## ON POWER SERIES AND MAHLER'S U-NUMBERS

## M. H. ORYAN

In the present paper it is proved that the function values of certain power series are $S$-numbers or $T$-numbers for some algebraic arguments according Mahler's classifification for transcendental numbers.

## 1. Introduction

Let

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \tag{1}
\end{equation*}
$$

be a series with non-zero rational coefficients $c_{n}=b_{n} / a_{n}\left(a_{n}, b_{n}\right.$ integers and $a_{n}>1$ ) and let $c_{n}$ satisfy the following conditions

$$
\begin{align*}
& \lim \inf _{n \rightarrow \infty} \frac{\log a_{n+1}}{\log a_{n}}=\sigma>1  \tag{2}\\
& \lim \sup _{n \rightarrow \infty} \frac{\log b_{n}}{\log a_{n}}=\theta<1 \tag{3}
\end{align*}
$$

Then the radius of convergence of (1) is infinity.
By using a theorem of LeVêque [ ${ }^{4}$, Theorem $4-15$, p.148] which is a generalization of Thue-Siegel-Roth Theorem it is possible to prove that for a nonzero algebraic number $\alpha$ of degree smaller than $\sigma(1-\theta) /(2 u)$ the number $f(\alpha)$ is transcendental, where

$$
\begin{equation*}
u=\limsup _{n \rightarrow \infty} \frac{\log l \cdot c \cdot m \cdot\left(a_{0}, a_{1}, \ldots, a_{n}\right)}{\log a_{n}} \tag{4}
\end{equation*}
$$

is a finite number with $1 \leq u \leq o /(\sigma-1)$ (Zeren [ ${ }^{5}$ ]).
It is the purpose of the present paper to give a necessary and sufficient condition for $f(\alpha)$ to be a $U$-number according to Mahler's classification for transcendental numbers. We prove

Theorem. Let $f(x)$ be a series as in (1) such that (2) and (3) hold. Suppose that $\alpha$ is a non-zero algebraic number of degree $m<\sigma(1-\theta) /(2 u)$.
$1^{\circ}$ ) If

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log a_{n+1}}{\log a_{n}}<+\infty \tag{5}
\end{equation*}
$$

then $f(\alpha)$ is not a $U$-number, i.e. it is either an $S$-number or a $T$-number.
$2^{\circ}$ ) If

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log a_{n+1}}{\log a_{n}}=+\infty \tag{6}
\end{equation*}
$$

then $f(\alpha)$ is a $U$-number of degree $\leq m$.
For the proof of the first part of the theorem we use essentially the following theorem of Baker [ ${ }^{2}$, Theorem 1, p. 98]

Theorem (Baker). Suppose that $\xi$ is a real or a complex number and $x>2$. Let $\alpha_{1}, \alpha_{2}, \ldots$ be a sequence of distinct numbers in an algebraic number field $K$ with field heights $H_{K}\left(\alpha_{1}\right), H_{K}\left(\alpha_{2}\right), \ldots$ such that

$$
\begin{equation*}
\left|\xi-\alpha_{i}\right|<\left(H_{K}\left(\alpha_{i}\right)\right)^{-\%} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup \frac{\log H_{K}\left(\alpha_{i+1}\right)}{\log H_{I K}\left(\alpha_{i}\right)}<+\infty \tag{8}
\end{equation*}
$$

hold. Then $\xi$ is either an $S$-number or a $T$-number.
I would like to thank Professor Michel Waldschmidt for his valuable remarks.

## 2. Lemmas

The following lemmas are used in the proof of the theorem.
Lemma 1. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}(k \geq 1)$ be algebraic numbers which belong to an algebraic number field $K$ of degree $g$, and let $F\left(y, x_{1}, \ldots, x_{k}\right)$ be a polynomial with rational integral coefficients and with degree at least one in $y$. If $\eta$ is an algebraic number such that $F\left(\eta, \alpha_{1}, \ldots, \alpha_{k}\right)=0$, then the degree of $\eta \leq d g$, and

$$
H(\eta) \leq 3^{2 d g+\left(d_{1}+\ldots+d_{k}\right) g} . H^{g} \cdot\left(H\left(\alpha_{1}\right)\right)^{d_{1} g} \ldots\left(H\left(\alpha_{k}\right)\right)^{d_{k} g},
$$

where $H(\eta)$ is the height of $\eta, H$ is the maximum of the absolute values of the coefficients of $F, d_{i}(i=1, \ldots, k)$ is the degree of $F$ in $x_{i}(i=1, \ldots, k), d$ is the degree of $F$ in $y$, and $H\left(\alpha_{i}\right)$ is the height of $\alpha_{i}(i=1, \ldots, k)$.

