İstanbul Üniv. Fen Fak. Mec. Seri A, 47 (1983-1986), 117-128

ON POWER SERIES AND MAHLER'S U-NUMBERS

M. H. ORYAN

In the present paper it is proved that the function values of certain power series are S-numbers or T-numbers for some algebraic arguments according Mahler's classifification for transcendental numbers.

1. Introduction

Let

$$f(x) = \sum_{n=0}^{\infty} c_n x^n \tag{1}$$

be a series with non-zero rational coefficients $c_n = b_n / a_n$ (a_n, b_n) integers and $a_n > 1$ and let c_n satisfy the following conditions

$$\lim_{n\to\infty} \inf \frac{\log a_{n+1}}{\log a_n} = \sigma > 1,$$
(2)

$$\limsup_{n \to \infty} \frac{\log b_n}{\log a_n} = \theta < 1.$$
(3)

Then the radius of convergence of (1) is infinity.

By using a theorem of LeVêque [⁴, Theorem 4-15, p.148] which is a generalization of Thue-Siegel-Roth Theorem it is possible to prove that for a nonzero algebraic number α of degree smaller than $\sigma(1 - \theta) / (2u)$ the number $f(\alpha)$ is transcendental, where

$$u = \limsup_{n \to \infty} \frac{\log l. c. m. (a_0, a_1, ..., a_n)}{\log a_n}$$
(4)

is a finite number with $1 \le u \le \sigma / (\sigma - 1)$ (Zeren [⁵]).

It is the purpose of the present paper to give a necessary and sufficient condition for $f(\alpha)$ to be a U-number according to Mahler's classification for transcendental numbers. We prove

Theorem. Let f(x) be a series as in (1) such that (2) and (3) hold. Suppose that α is a non-zero algebraic number of degree $m < \sigma (1 - \theta) / (2u)$.

117

1°) If

$$\limsup_{n \to \infty} \frac{\log a_{n+1}}{\log a_n} < +\infty$$
(5)

then $f(\alpha)$ is not a U-number, i.e. it is either an S-number or a T-number.

2°) If

$$\limsup_{n\to\infty}\frac{\log a_{n+1}}{\log a_n}=+\infty$$
(6)

then $f(\alpha)$ is a U-number of degree $\leq m$.

For the proof of the first part of the theorem we use essentially the following theorem of Baker [², Theorem 1, p. 98]

Theorem (Baker). Suppose that ξ is a real or a complex number and $\kappa > 2$. Let α_1 , α_2 , ... be a sequence of distinct numbers in an algebraic number field K with field heights $H_K(\alpha_1)$, $H_K(\alpha_2)$, ... such that

$$|\xi - \alpha_i| < (H_K(\alpha_i))^{-\varkappa} \tag{7}$$

and

$$\limsup_{i\to\infty}\frac{\log H_K(\alpha_{i+1})}{\log H_K(\alpha_i)}<+\infty$$
(8)

hold. Then ξ is either an S-number or a T-number.

I would like to thank Professor Michel Waldschmidt for his valuable remarks.

2. Lemmas

The following lemmas are used in the proof of the theorem.

Lemma 1. Let $\alpha_1, \alpha_2, ..., \alpha_k$ $(k \ge 1)$ be algebraic numbers which belong to an algebraic number field K of degree g, and let $F(y, x_1, ..., x_k)$ be a polynomial with rational integral coefficients and with degree at least one in y. If η is an algebraic number such that $F(\eta, \alpha_1, ..., \alpha_k) = 0$, then the degree of $\eta \le dg$, and

$$H(\mathfrak{n}) \leq 3^{2dg + (d_1 + \dots + d_k)g} \cdot H^g \cdot (H(\mathfrak{a}_1))^{d_1g} \cdot \dots (H(\mathfrak{a}_k))^{d_kg}$$

where $H(\eta)$ is the height of η , H is the maximum of the absolute values of the coefficients of F, d_i (i = 1,...,k) is the degree of F in x_i (i = 1,...,k), d is the degree of F in y, and $H(\alpha_i)$ is the height of α_i (i = 1,...,k).

