LIE ALGEBRAS WITH SOLVABLE WORD PROBLEM

N. EKİCI

$$
\begin{aligned}
& \text { In this note we investigate associative division algebras having a } \\
& \text { presentation } \\
& \left.A=<x, y \mid x^{m_{\alpha}} y^{n_{\alpha}}=y^{m_{\alpha}} x^{m_{\alpha}}, \alpha=1,2, \ldots, k>, k \geq 1, m_{\alpha} \in \mathbf{Z} . \text { (*) }^{*}\right)
\end{aligned}
$$

The main results are the following :

Theorem A. Let A be an associative division algebra (${ }^{*}$). Then A has a solvable word problem.

The theorem below reduces the problem to the case $k \leq 2$.
Theorem B. Let A be an associative division algebra presented by $\left({ }^{*}\right)$ and assume that the m_{α} are pairwise relatively prime. If $k \geq 3$ then A is abelian.

The abelian case is easy and we omit it.

THE NON-ABELIAN CASE, ŠIRŠOV'S THEOREM

In this section we will consider composition method. It is clear that, this is part of the theory of the computer algebra [${ }^{3}$]. This method has several sources. The composition lemma is stated in explicit form for Lie algebras in the paper of Sirsov [4]. It can be restated without difficulty to the associative case. We only have to remove the brackets in the Sirsov argument. This was accomplished in explicit form by Bokut [${ }^{2}$] and Bergman [$\left.{ }^{[}\right]$in the language of associative algebras.

Let K be a field, X a set, $F=K\langle X\rangle$ is a free associative algebra over the field K with the set of free generators X. We assume that the set of all words from X is linearly ordered and this order \leq satisfies the minimality condition and is compatible with the word product. If w is a nonzero element of algebra F, by $l(w)$ we denote the length of w with respect to X. Leading word of w with nonzero coefficient will be denoted by \bar{w}.

Let us define the composition $(f, g)_{w}$ of the elements f, g of the algebra F with respect to the word w.

Definition. Let $w=\bar{f} a=b \vec{g}$ and the designated subwords \vec{f}, \bar{g} of F are nonintersecting. Then the polynomial $(f, g)_{w}=\beta f, a-\alpha b g$, where $f=\alpha \bar{f},+\ldots$, $g=\beta \bar{g}+\ldots, \alpha, \beta \in K$, is called the composition of the elements f, g with respect to the word w. Clearly either $(f, g)_{w}=0$ or $\overline{(f, g)}_{w}<w$.

Definition. Let $S \subseteq F=K<X>$. We say that the set S is closed under composition if none of the leading words of the element $s \in S$ contains as a subword a leading word of another element from S and for any elements $f, g \in S$ and any composition $(f, g)_{w}$ in the algebra F we have the equality

$$
(f, g)_{t v}=\sum \alpha_{i} a_{i} s_{l} b_{i}
$$

where $s_{i} \in S, 0 \neq \alpha_{i} \in K, a_{i}, b_{i}$ are words and $\overline{a_{i} b_{i} s_{i}}<w$.
Composition Lemma. Let S be a closed subset of the algebra $F=K<X\rangle$ closed with respect to the composition, then in the associative algebra $<X \mid s_{i}=0, s_{i} \in S>$ all the words from X contain no subwords $\overline{s_{i}}\left(s_{i} \in S\right)$ will serve as its base.

The case $k=2$. Let

$$
A=<x, y \mid x^{m} y^{m}=y^{m} x^{m}, x^{n} y^{n}=y^{n} x^{n}, \quad m, n \in \mathbf{Z}>
$$

and

$$
S=\left\{x^{m} y^{n}-y^{m} x^{m}, x^{n} y^{n}-y^{n} x^{n}\right\}
$$

Assume that $x<y$ and $m<n$.
Proposition. S is closed subset of the free associative algebra $F=K<\{x, y\}>$.

Proof. By calculating the composition of element of S we obtain the proposition.

Now we will consider the free algebra $F=K<\{x, y\}>$. Let S be as in the above proposition and J be the ideal generated by S. It is clear that $A \cong F / J$.

Theorem. The associative algebra

$$
F / J \cong A=<x, y \mid x^{m} y^{m}=y^{m} x^{m}, x^{n} y^{n}=y^{n} x^{n}, m, n \in \mathbf{Z}>
$$

has solvable word problem.

Proof. Let $u \in F$. If \bar{u} doesn't contain $\bar{s}_{i}\left(s_{i} \in S\right)$ as a subword then it is in the basis of A and it doesn't belong to J. If \bar{u} contains $\overline{s_{i}}$ as a subword then consider the element $u_{1} \in J$ such that $\bar{u}=\bar{u}_{1}$. Let $u=a_{i} \bar{s}_{i} b_{i}+w$ and $u_{1}=a_{i} b_{i} s_{i}$ it is clear that $u_{1} \in J$. Now consider the element $u-u_{1} \cdot u-u_{1}$ has a smaller leading term than that of u. It belongs to the ideal J if and only if $u \in J$. Induction on the leading term completes the proof of the theorem.

Hence from this theorem and Theorem B we obtain the Theorem A.
Let us define the Lie product in the algebra A which has presentation (*) as $[a, b]=a b-b a$ for any $a, b \in A$. We obtain a Lie algebra L.

Corollary. L has solvable word problem.

REFERENCES

1] BERGMAN, G. : The diamond lemma for ring theory, Adv. Math., 29 (1978), No. 2, 178-218.
[²] BOKUT, L.A. : Embedding in simple associative algebras, Algebra Logika, 15 (1976), No. 2, 117-142.
[] BUCHBERGER, B. : Algebraic simplification in : Computer Algebra, Symbolic and and Algebraic Computation, Springer, New York (1982). LOOS, R.
[4] ŠIRŠOV, A.I. ' : Some algorithmic problems for Lie algebras, Sib. Math. Zh., 3 (1962), No. 2, 293-296.

UNIVERSITY OF ÇUKUROVA
FACULTY OF SCIENCE AND ARTS
DEPARTMENT OF MATHEMATICS
01330 BALCALI-ADANA