Proof. See İçen [ $\left.{ }^{1}, \mathrm{p} .25\right]$.
Lemma 2. Suppose that $K$ is an algebraic number field of degree $N$ and that $\zeta$ is an algebraic number in $K$ with field height $H_{K}(\zeta)$. Let the field
conjugates of $\zeta$ be $\zeta^{(1)}=\zeta, \zeta^{(2)}, \ldots, \zeta^{(N)}$ and let the coefficient of $x^{N}$ in the field equation of $\zeta$, with relatively prime integer coefficients, be $h$. Then

$$
h \cdot \prod_{i=1}^{N}\left(1+\left|\zeta^{(i)}\right|\right)<6^{N} \cdot H_{K}(\zeta) .
$$

Further, if $j_{1}, \ldots, j_{s}$ are $s$ integers with $1 \leq j_{1}<\ldots<j_{s} \leq N$ then

$$
h \cdot \zeta^{\left(j_{1}\right)} \ldots \zeta^{\left(j_{s}\right)}
$$

is an algebraic integer.
Proof. Se LeVêque [ ${ }^{4}$, Theorem 4-2, pp. 124-125, and Theorem 2-21, pp. 63-65].

Lemma 3. Let $\zeta_{1}$ and $\zeta_{2}$ be different conjugates of an algebraic number of degree $m$ and of height $H$. Then

$$
\left|\zeta_{1}-\zeta_{2}\right| \geq(4 m)^{-(m-2) / 2}((m+1) H)^{-(2 m-1) / 2} .
$$

Proof. See Güting [ ${ }^{3}$, Theorem 8, p. 158].
In the remainder of this paper the inequalities hold for all sufficiently large indices and the real numbers $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are positive and sufficiently small such that they are not depending on the varying indices.

Lemma 4. Let $f(x)$ be a series as in (1) such that (2), (3) and $1<\sigma(1-\theta)$ hold. Suppose that $\alpha$ is a non-zero algebraic number of degree $m$. Let $\beta_{n}=\sum_{v=0}^{n} c_{v} \alpha^{\nu}(n=0,1, \ldots)$. Then the numbers of the consecutive terms of the sequence $\left\{\beta_{n}\right\}$ which are of degree $<m$ are bounded.

Proof. Let $K=\mathbf{Q}(\alpha)$, then $[K: \mathbf{Q}]=m, \beta_{n} \in K$. It follows from (2) that the sequence $\left\{a_{n}\right\}$ is monotonically increasing for all sufficiently large $n$ and it holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log a_{n}}{n}=+\infty . \tag{9}
\end{equation*}
$$

It follows further from (3)

$$
\begin{equation*}
\left|b_{n}\right|<a_{n}^{\theta+\varepsilon_{1}}<a_{n} \quad\left(0<\varepsilon_{1}<1-0\right) . \tag{10}
\end{equation*}
$$

We assume that the assertion of the lemma is not true. Then there must exist a sequence $\left\{\Sigma_{s}\right\}$ such that

$$
\Sigma_{s}=\left\{\beta_{n_{s}+1}, \ldots, \beta_{n_{s}+q_{s}}\right\} \quad\left(n_{s}, q_{s} \rightarrow \infty \text { as } s \rightarrow \infty\right) \text { with } \operatorname{deg} \beta_{n_{s}}=m \text { and }
$$ $\operatorname{deg} \beta_{v}<m$ for $n_{s}+1 \leq \nu \leq n_{s}+q_{s}$, where $\operatorname{deg} \beta$ denotes the degree of the algebraic number $\beta$.