Proof. See İçen [¹, p.25].

Lemma 2. Suppose that K is an algebraic number field of degree N and that ζ is an algebraic number in K with field height $H_K(\zeta)$. Let the field

conjugates of ζ be $\zeta^{(1)} = \zeta$, $\zeta^{(2)}, ..., \zeta^{(N)}$ and let the coefficient of x^N in the field equation of ζ , with relatively prime integer coefficients, be h. Then

$$h \cdot \prod_{i=1}^{N} (1 + |\zeta^{(i)}|) < 6^{N} \cdot H_{K}(\zeta)$$

Further, if $j_1, ..., j_s$ are s integers with $1 \le j_1 < ... < j_s \le N$ then

$$h : \zeta^{(j_1)} ... \zeta^{(j_s)}$$

is an algebraic integer.

Proof. Se LeVêque [⁴, Theorem 4-2, pp. 124-125, and Theorem 2-21, pp. 63-65].

Lemma 3. Let ζ_1 and ζ_2 be different conjugates of an algebraic number of degree *m* and of height *H*. Then

$$|\zeta_1 - \zeta_2| \ge (4 m)^{-(m-2)/2} ((m+1) H)^{-(2m-1)/2}$$

Proof. See Güting [3, Theorem 8, p. 158].

In the remainder of this paper the inequalities hold for all sufficiently large indices and the real numbers ε_1 , ε_2 ,... are positive and sufficiently small such that they are not depending on the varying indices.

Lemma 4. Let f(x) be a series as in (1) such that (2), (3) and $1 < \sigma (1 - \theta)$ hold. Suppose that α is a non-zero algebraic number of degree *m*. Let $\beta_n = \sum_{\nu=0}^n c_\nu \alpha^\nu$ (n = 0, 1, ...). Then the numbers of the consecutive terms of the

sequence $\{\beta_n\}$ which are of degree < m are bounded.

Proof. Let $K = \mathbf{Q}(\alpha)$, then $[K : \mathbf{Q}] = m$, $\beta_n \in K$. It follows from (2) that the sequence $\{a_n\}$ is monotonically increasing for all sufficiently large n and it holds

$$\lim_{n \to \infty} \frac{\log a_n}{n} = +\infty.$$
(9)

It follows further from (3)

$$|b_n| < a_n^{\theta + \varepsilon_1} < a_n \quad (0 < \varepsilon_1 < 1 - 0). \tag{10}$$

We assume that the assertion of the lemma is not true. Then there must exist a sequence $\{\Sigma_s\}$ such that

 $\Sigma_s = \{ \beta_{n_s+1}, ..., \beta_{n_s+q_s} \}$ $(n_s, q_s \to \infty \text{ as } s \to \infty)$ with deg $\beta_{n_s} = m$ and deg $\beta_v < m$ for $n_s + 1 \le v \le n_s + q_s$, where deg β denotes the degree of the algebraic number β .

M. H. ORYAN

Let $\beta_n^{(1)} = \beta_n$, $\beta_n^{(2)}$,..., $\beta_n^{(m)}$ be the field conjugates of β_n . For a pair (i,j) $(1 \le i < j \le m)$ the equations

$$\beta_{\nu}^{(i)} = \beta_{\nu}^{(j)}$$
 ($\nu = n, n+1, n+2$)

can not be satisfied simultaneously. For otherwise we would get from

$$\frac{\beta_{n+2}^{(i)} - \beta_{n+1}^{(i)}}{\beta_{n+1}^{(i)} - \beta_{n}^{(i)}} = \frac{\beta_{n+2}^{(j)} - \beta_{n+1}^{(j)}}{\beta_{n+1}^{(j)} - \beta_{n}^{(j)}}$$

