Istanbul Üniv. Fen Fak. Mat. Der. 49 (1990), 7-9

A NOTE ON THE CHARACTERIZATION OF ET-SETS IN GLOBAL FIELDS

7

M. BİLHAN

In this note all extensions are assumed to be finite and k is a global field, i.e. an algebraic number field or an algebraic function field of one variable over a finite field \mathbf{F}_q of constants. Let K/k be a Galois extension with group G and C be a conjugacy class in G. The set of unramified prime divisors P of k with the same Artin Symbol $\left(\frac{K/k}{P}\right) = C$ is called an *elementary Tchebotarev set* associated with K/k (abbreviated as ET-set) and denoted by $Art_{K/k}^{-1}$ (C). If K/k is abelian we call this set an *elementary abelian Tchebotarev set* (abbreviated as EAT-set). By Tchebotarev density law ([⁷], [⁸]) the set $Art_{K/k}^{-1}$ (C) has analytic density equal to $\frac{|C|}{|G|}$.

We are dealing with the following problem:

Problem. Given a set S of prime divisors of k, characterize the conditions under which there exists a Galois extension K/k such that S is (up to a finite set of primes) an ET-set associated with K/k, i.e. $S = Art_{K/k}^{-1}$ (C) for some conjugacy class C in G(K/k).

In this note we shall give an answer to this problem in a restricted form.

In [1] we prove the following result, which extends and improves a result of Gauthier [5], Théorème A]:

Theorem 1. Let K/k be a Galois extension of global fields, G=G(K/k), G' the derived group of G, K' the fixed field of G' in K, C a conjugacy class of G. Then the following are equivalent:

- (i) |C| = |G'|,
- (ii) For every finite abelian extension N of k containing K'

$$Art_{K/k}^{-1}(C) \doteq \bigcup_{i=1}^{[N:K']} Art_{N/k}^{-1}(\psi_i)$$

M. BİLHAN

where $\{\psi_1, ..., \psi'_{[N:K']}\} = \psi_1 G(N/K')$ is the coset of G(N/k) determined by $\psi_1 \mid_{K'} = C \mid_{K'}$,

(iii) There is an abelian extension N_1/k such that

$$Art_{K/k}^{-1}(C) \stackrel{\prime}{\supset} Art_{N_1/k}^{-1}(\psi)$$

for some $\psi \in G(N_1/k)$ (\supset denotes the inclusion up to a finite set of primes of k).

Now we state the converse result which answers our initial problem in the following restricted form:

Theorem 2. Let k be a global field and S be a set of prime divisors of k which is (up to a finite set of prime divisors) a union of EAT-sets associated with some abelian extension N/k,

$$S \doteq \bigcup_{i=1}^{s} Art^{-1}_{N/k}(\psi_i)$$

such that $\{\psi_1, ..., \psi_s\} = \psi_1 H' \neq H'$ is a nontrivial coset modulo some subgroup H' of G(N/k). Then, there exist an infinite number of Galois extensions K/k such that the Galois group G(K/k) = G has a conjugacy class C satisfying |C| = |G'| and

$$S \doteq Art_{\kappa lk}^{-1}(C).$$

Particular Case: $k = \mathbf{Q}$ or $k = \mathbf{F}_q(T)$.

For $k = \mathbf{Q}$, the field of rational numbers, an *m*-arithmetic progression is defined to be the set $\operatorname{Prog}_m(r)$ of all prime numbers *p* which are congruent to $r \pmod{m}$, where $r \ge 1$ and $m \ge 2$ are relatively prime integers. Kronecker-Weber theorem states that every abelian extension of \mathbf{Q} is contained in some *m*-th cyclotomic extension $\mathbf{Q}(\zeta_m)$.

For $k = \mathbb{F}_q(T)$, the rational function field, the role of $\mathbb{Q}(\zeta_m)$ is played by a type of extensions which we call (ν, n, M) — extensions in [²]. For $\nu \ge 0, n \ge 1$ integers and $M \in \mathbb{F}_q[T]$ a nonzero polynomial, the associated (ν, n, M) extension N of $k = \mathbb{F}_q(T)$ is the composite $N = k_n \cdot k(\Lambda_M) \cdot L_\nu$ where k_n is the constant field extension of k of degree $n, k(\Lambda_M)$ and L_ν are some special extensions arising from Carlitz ([³], [⁴]) and Hayes [⁶] cyclotomic theory. The prime divisors of k which are ramified in N are those dividing T'M and $P_{\infty} = \frac{1}{T}$. By the explicit construction of the maximal abelian extension of $\mathbb{F}_q(T)$ given by Hayes [⁶], we deduce an analogue of Kronecker-Weber Theorem : Every abelian extension K' of $k = \mathbb{F}_q(T)$ is contained in some (ν, n, M) — extension. In [²] we introduce the (ν, n, M) —arithmetic progressions as the sets $Prog_M^{\nu,n}(P) = Art_{N/k}^{-1}(\psi_p)$ where N is a (ν, n, M) —extension and $\psi_p = \left[\frac{N/k}{P}\right]$ is the Frobenius substitution

A NOTE ON THE CHARACTERIZATION OF ET-SETS

of N/k at the prime P of $k = \mathbb{F}_q(T)$, identified with some prime polynomial P not dividing $T^{\nu}M$. These arithmetic progressions are completely characterized in $[^2]$.

Now using the Kronecker-Weber Theorem, respectively its *p*-analogue for function field case, it appears that every EAT-set is a union of arithmetic progressions associated with some N/k where N is an m-th cyclotomic extension, respectively a (v, n, M)-extension. So in case $k = \mathbb{Q}$ or $k = \mathbf{F}_q(T)$ it is enough to work with the arithmetic progressions which are more concrete sets than EAT-sets.

REFERENCES

['] BİLHAN, M.	:	Elementary Tchebotarev Sets of Global Fields, Preprint.
[²] BİLHAN, M.	:	Elementary Tchebotarev Sets and Kronecker Sets over ${f Q}$ or ${f F}_q(T)$, Preprint.
[³] CARLITZ, L.	:	A Class of Polynomials, Trans. Amer. Math. Soc., 43 (1938), 167-182.
[⁴] CARLITZ, L.	:	On Certain Functions Connected with Polynomials in a Galois Field, Duke Math. J., 1 (1935), 137-168.
[⁶] GAUTHIER,]	F. :	Ensembles de Kronecker et Représentation des Nombres Premiers par une Forme Quadratique Binaire, Bull. Scj. Math., 2º série, 102 (1978), 129-143.
[⁶] HAYES, D.R.	;	Explicit Class Field Theory for Rational Function Fields, Trans. Amer. Math. Soc., 189 (1974), 77-91.
[⁷] SERRE, J.P.	:	Zeta and L Functions, Arithmetical Algebraic Geometry, Proceedings of a Conference Held at Purdue University (1963), ed. by Schilling (1965), Harper and Row, New York (1965), 82-92.
[^b] TCHEBOTARI	E V, N . :	Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. (1926), 191-228.

MIDDLE EAST TECHNICAL UNIVERSITY DEPARTMENT OF MATHEMATICS 06531 ANKARA-TURKEY 9