Let $\beta_{n}{ }^{(1)}=\beta_{n}, \beta_{n}{ }^{(2)}, \ldots, \beta_{n}{ }^{(m)}$ be the field conjugates of $\beta_{n}$. For a pair $(i, j)(\mathrm{I} \leq i<j \leq m)$ the equations

$$
\beta_{v}{ }^{(i)}=\beta_{v}{ }^{(j)} \quad(\nu=n, n+1, n+2)
$$

can not be satisfied simultaneously. For otherwise we would get from

$$
\frac{\beta_{n+2}^{(i)}-\beta_{n+1}^{(i)}}{\beta_{n+1}^{(i)}-\beta_{n}^{(i)}}=\frac{\beta_{n+2}^{(j)}-\beta_{n+1}^{(j)}}{\beta_{n+1}^{(j)}-\beta_{n}^{(i)}}
$$

that $\alpha^{(i)}=\alpha^{(j)}$ which is a contradiction. It follows from here, $q_{n} \rightarrow \infty$ and the finiteness of the number of the pairs $(i, j)$ that there exists an index pair $(i, j)$ and a subsequence $\left\{\Sigma_{s}\right\}$ of $\left\{\Sigma_{s}\right\}$ such that for every $s$ it is possible to find terms $\beta_{n_{t}}, \beta_{n_{t+1}} \in \Sigma_{s}^{\prime}$ with $n_{t+1}-n_{t} \geq 2, \beta_{v_{t}}^{(i)}=\beta_{n_{t}}^{(j)}, \beta_{n_{t+1}}^{(i)}=\beta_{n_{t+1}}^{(i)}$ and $\beta_{v}^{(i)} \neq \beta_{v}^{(j)}$ $\left(n_{1}<\nu<n_{t+1}\right)$. Because of $\beta_{n_{i}+1}^{(i)} \neq \beta_{n_{t}+1}^{(j)}$ it follows that $\left(\alpha^{(i)}\right)^{n_{t}+1} \neq\left(\alpha^{(j)}\right)^{n_{t}+1}$.

Furthermore we have

$$
\beta_{n_{t+1}}^{(i)}-\beta_{n_{t}}^{(i)}=\beta_{i_{t+1}}^{(i)}-\beta_{n_{t}}^{(i)}
$$

and hence

$$
\begin{equation*}
\sum_{\nu=1}^{n_{t}+1-n_{t}} c_{n_{t}+\nu}\left(\left(\alpha^{(i)}\right)^{n_{t}+\nu}-\left(\alpha^{(j)}\right)^{n_{t}+\nu}\right)=0 \tag{II}
\end{equation*}
$$

It follows from (2) and (10)

$$
\begin{equation*}
\left|\frac{c_{n+1}}{c_{n}}\right| \leq a_{n}^{-\left(1-0-\varepsilon_{1}\right)\left(\sigma-\varepsilon_{2}\right)+1}\left(0<\varepsilon_{1}<1-\theta, 1<\sigma-\varepsilon_{2}\right) . \tag{12}
\end{equation*}
$$

From $1<\sigma(1-\theta)$ we get $\left(1-\theta-\varepsilon_{1}\right)\left(\sigma-\varepsilon_{2}\right)-1>0 . \quad$ By (11) and (12) we obtain

$$
\begin{equation*}
\left|\left(\alpha^{(i)}\right)^{n_{t}+1}-\left(\alpha^{(j)}\right)^{n_{t}+1}\right|<2\left(n_{t+1}-n_{t}-1\right) . \max (1, \mid \overline{\alpha \mid})^{n_{t+1}}\left|\frac{c_{n t+2}}{c_{n_{t+1}}}\right| \tag{13}
\end{equation*}
$$