that $\alpha^{(i)} = \alpha^{(j)}$ which is a contradiction. It follows from here, $q_n \to \infty$ and the finiteness of the number of the pairs (i, j) that there exists an index pair (i, j) and a subsequence $\{\Sigma_{s'}\}$ of $\{\Sigma_{s}\}$ such that for every s it is possible to find terms $\beta_{n_t}, \beta_{n_t+1} \in \Sigma_{s'}$ with $n_{t+1} - n_t \ge 2$, $\beta_{n_t}^{(j)} = \beta_{n_t}^{(j)}$, $\beta_{n_t+1}^{(j)} = \beta_{n_t+1}^{(j)}$ and $\beta_{v}^{(i)} \neq \beta_{v}^{(j)}$ $(n_t < v < n_{t+1})$. Because of $\beta_{n_t+1}^{(i)} \neq \beta_{n_t+1}^{(j)}$ it follows that $(\alpha^{(i)})^{n_t+1} \neq (\alpha^{(j)})^{n_t+1}$.

Furthermore we have

$$\beta_{n_l+1}^{(i)} - \beta_{n_l}^{(i)} = \beta_{n_l+1}^{(j)} - \beta_{n_l}^{(j)}$$

and hence

$$\sum_{\nu=1}^{n_{l}+1-n_{l}} c_{n_{l}+\nu} \left((\alpha^{(l)})^{n_{l}+\nu} - (\alpha^{(j)})^{n_{l}+\nu} \right) = 0.$$
 (11)

It follows from (2) and (10)

$$\left|\frac{c_{n+1}}{c_n}\right| \leq a_n^{-(1-0-\varepsilon_1)(\sigma-\varepsilon_2)+1} \quad (0 < \varepsilon_1 < 1-\theta, 1 < \sigma-\varepsilon_2). \tag{12}$$

From $1 < \sigma (1 - \theta)$ we get $(1 - \theta - \varepsilon_1) (\sigma - \varepsilon_2) - 1 > 0$. By (11) and (12) we obtain

$$\left| \left(\alpha^{(l)} \right)^{n_{l}+1} - \left(\alpha^{(l)} \right)^{n_{l}+1} \right| < 2(n_{t+1}-n_{t}-1) \cdot \max\left(\overline{1, |\alpha|} \right)^{n_{t+1}} \left| \frac{c_{n_{t}+2}}{c_{n_{t}+1}} \right|.$$
(13)

It holds $H(\alpha^{n_t+1}) \leq \gamma_1^{n_t+1}$ and from Lemma 3

$$|(\alpha^{(i)})^{n_{l}+1} - (\alpha^{(j)})^{n_{l}+1}| \ge \gamma_{2} \cdot \gamma_{3}^{-(n_{l}+1)}, \qquad (14)$$

where the real constants γ_1 , γ_2 , γ_3 are positive and are not depending on n_t .

If $n_{t+1} - n_t$ is bounded for $t \to \infty$ then there exists a real constant B > 0 with $n_{t+1} - n_t - 1 \le B$. Hence it follows from (12), (13) and (14)

$$a_{n_{l}+1}^{(1-\theta-\epsilon_{3})(\sigma-\epsilon_{2})-1} \leq \frac{2B}{\gamma_{2}} \max(1, |\alpha|)^{B} (\max(1, |\alpha|)\gamma_{3})^{n_{l}+1}$$

which is a contradiction because of (9).

Hence $n_{t+1} - n_t$ is not bounded for $t \to \infty$. Therefore there exists an index pair $(p, r) \neq (i, j)$ and a subsequence $\{\Sigma_s^n\}$ of $\{\Sigma_s^n\}$ such that for every s it is possible to find terms $\beta_{n_u}, \beta_{n_u+1} \in \Sigma_s^n$ with $n_{u+1} - n_u \ge 2, n_t < n_u < n_{u+1} < n_{t+1}, \beta_{n_u}^{(p)} = \beta_{n_u}^{(r)}, \beta_{n_u+1}^{(p)} = \beta_{n_u+1}^{(r)}$ and $\beta_v^{(p)} \neq \beta_v^{(r)}$ $(n_u < v < n_{u+1})$. We can show similarly that $n_{u+1} - n_u$ is not bounded for $u \to \infty$. If we go on, we get such terms in Σ_s for sufficiently large s with all different field conjugates because the number of the distinct pairs (i, j) is finite. This contradicts the definition of Σ_s . Hence the lemma is proved.

