THE JACOBIAN CONJECTURE II *)

M. KİREZCİ

Let k be a field of characteristic zero, and $n>0$ an integer. Write $X=$ $\left(X_{1}, \ldots, X_{n}\right)$ for the sequence in n indeterminates $X_{1}, \ldots, X_{n}: k[X]=k\left[X_{1}, \ldots, X_{n}\right]$ denotes the ring of polynomials in X_{1}, \ldots, X_{n}.

Let $F=\left(F_{1}, \ldots, F_{n}\right)$ be an endomorphism of $k[X]$, where F sends X_{i} to F_{l}. Hyman BASS has shown that the Jacobian Conjecture will follow once it is shown for all $F=\left(F_{1}, \ldots, F_{n}\right)$ of the form $F_{j}=X_{i}-N_{i}$, where each N_{i} is a cubic homogeneous polynomial and the matrix $J(N)=\left(\partial N_{l} / \partial X_{j}\right)$ is nilpotent. An $F=X-N$ above has an analytic inverse $G=\left(G_{1}, \ldots, G_{n}\right)$ near the origin. For each $i, G_{i}(X)$ is a power series such that $G_{i}(F)=X_{i}$, where $G_{i}(X) \in k[[X]]$, the ring of formal power series. Jacobian Conjecture asserts that these power series G_{i} are polynomials. Let us denote by $G_{i}^{(d)}$, the homogeneous components of degree $2 d+1$ of $G_{i} . \mathrm{H}$. BASS has shown that,
G_{i} are polynomials iff $G_{i}^{(d)}=0$ for $d>\delta^{\eta-1}-1 / \delta-1$ where $\delta=\operatorname{deg} N_{i}$.
In this work, I have improved the recurrence formula for $G^{(d)}$ which I had developed in my previous work [${ }^{1}$]. The improved formula is more convenient to produce fruitfull results toward the solution of the Jacobian problem. In fact, if, for $F=X-N, N$ being cubic homogeneous and $J(F)=I-J(N)$ invertible with $J^{2}(N)=0$, then F is invertible, whose inverse is $G=X+N$. Although H. BASS obtained this result, by means of the improved formula, this result is obtained in a much simpler way.

Furthermore, the recursive character of the formula enables me to give estimations of d, for $G^{(d)}=0$. For arbitrary n with $J^{n}(N)=0, G$ is a polynomial whenever it is shown that, $G^{(d)}=0$ for

$$
1+\sum_{s=0}^{n-2} 3^{s} \leq d \leq \sum_{s=0}^{n-1} 3^{s}
$$

[^0]Since the recurrence formula of $G^{(d)}$ for $d \geq 1+\sum_{s=0}^{n-1} 3^{s}$ consists only of the terms $G^{(d)}$ for

$$
1+\sum_{s=0}^{n-2} 3^{s} \leq d \leq \sum_{s=0}^{n-1} 3^{s}
$$

where the terms for $d<\mathrm{I}+\sum_{s=0}^{n-2} 3^{s}$ occur in the formula with higher derivatives than their degrees, disappearing from the formula. The JACOBIAN CONJECTURE states that :

$$
J(F) \text { is invertible } \Rightarrow F \text { is invertible. }
$$

REFERENCE

[1] KIREZC1, M. : The Jacobian Conjecture I, Bulletin of the Technical University of Istanbul 43 (1990), 3, 421-436.

[^0]: *) This work has been published in detail in Bulletin of the Technical University of Istanbul, 43 (1990), 3, 451-457.