It holds $H\left(\alpha^{n_{t}+1}\right) \leq \gamma_{1}^{n_{t}+1}$ and from Lemma 3

$$
\begin{equation*}
\left|\left(\alpha^{(i)}\right)^{n_{t}+1}-\left(\alpha^{(j)}\right)^{n_{t}+1}\right| \geq \gamma_{2} \cdot \gamma_{3}^{-\left(n_{t}+1\right)} \tag{14}
\end{equation*}
$$

where the real constants $\gamma_{1}, \gamma_{2}, \gamma_{3}$ are positive and are not depending on $n_{t}$.
If $n_{f+1}-n_{t}$ is bounded for $t \rightarrow \infty$ then there exists a real constant $B>0$ with $n_{t+1}-n_{t}-1 \leq B$. Hence it follows from (12), (13) and (14)

$$
a_{n_{f}+1}^{\left(\left\{-9-\varepsilon_{1}\right)\left(\alpha-\varepsilon_{2}\right)-1\right.} \leq \frac{2 B}{\gamma_{2}} \max (1, \overline{|\alpha|})^{B}\left(\max (1, \overline{|\alpha|}) \gamma_{3}\right)^{n_{t}+1}
$$

which is a contradiction because of (9).

Hence $n_{t+1}-n_{t}$ is not bounded for $t \rightarrow \infty$. Therefore there exists an index pair $(p, r) \neq(i, j)$ and a subsequence $\left\{\Sigma_{s}{ }^{\prime}\right\}$ of $\left\{\Sigma_{s}{ }^{\prime}\right\}$ such that for every $s$ it is possible to find terms $\beta_{n_{u}}, \beta_{n_{u+1}} \in \Sigma_{s}^{\prime \prime}$ with $n_{u+1}-n_{u} \geq 2, n_{t}<n_{u}<n_{u+1}<n_{t+1}$, $\beta_{n_{u}}^{(p)}=\beta_{n_{u}}^{(r)}, \beta_{n_{u+1}}^{(p)}=\beta_{n_{u+1}}^{\left(r_{n}\right)}$ and $\beta_{v}^{(p)} \neq \beta_{v}^{(r)}\left(n_{u}<\nu<n_{u+1}\right)$. We can show similarly that $n_{u+1}-n_{u}$ is not bounded for $u \rightarrow \infty$. If we go on, we get such terms in $\Sigma_{s}$ for sufficiently large $s$ with all different field conjugates because the number of the distinct pairs ( $i, j$ ) is finite. This contradicts the definition of $\Sigma_{s}$. Hence the lemma is proved.

Lemma 5. Let $f(x), \alpha$ and $\beta_{n}$ be as in Lemma 4. If $\left\{\beta_{n_{k}}\right\}$ is the subsequence of the terms of degree $m$ in $\left\{\beta_{n}\right\}$ then there is an integer $k_{0}$ so that it holds $\beta_{n_{k}} \neq \beta_{n_{k+1}}$ for all integers $k \geq k_{0}$.

Proof. If the assertion of the lemma were not true then it would hold $\beta_{n_{k}}=\beta_{n_{k+1}}$ for infinitely many $k$. Hence it would follow for infinitely many $k$

$$
\begin{equation*}
1+\sum_{v=2}^{n_{k+1}-n_{k}} \frac{c_{n_{k}+v}}{c_{n_{k}+1}} \alpha^{\nu-1}=0 \tag{15}
\end{equation*}
$$

By Lemma 4 the number of the terms in (15) is bounded and by (12)

$$
\lim _{k \rightarrow \infty} \frac{c_{n k+v}}{c_{n k+1}}=0 \quad\left(v=2,3, \ldots, n_{k+1}-n_{k}\right)
$$

Therefore we would get a contradiction from (15) and this proves Lemma 5.

## 3. Proof of First Part

We apply Lemma 1 on the polynomial

$$
F(y, x)=A_{n} y-\sum_{v=0}^{n} A_{n} c_{v} x^{v}
$$

where $A_{n}=$ l.c.m. $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$. Because of $F\left(\beta_{n}, \alpha\right)=0$ we get from (4), (9) and (10)

$$
\begin{equation*}
H\left(\beta_{n}\right) \leq u_{n}^{u . m+\varepsilon_{1}} \tag{16}
\end{equation*}
$$

Let $\xi=f(\alpha)$. It follows from (2), (9), (10) and (16)

$$
\begin{align*}
\left|\xi-\beta_{n}\right| & \leq a_{n+1}^{-\left(1-0-\varepsilon_{4}\right)} \quad\left(0<\varepsilon_{4}<1-\theta\right)  \tag{17}\\
& \leq a_{n}^{-\left(1-0-\varepsilon_{4}\right)\left(\sigma-\varepsilon_{2}\right)} \\
& \leq H\left(\beta_{n}\right)^{-\beta}
\end{align*}
$$

where $\chi=\left(1-\theta-\varepsilon_{4}\right)\left(\sigma-\varepsilon_{2}\right) /\left(u m+\varepsilon_{3}\right)$. Because of $m<\sigma(1-\theta) /(2 u)$ we obtain $x>2$ and $1<\sigma(1-\theta)$.