Lemma 5. Let f(x), α and β_n be as in Lemma 4. If $\{\beta_{n_k}\}$ is the subsequence of the terms of degree m in $\{\beta_n\}$ then there is an integer k_0 so that it holds $\beta_{n_k} \neq \beta_{n_{k+1}}$ for all integers $k \ge k_0$.

Proof. If the assertion of the lemma were not true then it would hold $\beta_{n_k} = \beta_{n_{k+1}}$ for infinitely many k. Hence it would follow for infinitely many k

$$1 + \sum_{\nu=2}^{n_{k+1}-n_k} \frac{c_{n_k+\nu}}{c_{n_k+1}} a^{\nu-1} = 0.$$
 (15)

By Lemma 4 the number of the terms in (15) is bounded and by (12)

$$\lim_{k \to \infty} \frac{c_{n_k+\nu}}{c_{n_k+1}} = 0 \quad (\nu = 2, 3, ..., n_{k+1} - n_k).$$

Therefore we would get a contradiction from (15) and this proves Lemma 5.

3. Proof of First Part

We apply Lemma 1 on the polynomial

$$F(y, x) = A_n y - \sum_{y=0}^n A_n c_y x^y$$

where $A_n = l. c. m. (a_0, a_1, ..., a_n)$. Because of $F(\beta_n, \alpha) = 0$ we get from (4), (9) and (10)

$$H(\beta_n) \le a_n^{u,m+\varepsilon_0} \,. \tag{16}$$

Let $\xi = f(\alpha)$. It follows from (2), (9), (10) and (16)

$$\begin{aligned} |\xi - \beta_n| &\leq a_{n+1}^{-(1-0-\varepsilon_4)} \quad (0 < \varepsilon_4 < 1-\theta) \\ &\leq a_n^{-(1-0-\varepsilon_4)} \stackrel{(\sigma-\varepsilon_2)}{\leq} &\\ &\leq H(\beta_n)^{-4} \end{aligned}$$
(17)

M. H. ORYAN

where $\varkappa = (1 - \theta - \varepsilon_4) (\sigma - \varepsilon_2) / (um + \varepsilon_3)$. Because of $m < \sigma (1 - \theta) / (2u)$ we obtain $\varkappa > 2$ and $1 < \sigma (1 - \theta)$.

We consider now the sequence $\{\beta_{n_k}\}$ $(k \ge k_0)$ in Lemma 5. We have for the terms of this sequence

$$H(\mathbf{\beta}_{n_k}) = H_K(\mathbf{\beta}_{n_k}) \ . \tag{18}$$

Let t_{n_k} be the coefficient of x^m in the field equation of β_{n_k} with relatively prime integer coefficients. We put

$$\wedge = t_{n_{k+1}} \cdot t_{n_k} \cdot \operatorname{Norm} \left(\beta_{n_{k+1}} - \beta_{n_k} \right) \tag{19}$$

where

Norm
$$(\beta_{n_{k+1}} - \beta_{n_k}) = \prod_{i=1}^{m} (\beta_{n_{k+1}}^{(i)} - \beta_{n_k}^{(i)}).$$
 (20)

Since $\beta_{n_{k+1}} \neq \beta_{n_k}$ it follows from (19) that \wedge is the sum of products of conjugates of $\beta_{n_{k+1}}$ and β_{n_k} , all multiplied by $t_{n_{k+1}} \cdot t_{n_k}$. It follows from Lemma 2 that \wedge is a rational integer and hence we obtain

$$|\wedge| \ge 1. \tag{21}$$

We now find an upper bound for $|\wedge|$. Since

$$|\beta_{n_{k}+1}^{(l)} - \beta_{n_{k}}^{(l)}| \le (1 + |\beta_{n_{k}+1}^{(l)}|)(1 + |\beta_{n_{k}}^{(l)}|)$$

and from Lemma 2 and (18) we obtain

$$t_{n_k} \cdot \prod_{i=1}^m (1 + |\beta_{n_k}^{(i)}|) \le 6^m \cdot H(\beta_{n_k}).$$
(22)

