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GENERALIZATION OF THE SET {1, 2, 5} 
H. ALTINDi§ 

The set of numbers {1, 2, 5} has the property that the product of any 
two numbers of the set decreased by 1 is a perfect square. The set which 
consists of such elements is said to have the property P-t. The purpose of this 
work is to construct the sets with three elements which have the property 
i*-!. Moreover, the sets 

{1,V + 1, «a + In + 2), [2, 2«s + 2« + 1,2«" + 6» + 5}, 
{ a, n (an+s) + —^- ,(« + !) [a («+ 1) + 2s] + 

are systematically obtained. 

1. INTRODUCTION 
Let xt , x 2 x n be positive integers. The set {x1 , x2 xn} is called a 

Pk set of size n if for / # j (i, J = 1, 2 ,..., n) an d k any integer, there exists an 
integer A such that x{ xj -f k = A2 [*] , [2] . 

Consider the set of positive.integers {a, b, c} with a > 0 and a < b < c. 
Suppose this set has the property . Then one gets 

ab — 1 = xz 
ac-l=y2 (1.1) 
be - I = z2 

where x, y, z are integers. 

2. 
Theorem 1. The system (1.1) has infinitely many solutions of the form 

{ 1 , b, c] for some integers x, y, z. 
Proof. If a = 1 then (1.1) becomes 

b - 1 = xz 
c~\=y2 (1.2) 

be - 1 = z2 

and it follows that b = x2 + 1 , c = j>2-f 1. We have 1 <x<y since l < è < c and 
consequently we get 

(*2 + l ) f y + l ) - l = z 2 . (1.3) 
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Since the right hand side of (1.3) is a perfect square, the left hand side must 
also be a perfect square. (1.3) can be written as 

(xy+l)2 + [(x~y)2~l}=z2. (1-4) 
If y — x =±1 for any integers x, y then the left hand side of (1.4) is a perfect 
square, therefore suitable triples (x, y, z) can be found as (1, 2, 3), (2, 3, 7), 
(3, 4, 13),... etc. Hence we obtain the sets P_t ; {1 ,2 , 5}, {1, 5, 10}, {1 ,10 ,17} , . . . 
respectively. These sets can be generalized to the sets 

{l,«2 + l,«2 + 2n + 2} (1.5) 
where n is a positive integer. This gives infinitely many solutions of (1.1). If 
n = l and n = 2, then we get the result of Ezra Brown [2j and S.P. Mohanty [3], 
respectively. Infinitely many solutions of (1.1) are called the fundamental solutions. 

Now we would like to know whether there are any other solutions of (1.1) 
besides fundamental solutions. To do that, we return (1.3). (1.3) can be written as 

z2-(x2 + l)y2 = xz. (1.6) 
Let x2 + l = i > . If x> 1 and x integer, then D is never a perfect square. Hence 
the Diophantine equation (1.6) 

z2 - Dyz = D ~ \ (1.7) 
is a Pell equation. I t follows that for every D there are infinitely many solutions 
(z,y) of (1.7) VI 

If — 1, then the equation (1.6) or (1.7) becomes 
z2 ~2y2 = l (1.8) 

which is a Pell equation. The fundamental solution of this equation is (z,y) = 
(3,2). Consequently all solutions of (1.8) can be obtained from 

z„ + ^ f l = (3 + 2v /2 )"; 
we have the following table : 

n 2 „ 

0 Î 0 
1 3 2 
2 17 12 
3 99 70 
4 577 408 
5 3363 2378 
6 19601 13860 
7 114243 80782 
8 665857 470832 

Table 1 
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From table 1 the solutions of (1.6) which are in the form of (1, y, z) can be 

found as (1, 2, 3), (1, 12, 17), (1, 70, 99), (1, 408, 577),... and the corresponding 
P_, sets are { 1 , 2 , 5 } , {1 ,2 ,145}, {1,2,4901}, {1 ,2 ,166465}, . . . respectively. 
Let -

Ax~ {{1 ,2 ,5} , {1,2, 145}, {1,2, 4901},...} 
be the family of these sets. 

If x = xk = 2, then by the equation (1.7) we have 
z a - 5 ) > 2 = 4 (1.9) 

which is again a Pell equation and its all integer solutions can be found 
similarly. Let 

AXk = {{1, 5, 10}, {1, 5, 442}, {1, 5, 3026},...} 
be the family of these sets. Clearly Ax^ n Ax^ ~ tfr for Xj xk. 