We consider now the sequence $\left\{\beta_{n_{k}}\right\}\left(k \geq k_{0}\right)$ in Lemma 5. We have for the terms of this sequence

$$
\begin{equation*}
H\left(\beta_{n_{k}}\right)=H_{\Lambda^{\prime}}\left(\beta_{n_{k}}\right) \tag{18}
\end{equation*}
$$

Let $t_{n_{k}}$ be the coefficient of $x^{m}$ in the field equation of $\beta_{n_{k}}$ with relatively prime integer coefficients. We put

$$
\begin{equation*}
\wedge=t_{n_{k+1}} \cdot t_{n_{k}} . \operatorname{Norm}\left(\beta_{n_{k+1}}-\beta_{n_{k}}\right) \tag{19}
\end{equation*}
$$

where

$$
\operatorname{Norm}\left(\beta_{n_{k+1}}-\beta_{n_{k}}\right)=\prod_{i=1}^{m}\left(\beta_{n_{k+1}}^{(i)}-\beta_{n_{k}}^{(i)}\right)
$$

Since $\beta_{n_{k+1}} \neq \beta_{n_{k}}$ it follows from (19) that $\wedge$ is the sum of products of conjugates of $\beta_{n_{k+1}}$ and $\beta_{n_{k}}$, all multiplied by $t_{n_{k+1}} \cdot t_{n_{k}}$. It follows from Lemma 2 that $\wedge$ is a rational integer and hence we obtain

$$
\begin{equation*}
|\wedge| \geq 1 \tag{21}
\end{equation*}
$$

We now find an upper bound for $|\wedge|$. Since

$$
\left|\beta_{n_{k+1}}^{(i)}-\beta_{n_{k}}^{(i)}\right| \leq\left(1+\left|\beta_{n_{k+1}}^{(i)}\right|\right)\left(1+\left|\beta_{n_{k}}^{(i)}\right|\right)
$$

and from Lemma 2 and (18) we obtain

$$
\begin{equation*}
t_{n_{k}} \cdot \prod_{i=1}^{m}\left(1+\left|\beta_{n_{k}}^{(i)}\right|\right) \leq 6^{m} \cdot H\left(\beta_{n_{k}}\right) . \tag{22}
\end{equation*}
$$

It follows from (19) and (20) that

$$
\begin{aligned}
|\wedge| & =\left|\beta_{n_{k+1}}-\beta_{n_{k}}\right| \cdot\left|t_{n_{k+1}} \cdot t_{n_{k}} \cdot \prod_{i=2}^{m}\left(\beta_{n_{k+1}}^{(i)}-\beta_{n_{k}}^{(i)}\right)\right| \\
& \leq\left|\beta_{n_{k+1}}-\beta_{n_{k}}\right| \cdot 6^{2 m} \cdot H\left(\beta_{n_{k+1}}\right) \cdot H\left(\beta_{n_{k}}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
|\wedge| \leq\left|\beta_{n_{k+1}}-\beta_{n_{k}}\right| \cdot 6^{2 m} .\left(\max \left\{H\left(\beta_{n_{k+1}}\right), H\left(\beta_{n_{k}}\right)\right\}\right)^{2} \tag{23}
\end{equation*}
$$

We obtain from (17) and $\sigma-\varepsilon_{2}>1$ that

$$
\begin{aligned}
\left|\beta_{n_{k+1}}-\beta_{n_{k}}\right| & \leq\left|\xi-\beta_{n_{k+1}}\right|+\left|\xi-\beta_{n_{k}}\right| \\
& \leq 2 . a_{n_{k}}^{-\left(1-\theta-\varepsilon_{4}\right)}
\end{aligned}
$$

and hence from (21) and (23)

$$
\begin{equation*}
a_{n k}^{1-\theta-\varepsilon_{+}} \leq 2.6^{2 m} .\left(\max \left\{H\left(\beta_{n_{k}+1}\right), H\left(\beta_{n_{k}}\right)\right\}\right)^{2} . \tag{24}
\end{equation*}
$$

