2 

^ a r ( i _ o _ E l ) ( 0 < S l < 1 - 6, 1 < a - e2) . (12) 

| ( a w > r + ' - ( a 0 ) r + , | < 2 ( » l + 1 - n ( - l ) . m a x ( l , | a | ) 

I t holds H(a"l+i) < y"t+1 and from Lemma 3 

c>n+1 
(13) 

i (aW)" ' + I - (aO"))'"-'-1 | > y 2 . y ^ " ' * 0 , (14) 

where the real constants 7, , Y2>Y3 a r e positive and are not depending on n, . 

I f n f 4 1 — is bounded for t — > c o then there exists a real constant J5 >• 0 
with nl+1 — n, — 1 < 5. Hence it follows from (12), (13) and (14) 

IB 

a^rM"~^-{ < — max (1, H ) G (max (1, H ) yj"+i 

which is a contradiction because of (9). 
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Hence nt+x — nt is not bounded for Therefore there exists an index 
pair (p,r) ^ and a subsequence {£/} of { £ / } such that for every s i t is 
possible to find terras p\j„ , p „ H + J e E / with — na > 2,n, < na < nu+J < n l + l , 

= PS . pi&Vi = (3Si+i and pT> # P « ( « „ < v < « „ + 1 ) . We can show 
similarly that « ( H . I — nH is not bounded for u — > o a . i f we go on, we get such 
terms in for sufficiently large s with all different field conjugates because the 
number of the distinct pairs (ij) is finite. This contradicts the definition of 
S i . Hence the lemma is proved. 

Lemma 5. Let f(x), a and (3(1 be as in Lemma 4. i f {p n / J is the subsequence 
of the terms of degree m in {p„} then there is an integer k0 so that it holds 
P/fA ^ Pn A + 1 for all integers k > k0. 

Proof. I f the assertion of the lemma were not true then it would hold 
p,I/v. — pfljt+i *"or infinitely many k. Hence it would follow for infinitely many k 

nk+i~"k 

1 + T f ^ a ^ = 0 . (15) 
^-~f C>1/C+\ 
K = 2 

By Lemma 4 the number of the terms in (15) is bounded and by (12) 

limfnA±L = o ( v = 2 , 3 , . . . , / ? / c + I - / i / c ) . 
ft—> c„ / t + i 

Therefore we would get a contradiction from (15) and this proves Lemma 5. 

3. Proof of First Part 

We apply Lemma 1 on the polynomial 

If 

F(y, x) = Any — ^ A„ <\ x" 
v=0 

where An — /. c. m. (<70, £3X at). Because of F(p„ , a) = 0 we get from (4), 
(9) and (10) 

/ / ( P „ ) < flr+M - (i6) 

Let $ = / ( a ) . I t follows from (2), (9), (10) and (16) 

15 - P„ I < ^ i - 0 ^ (0 < e4 < 1 - 6) (17) 

-̂ „-«- 0 - e *M , '-*a) 
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where % = (1 — '0 — e4) (cr — s2) / (um + s3). Because of m < c (1 — 0) /(2«) we -
obtain % > 2 and 1 < CT (1 — 9) . 

We consider now the sequence {p«A} (k > 7c0) in Lemma 5. We have for 
the terms of this sequence 

# ( M = -ff*(P»*) • (18) 

Let tnk be the coefficient of xm in the field equation of % k with relatively prime 
integer coefficients. We put 

A = t,k+l . Uk . Norm (p„ A + I - pWA) (19) 

where 
m 

Norm ( p „ / c + 1 - p„ /() = JI (PS+i - PÏÏ) • (20) 
( = 1 

Since P « i + 1 # PnA i t follows from (19) that A is the sum of products of conjugates 
of pn/t+i and pnA, all multiplied by t„k+1 . t„k. I t follows from Lemma 2 that A is 
a rational integer and hence we obtain 

I A I > 1 - (21) 

We now find an upper bound for j A | • Since 

I p g + t - pig I < (l +1 pg+i I ) ( l +1 pS ! ) 

and from Lemma 2 and (18) we obtain 

m 

tnlc.J[a-{-\^l\)<6'".H(M. (22) 
¡ = 1 

I t follows from (19) and (20) that 
m 

I A I = I I W i - fW I • I 6*+, -t»k.J[ (Pffi+i - p8 ) I 

and 

I A I < I P-*+, " P»* I • 6 2 - • (max { i f ( p n f t + I ) , H (p,*) } ) 2 . (23) 

We obtain from (17) and a — e 2 > 1 that 

I P - t + i - P ^ I ^ U - P - f t + i l + U - P * * ! 