It follows from (19) and (20) that

$$|\wedge| = |\beta_{n_{k+1}} - \beta_{n_k}| \cdot |t_{n_{k+1}} \cdot t_{n_k} \cdot \prod_{i=2}^{m} (\beta_{n_{k+1}}^{(i)} - \beta_{n_k}^{(i)})|$$

$$\leq |\beta_{n_{k+1}} - \beta_{n_k}| \cdot 6^{2m} \cdot H(\beta_{n_{k+1}}) \cdot H(\beta_{n_k})$$

and

$$|\wedge| \le |\beta_{n_{k+1}} - \beta_{n_k}| \cdot 6^{2m} \cdot (\max\{H(\beta_{n_{k+1}}), H(\beta_{n_k})\})^2.$$
 (23)

We obtain from (17) and $\sigma - \varepsilon_2 > 1$ that

$$|\beta_{n_{k+1}} - \beta_{n_k}| \le |\xi - \beta_{n_{k+1}}| + |\xi - \beta_{n_k}|$$
$$\le 2. a_{n_k}^{-(1-\theta-\varepsilon_4)}$$

and hence from (21) and (23)

$$a_{n_k}^{1-\theta-\varepsilon_{+}} \leq 2.6^{2m} \cdot (\max\{H(\beta_{n_k+1}), H(\beta_{n_k})\})^2.$$
(24)

There are only a finite number of elements of K with bounded height and hence

max
$$\{H(\beta_{n_{k+1}}), H(\beta_{n_k})\} \rightarrow \infty$$
 as $k \rightarrow \infty$.

Thus from (24) on taking logarithmus it follows that

$$(1 - 0 - \varepsilon_4) \log a_{n_k} \le (2 + \varepsilon_5) \max \left\{ \log H(\beta_{n_{k+1}}), \log H(\beta_{n_k}) \right\}.$$
(25)

We define now inductively a sequence $\{k_i\}$. Let k_1 be the least positive integer for which the preceding inequalities and properties hold. Let *i* be a positive integer and we suppose that k_i has been defined and we take k_{i+1} as $k_i + 1$ or $k_i + 2$ according as $H(\beta_{n_{k_i+1}})$ is or is not greater than $H(\beta_{n_{k_i+2}})$. Then by definition

$$\max \{ \log H(\beta_{n_{k_{l-1}+2}}), \log H(\beta_{n_{k_{l-1}+1}}) \} = \log H(\beta_{n_{k_{l}}}).$$
(26)

By (5) there is a constant c > 1 such that

$$\log a_{n+1} < c \log a_n . \tag{27}$$

Hence from the definition of k_i it follows for all i

$$c^{-A}$$
. $\log a_{n_{k_i}} < \log a_{n_{k_i-1}+1}$, (28)

where A is an upper bound for $n_{k+1} - n_k$ by Lemma 4. From (25), (26) and (28) we obtain

$$(1 - 0 - \varepsilon_4) \cdot c^{-A} \cdot \log a_{n_{k_i}} < (2 + \varepsilon_5) \log H(\beta_{n_{k_i}})$$
(29)

for all *i*. Hence we obtain from (16), (27) and (29)

$$\frac{\log H(\beta_{n_{k_{i+1}}})}{\log H(\beta_{n_{k_{i}}})} \leq \frac{(um + \varepsilon_{3}) \log a_{n_{k_{i+1}}}}{\frac{1 - \theta - \varepsilon_{4}}{c^{A}(2 + \varepsilon_{5})} \log a_{n_{k_{i}}}} \leq \frac{(um + \varepsilon_{3}) c^{A} \log a_{n_{k_{i+1}}}}{\frac{1 - \theta - \varepsilon_{4}}{c^{A}(2 + \varepsilon_{5})} \log a_{n_{k_{i}}}}.$$
 (30)

We obtain from (5) and (30)

$$\limsup_{i \to \infty} \frac{\log H(\beta_{n_{k_i+1}})}{\log H(\beta_{n_{k_i}})} < \infty .$$
(31)