There are only a finite number of elements of $K$ with bounded height and hence

$$
\max \left\{H\left(\beta_{n_{k+1}}\right), H\left(\beta_{n_{k}}\right)\right\} \rightarrow \infty \text { as } k \rightarrow \infty
$$

Thus from (24) on taking logarithmus it follows that

$$
\begin{equation*}
\left(1-0-\varepsilon_{4}\right) \log a_{n_{k}} \leq\left(2+\varepsilon_{5}\right) \max \left\{\log H\left(\beta_{n_{k+1}}\right), \log H\left(\beta_{n_{k}}\right)\right\} \tag{25}
\end{equation*}
$$

We define now inductively a sequence $\left\{k_{i}\right\}$. Let $k_{1}$ be the least positive integer for which the preceding inequalities and properties hold. Let $i$ be a positive integer and we suppose that $k_{i}$ has been defined and we take $k_{i+1}$ as $k_{i}+1$ or $k_{i}+2$ according as $H\left(\beta_{n_{k_{i}+1}}\right)$ is or is not greater than $H\left(\beta_{n_{k_{i}+2}}\right)$. Then by definition

$$
\begin{equation*}
\max \left\{\log H\left(\beta_{n_{k_{i-1}+2}}\right), \log H\left(\beta_{n_{k_{i}-1}+1}\right)\right\}=\log H\left(\beta_{n_{k_{i}}}\right) \tag{26}
\end{equation*}
$$

By (5) there is a constant $c>1$ such that

$$
\begin{equation*}
\log a_{n+1}<c \log a_{n} \tag{27}
\end{equation*}
$$

Hence from the definition of $k_{i}$ it follows for all $i$

$$
\begin{equation*}
c^{-1} \cdot \log a_{n_{k_{i}}}<\log a_{n_{k_{i}-1+1}} \tag{28}
\end{equation*}
$$

where $A$ is an upper bound for $n_{k+1}-n_{k}$ by Lemma 4. From (25), (26) and (28) we obtain

$$
\begin{equation*}
\left(1-0-\varepsilon_{4}\right) \cdot c^{-A} \cdot \log a_{n_{k_{i}}}<\left(2+\varepsilon_{5}\right) \log H\left(\beta n_{k_{k}}\right) \tag{29}
\end{equation*}
$$

for all $i$. Hence we obtain from (16), (27) and (29)

$$
\begin{equation*}
\frac{\log H\left(\beta_{n_{k_{i}+1}}\right)}{\log H\left(\beta_{n_{k_{i}}}\right)} \leq \frac{\left(u m+\varepsilon_{3}\right) \log a_{n_{k_{i}+1}}}{\frac{1-\theta-\varepsilon_{4}}{c^{A}\left(2+\varepsilon_{5}\right)} \log a_{n_{k_{i}}}} \leq \frac{\left(u m+\varepsilon_{3}\right) c^{A} \log a_{n_{k_{i}+1}}}{\frac{1-\theta-\varepsilon_{4}}{c^{A}\left(2+\varepsilon_{5}\right)} \log a_{n_{k_{i}}}} \tag{30}
\end{equation*}
$$

We obtain from (5) and (30)

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup \frac{\log H\left(\beta_{n_{k_{i+}}}\right)}{\log H\left(\beta_{n_{k_{i}}}\right)}<\infty \tag{31}
\end{equation*}
$$