< 2. « Î 1 " 6 ^ 

and hence from (21) and (23) 



ON POWER SERIES A N D MAHLER'S [/-NUMBERS 123 

a 
1 — e — e 4 < 2.6='". (max {H(fr,k+l) , ff (pWJfc) } ) 2 . (24) 

There are only a finite number of elements of K with bounded height and hence 

max {H($„k+1), H(p,

nk)}^°° as k ~+°Q . 

Thus from (24) on taking logarithmus it follows that 

(1 - 0 - s4) log ank < (2 + e5) max { l o g H (%k+1) , log H (p\ A )} . (25) 

We define now inductively a sequence . Let kl be the least positive inte­
ger for which the preceding inequalities and properties hold. Let i be a positive 
integer and we suppose that kt has been defined and we take ki+1 as kt + 1 or 
k{ + 2 according as H(%kj+l) is or is not greater than / / , (P« A i + 2 ) . Then by definition 

max { l o g i T ( P « f r / _ 1 + 2 ) , t o g i T O M A . _ I + 1 ) } = logi/(P„ / c .) . ( 2 6) 

By (5) there is a constant c > 1 such that 

l o g a „ + J < cloga,, . (27) 

Hence from the definition of Ar(. it follows for all / 

. log ft,*, < loga„kl_l+l , (28) 

where A is an upper bound for nk+1 — nk by Lemma 4. From (25), (26) and (28) 
we obtain 

( 1 - 0 - E „ ) . c~A . log anki < (2 + B 5) log J? (p B i i ) (29) 

for all /. Hence we obtain from (16), (27) and (29) 

log H(ß„kl + i) (um + s3) log a„ki+x (urn + e3) cA log ank.+1  

< (30) 
l o g / / ( P „ , ) i ^ B - s , 1 ^ 9 ^ 

^ ( 2 + es) ' cA(2 + e5) 

We obtain from (5) and (30) 

Iogff(p H J f c f + I ) 
I i m S U P - F T r T T T ^ f - < ~ • (31) 

J-.OJ logff (P» A / ) 

Finally we define a subsequence {fi, .} of {P«/(f} so that we take ty ~ 1 and 

for each integer j > 1 we take as the least integer in {nk.} greater than tj for 

which / /(P f ;) is less than / / (P f J + j ) . I t is possible to find such an index since the 

number of the algebraic numbers in K with bounded field height is finite and 
if in the sequence {p n } a term is repeated infinitely many times, then £ must be 
in K because of the definition of p„ . Then we have 
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and 

log J T ( ß l y + J ) l o g t f ( p , . + I ) 
l og t f (p , . ) ~ l o g i ^ p , . ^ ) 

hence 

log H (p ) 

Moreover the terms of {P
i;
} are all distinct because their heights are all distinct. 

We have further for the sequence {P,
y
} from (17) 

|̂ -P,.| <(ff(P
t f
)r* (33) 

with % > 2. We obtain from (32) and (33) the conditions (7) and (8) of Baker's 
Theorem for the sequence {p^} and hence the first part of the theorem is proved. 

4. Proof of Second Pari 

Let sH = (log a ( ) + 1 ) / ( log an). I t follows from (6) that the sequence {sn} con­
tains a subsequence {snj} with l im s„j = + 0 0 - We consider now the sequence 

j-xa 

{P«i} • No term in {p n / } can be repeated infinitely many times because of the tran­
scendence of Hence there is a subsequence {p^. } of {p, y} such that all its terms 
are different from each other and their heights increase monotonically. For this 
subsequence we get from (16) and (17) 

1 _ 6 — E 4 

[^-P
%
|</f(P

%
) -«•+ ' ••*% . (34) 

Because of deg fi„j < m and l im snj = + « > we get from (34) that % is a U*-

q->so 

number of degree < m. From the equivalence of the Mahler's and Koksma's 
classification of transcendental numbers ,it follows that £, is a t/-number of 
degree < m. 
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Ö Z E T 

Bu çalışmada, bazı kuvvet serilerinin cebirsel argümanlar için aldığı 
değerlerin, Mahler'in transandant sayılar için verdiği tasnifteki S - veya 

T- sayıları oldukları ispat edilmektedir. 