Continuing this procedure for x=xi=3> ... etc. we get the following 
result: 

Theorem 2. For every x = Xj > 1 where xj is a positiv integer there is a 
family 

AXj={{ltb(xj),ct}} ( i e / 0 , / 0 c N ) 
with infinitely many elements having the property P_x . Moreover, if xj ^ xk then 
Ax n Ax = 4> . 

* i k ^ 
Now let a ~ 2 then we have the following similar results to Theorem 1 and 2: 
Theorem 3, The system (1.1) has infinitely many solutions of the form 

(2, b, c} for some integers x, y, z and a = 2. 
Proof. The proof is similar to the proof of the Theorem 1 and the solutions 

are in the form {2, 2n2 + 2n + 1, 2nz + 6^ + 5} (ne N) [2]. 
Theorem 4. For every x=Xj > 1 where Xj is a positive integer there is a family 

Bt.^ifrbixjlc^iiel,,!^) 
with infinitely many elements having the property p _ _ t , moreover if Xj xk, then 

xj k 
Proof. It is similar to the proof of Theorem 2. 
So far we have shown that the system (1.1) has infinitely many solutions 

for a = 1, a = 2. The question is now is it possible for the system (1.1) to have 
infinitely many solutions for every positive integer a? 
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Showing this is the same as solving the quadratic congruence 

x2 = — 1 (mod a). 
If a = 4&+3, k = 0 ,1 ,2 ,3 , . . . is a prime, then this congruence has no solutions 
[5]. Hence if a is equal to 3, 7, 11, . . . , etc. and consequently one factor of A is a 
multiple of these prime numbers 3 ,7 ,11 , . . . then the system (1.1) has no solutions. 

If a = 4k + 1, k — 1,2, 3, . . . is a prime then the congruence has solutions. 
Let 

Ex = {a : a = 4/c + 1, which is a prime number (& = 1, 2 , . . . )} . 
If a e £ j then the congruence x2 = — 1 (mod a"), a jg 2, a e N can also 

be solved [s]. 
Let 

E2 = {a:a = (4k-\- 1)K, 4/c + 1 is a prime, a § 2, £ = 1, 2 , . . . } , 
i?3 = {a: a = 2 . ( 4 ^ + l ) a . (4/c2 + l)0 , a, P are integers and 4k{ + 1 are primes 

for i = 1,2}. 
If ae E3 then the congruence x2 = ~ 1 (mod a) can have solutions. Hence 

we have shown that a must be in the set 
E = £ , U E2KJ £3. 

This characterizes the choice of a that we seek for. 
Let us return to system (1.1). If we arrange the third equation in the system 

(1.1) as 
(xy + l )2 + {{x ~ yf - a2)] = (azf 

and set y — x = ± a then the left hand side becomes a perfect square. Let a be 
different from 1 and 2 with ae E, and choose an element s so that 2 < s < a 
and s2 = — 1 (mod a). 

If x = an s, y — x ± a, n is a positive integer, then we get 

6 = rt (ow ± 2J) + ^ - ± 1 , c = («+l) [«(« + 1 ) ^ 2 5 ] + —tl; 
a a 

hence we have.: 
Theorem 5. Let ae E and 

W= \a,n{an±2s) -f , (n + 1) [a(« + l)±2s] + . ( . a a ) 
Subtracting 1 from the,product of any two elements in W is a perfect square, 
where ne N, and J is an integer satisfying 2 < i < a and, s2 — _ l (mod «). 
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We next give an example that how we can choose the number s in Theorem 5. 
Example. Let a = 2.5.132 = 1690 e E, note that s2 - — 1 (mod 1690) 

has solutions which are i = 1113 (mod 1690) and s 1253 (mod 1690). If 
a = 1690, s = 1113, n = 1 in Theorem 5 then the set W —{1690, 4649, 11945} 
is a P_x set. Similarly if a — 1690, s = 1253, « = 1 in Theorem 5 then we get 
W= {1690, 5125, 12701} which is a P_x set. Hence there are infinitely many 
P^x sets which can be obtained from n = 2, 3, 
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