Finally we define a subsequence $\left\{\beta_{t_{j}}\right\}$ of $\left\{\beta_{n_{k}}\right\}$ so that we take $t_{1}=1$ and for each integer $j \geq 1$ we take $t_{j+1}$ as the least integer in $\left\{n_{k_{i}}\right\}$ greater than $t_{j}$ for which $I\left(\beta_{t j}\right)$ is less than $I\left(\beta_{t j+1}\right)$. It is possible to find such an index since the number of the algebraic numbers in $K$ with bounded field height is finite and if in the sequence $\left\{\beta_{n}\right\}$ a term is repeated infinitely many times, then $\xi$ must be in $K$ because of the definition of $\beta_{n}$. Then we have

$$
H\left(\beta_{t_{1}}\right)<H\left(\beta_{t_{2}}\right)<\ldots
$$

and

$$
\frac{\log H\left(\beta_{t+1}\right)}{\log H\left(\beta_{t j}\right)} \leq \frac{\log H\left(\beta_{t j+1}\right)}{\log H\left(\beta_{t j+1-1}\right)}
$$

hence

$$
\begin{equation*}
\limsup _{j \rightarrow \infty} \frac{\log H\left(\beta_{i j+1}\right)}{\log H\left(\beta_{t j}\right)}<\infty \tag{32}
\end{equation*}
$$

Moreover the terms of $\left\{\beta_{t j}\right\}$ are all distinct because their heights are all distinct. We have further for the sequence $\left\{\beta_{t j}\right\}$ from (17)

$$
\begin{equation*}
\left|\xi-\beta_{t j}\right|<\left(H\left(\beta_{t j}\right)\right)^{-x} \tag{33}
\end{equation*}
$$

with $x>2$. We obtain from (32) and (33) the conditions (7) and (8) of Baker's Theorem for the sequence $\left\{\beta_{t_{j}}\right\}$ and hence the first part of the theorem is proved.

## 4. Proof of Second Part

Let $s_{n}=\left(\log a_{n+1}\right) /\left(\log a_{n}\right)$. It follows from (6) that the sequence $\left\{s_{n}\right\}$ contains a subsequence $\left\{s_{n_{j}}\right\}$ with $\lim _{j \rightarrow \infty} s_{n_{j}}=+\infty$. We consider now the sequence $\left\{\beta_{n j}\right\}$. No term in $\left\{\beta_{n j}\right\}$ can be repeated infinitely many times because of the transcendence of $\xi$. Hence there is a subsequence $\left\{\beta_{n_{j}}\right\}$ of $\left\{\beta_{n j}\right\}$ such that all its terms are different from each other and their heights increase monotonically. For this subsequence we get from (16) and (17)

$$
\begin{equation*}
\left|\xi-\beta_{n_{j_{q}}}\right| \leq H\left(\beta_{n_{j_{q}}}\right)^{-\frac{1-\theta-\varepsilon_{t}}{u i n+\varepsilon_{q}} \cdot s_{n_{j_{q}}}} . \tag{34}
\end{equation*}
$$

Because of $\operatorname{deg} \beta_{n j_{q}} \leq m$ and $\lim _{q \rightarrow \infty} s_{n_{j_{q}}}=+\infty$ we get from (34) that $\xi$ is a $U^{*}$. number of degree $\leq m$. From the equivalence of the Mahler's and Koksma's classification of transcendental numbers it follows that $\xi$ is a $U$-number of degree $\leq m$.

## REFERENCES

[1] İÇEN, O.Ş. : Anhang zu den Arbeiten "Über die Funktionswerte der p-adischen elliptischen Funktionen I und IL", İst. Üniv. Fen Fak. Mec. Serie A, 38 (1973), 25-35.

〔 ${ }^{2}$ ] BAKER, A. : On Mahler's classification of transcendental numbers, Acta Mathematica, 111 (1964), 97-120.
[9] GÜTING, R. : Approximation of algebraic numbers by algebraic numbers, Michigan Math. J., 8 (1961), 149-159.
[ ${ }^{4}$ ] LEVÊQUE W.J. : Topics in Number Theory, Addison-Wesley, Massachusetts (1961), Vol. 2.
[³] ZEREN, B.M. : Öber die Transzendenz der Werte einiger schnell konvergenter Potenzreihen für algebraische Argumente, Bulletin of the Technical University of İstanbul, 38 (1985), 473-496.

## $\ddot{O}$ Z E T

Bu çalı̧̧mada, bazı kuvvet serilerinin cebirsel argümanlar için aldığı değerlerin, Mahler’in transandant sayılar için verdiği tasnifteki $S$-veya $T$-sayıları olduklars ispat edilmektedir.