Finally we define a subsequence $\{\beta_{ij}\}$ of $\{\beta_{nk_i}\}$ so that we take $t_1 = 1$ and for each integer $j \ge 1$ we take t_{j+1} as the least integer in $\{n_{k_i}\}$ greater than t_j for which $H(\beta_{ij})$ is less than $H(\beta_{ij+1})$. It is possible to find such an index since the number of the algebraic numbers in K with bounded field height is finite and if in the sequence $\{\beta_n\}$ a term is repeated infinitely many times, then ξ must be in K because of the definition of β_n . Then we have

123

$$H(\beta_{t_1}) < H(\beta_{t_2}) < \dots$$

and

$$\frac{\log H(\beta_{ij+1})}{\log H(\beta_{ij})} \leq \frac{\log H(\beta_{ij+1})}{\log H(\beta_{ij+1-1})}$$

hence

$$\limsup_{j \to \infty} \frac{\log H(\beta_{ij+1})}{\log H(\beta_{ij})} < \infty .$$
(32)

Moreover the terms of $\{\beta_{ij}\}\$ are all distinct because their heights are all distinct. We have further for the sequence $\{\beta_{ij}\}\$ from (17)

$$\left|\xi - \beta_{tj}\right| < (H(\beta_{tj}))^{-n} \tag{33}$$

with $\kappa > 2$. We obtain from (32) and (33) the conditions (7) and (8) of Baker's Theorem for the sequence $\{\beta_{t_i}\}$ and hence the first part of the theorem is proved.

4. Proof of Second Part

Let $s_n = (\log a_{n+1})/(\log a_n)$. It follows from (6) that the sequence $\{s_n\}$ contains a subsequence $\{s_{nj}\}$ with $\lim_{j\to\infty} s_{nj} = +\infty$. We consider now the sequence $\{\beta_{nj}\}$. No term in $\{\beta_{nj}\}$ can be repeated infinitely many times because of the transcendence of ξ . Hence there is a subsequence $\{\beta_{nj}\}$ of $\{\beta_{nj}\}$ such that all its terms are different from each other and their heights increase monotonically. For this subsequence we get from (16) and (17)

$$|\xi - \beta_{n_{j_q}}| \le H(\beta_{n_{j_q}})^{-\frac{1-\theta-\varepsilon_{\star}}{um+\varepsilon_{\delta}} \cdot s_{n_{j_q}}} .$$
(34)

Because of deg $\beta_{n_{j_q}} \leq m$ and $\lim_{q \to \infty} s_{n_{j_q}} = +\infty$ we get from (34) that ξ is a U^* -number of degree $\leq m$. From the equivalence of the Mahler's and Koksma's classification of transcendental numbers it follows that ξ is a U-number of degree $\leq m$.

REFERENCES

[1] İÇEN, O.Ş.

: Anhang zu den Arbeiten "Über die Funktionswerte der p-adischen elliptischen Funktionen I und II", 1st. Üniv. Fen Fak. Mec. Serie A, 38 (1973), 25-35.

{ ² }	BAKER, A.	:	On Mahler's classification of transcendental numbers, Acta Mathematica, 111 (1964), 97-120.
[*]	GÜTING, R.	:	Approximation of algebraic numbers by algebraic numbers, Michigan Math. J., 8 (1961), 149-159.
[*]	LEVÊQUE W.J.	:	Topics in Number Theory, Addison-Wesley, Massachusetts (1961), Vol. 2.
(*)	ZEREN, B.M.	:	Über die Transzendenz der Werte einiger schnell konvergenter Potenzreihen für algebraische Argumente, Bulletin of the Tech- nical University of İstanbul, 38 (1985), 473-496.

ÖZET

Bu çalışmada, bazı kuvvet serilerinin cebirsel argümanlar için aldığı değerlerin, Mahler'in transandant sayılar için verdiği tasnifteki S-veya T- sayıları oldukları ispat edilmektedir. 125

al e de le contre la contre la contre de la contre de la contre de la contre de la contre de la contre de la co