SOME REMARKS ON JACOBIAN PROBLEM

M. IKEDA

A polynomial self-map $F: k^n \to k^n$ of an affine space k^n is said to be invertible if there is a polynomial map $G: k^n \to k^n$ satisfying $F \circ G = G \circ F = id_{k^n}$. The Jacobian Problem (JP) consists in asking whether or not a polynomial map $F: k^n \to k^n$ is invertible if the Jacobian J(F) is invertible in the matrix algebra (of size *n*) over the polynomial ring $k[\underline{x}] = k[x_1, ..., x_n]$. It is known that the answer to this question is in the negative if the characteristic $\chi(k) \neq 0$ (Nousiainen, 1981). On the other hand, for the case $\chi(k) = 0$, it is generally believed that the answer will be in the positive. In this talk I point out that the problem JP can be reduced to the following one which will be called the Jacobian Surjectiveness Problem (JSP): Is a polynomial map $F: k^n \to k^n$ surjective, if J(F) is invertible? This problem can further be reduced to the following one : Let $G: k^n \to k^n$ be a polynomial map whose Jacobian J(G) is nilpotent. Is it possible to find a coordinate transformation under which

$$G(x) = (G_1(x), ..., G_n(x))$$

takes the form

 $G_i(x) = a$ polynomial in x_1, \dots, x_{l-1}

for i = 1, ..., n.

REFERENCE

The Jacobian Conjecture, Bull. AMS, 2 (1982).

[¹] BASS, H., CONNELL, E.H. and WRIGHT, D.

DEPARTMENT OF MATHEMATICS FACULTY OF ARTS AND SCIENCES MIDDLE EAST TECHNICAL UNIVERSITY 06531 ANKARA-TURKEY

1