ALGEBRAIC CHARACTERIZATION OF SOME FUZZY TOPOLOGICAL SPACES

M.S. EROĞLU

Let (X, τ) be a topological space and $C(X, \tau)$ the semigroup of continuous functions $f: (X, \tau) \longrightarrow (X, \tau)$. In [¹] and [²], Magill defined S- and S*spaces and proved that two topological S- (S*-) spaces (X, τ) and (X^*, τ^*) are homeomorphic iff the semigroups $C(X, \tau)$ and $C(X^*, \tau^*)$ are isomorphic.

For every $f \in C(X, \tau)$ and $z \in X$, we define $H(f) := \{x \in X | f(x) = x\}$, and $H(z, f) := f^{-1}(z)$. (X, τ) will be called an a-(a*-) space iff

$$\{H(f) \mid f \in C(X, \tau)\} \ (\{H(z, f) \mid z \in X, f \in C(X, \tau)\})$$

is a subbase for the closed sets of (X, τ) .

Now let (X, \mathfrak{A}) be a fuzzy topological space and $C(X, \mathfrak{A}) := f$ $f: C(X, \mathfrak{A}) \longrightarrow C(X, \mathfrak{A})$ fuzzy continuous. For every topology τ on $X, w(\tau)$ denotes the wellknown Lowen fuzzy topology on X. For every $f: X \longrightarrow [0, 1]$, we set $s_0(f) := f^{-1}$ ((0, 1)), and define $k(\tau) := \{f \mid f: X \longrightarrow [0, 1] \text{ and } s_0(f) \in \tau \}$. We can prove the following

Theorem 1. Let (X_1, τ_1) and (X_2, τ_2) be two non empty a-(a^{*}-) spaces. $(X_1, w(\tau_1))$ and $(X_2, w(\tau_2))$ are fuzzy homeomorphic iff $C(X_1, w(\tau_1))$ and $C(X_2, w(\tau_2))$ are isomorphic semigroups. Every isomorphism

$$\theta: C(X_1, w(\tau_1)) \longrightarrow C(X_2, w(\tau_2))$$

is of the form $0(f) = \varphi \circ f \circ \varphi^{-1}$ for every $f \in C(X_1, w(\tau_1))$ with a fuzzy homeomorphism $\varphi: (X_1, w(\tau_1)) \longrightarrow (X_2, w(\tau_2))$. Particularly every automorphism of $C(X_1, w(\tau_1))$ is inner.

The same is true if we take $k(\tau_1)$, $k(\tau_2)$ for $w(\tau_1)$, $w(\tau_2)$ respectively.

A fuzzy topological space (X, \mathfrak{A}) will be called a fuzzy \mathbf{T}_2 -space iff for every different points $a, b \in X$ and for every $\alpha, \beta \in (0,1)$ there are $f, g \in \mathfrak{A}$ with $f \wedge g = 0, \alpha < f(a)$ and $\beta < g(b)$. For $A \subseteq X, \chi_A$ denotes the characteristic function of A in X. For every $\lambda \in [0, 1], \lambda_x$ will denote the constant function on X with value λ . A fuzzy topological space (X, \mathfrak{A}) will be called a fuzzy a-space iff $\{\lambda_x \mid \lambda \in [0,1]\} \cup \{\chi_{H(f)} \mid f \in C(X, \mathfrak{A})\}$ is a subbase for fuzzy closed sets of (X, \mathfrak{A}) . Then we have the following

M, S, EROĞLU

Theorem 2. Two fuzzy a-spaces (X, \mathfrak{A}) and (Y, \mathfrak{B}) are fuzzy homeomorphic iff the semigroups $C(X, \mathfrak{A})$ and $C(Y, \mathfrak{B})$ are isomorphic. Every isomorphism $\theta: C(X, \mathfrak{A}) \longrightarrow C(Y, \mathfrak{B})$ is of the form

$$\theta(f) = \varphi \circ f \circ \varphi^{-1} \quad \forall f \in C(X, \mathfrak{A})$$

with a fuzzy homeomorphism $\varphi : C(X, \mathfrak{A}) \longrightarrow C(Y, \mathfrak{B})$. Particularly every automorphism of $C(X, \mathfrak{A})$ is inner.

REFERENCES

• • •									
[']	MAGILL,	K.D.,	JR. :	Semigroup	of continuous	functions,	Amer,	Math.	Monthly,
•		47 a.		71. (1964),	984-988.	- 10 a - 10	• . [*]		•
F 9-1						· ·			

[^a] MAGILL, K.D., JR. : Another S-admissible class of spaces, Proc. Amer. Math. Soc. 18 (1967), 295-298.

DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCES KARADENIZ TECHNICAL UNIVERSITY 61080 TRABZON-TURKEY

and a second second

26