A NOTE ON THE USE OF GENERALIZED INVERSE OF MATRICES IN STATISTICS

H. ÖZDEN

1. INTRODUCTION

It is well known that if A is a non-singular matrix, then there exists a matrix G, such that $A G=G A=I$ which is called the inverse of A and denoted by A^{-1}. Moore extended the notion of inverse to singular matrices in $1920\left[^{3}\right]$, and published some of his results at some length in 1935 [${ }^{4}$]. Another definition of inverse G of A, came from Penrose in $\left.1955{ }^{5}\right]$ satisfying more conditions than the definition of Moore. More and more statisticians are becoming interested in this new concept.

Carter and Myers (1972) [¹], Speed (1974) [7], Mazunder (1980) [²], Searle (1984) [6] are some of them.

2. DEFINITIONS AND PRELIMINARIES

Definition 1. Let A be an $m \times n$ matrix with arbitrary rank. A generalized inverse of A is an $n \times m$ matrix G such that $X=G Y$ is a solution of consistent equations $A X=Y\left[{ }^{8}\right]$.

Additional conditions are usually imposed on a generalized matrix G so as to obtain useful results. For instance, G which was defined by Penrose is more complicated than G defined by Moore.

Since we do not need more complicated G here, we will be content with the following inverse which we call a g-inverse.

Definition 2. A g-inverse of A of order $m \times n$ is a matrix G of order $n \times m$ such that $A G A=A$.

3. PROPERTIES OF G-INVERSE

Let G be a g-inverse of A, then with $H=G A$,
i) $r(H)=\operatorname{tr}(H)=r(A)$,
ii) $r(G)>r(A)$,
iii) $H^{2}=H$,
iv) If G is a g-inverse of A then G^{\prime} will be a g-inverse of A^{\prime}.

4. SOLVING LINEAR EQUATIONS USING GENERALIZED INVERSES

Theorem 1. Let A be of order $m \times n$ and G be any g-inverse of A. Further let $H=G A$. Then the following hold $\left[{ }^{8}\right]$:
i) A general solution of the homogeneous equation $A X=0$ is $X=(H-I) Z$ where Z is an arbitrary vector,
ii) A general solution of consistent non homegeneous equation $A X=Y$ is

$$
X=G Y+(H-I) Z
$$

where Z is an arbitary vector,
iii) $Q^{\prime} X$ has a unique value for all solutions of $A X=Y$ iff

$$
H^{\prime} Q=Q
$$

5. MODEL FOR ANALYSIS OF VARIANCE

The mathematical model for one-way variance analysis is

$$
Y=X \beta+\varepsilon,
$$

where Y is an $m \times 1$ vector of observation; β is an $m \times n$ dummy matrix, mostly called as a design matrix; β is an $n \times 1$ vector of parameters; ε is an $m \times 1$ vector of error terms such that $E(\varepsilon)=0$ and $E\left(\varepsilon \varepsilon^{\prime}\right)=o^{2} I$.

The normal equations of the model is

$$
\left(X^{\prime} X\right) \widehat{\beta}=X^{\prime} Y
$$

where $\widehat{\beta}$ is the estimator of β. Hence the model X is singular and so $X^{\prime} X$ is.
Theorem 2. Let G be any g-inverse of $\left(X^{\prime} X\right)$. Then the following hold:
i) \mathbf{G} is also a g-inverse of ($\mathbf{X}^{\prime} \mathbf{X}$),
ii) $X G X^{\prime} X=X$, in other words $G X^{\prime}$ is a g-inverse of X,
iii) $X G X^{\prime}$ is invariant for G,
iv) $X G X^{\prime}$ is both symmetric and idempotert.

6. ESTIMATORS AND THEIR VARIANCES

Using Theorem 1, the estimator of β is written as

$$
\begin{equation*}
\widehat{\beta}=G X^{\prime} Y+(H-I) Z, \tag{i}
\end{equation*}
$$

then it is clear that the expected value of $\widehat{\beta}$ is

$$
\begin{align*}
E(\widehat{\beta}) & =E\left[G X^{\prime} Y+(H-I) Z\right] \\
& =G X^{\prime} E(Y)+(H-I) Z \\
& =G X^{\prime} X \beta+(H-I) Z \text { since } E(Y)=X \beta \tag{2}\\
& =I \nexists \beta+(H-I) Z \text { since } H=G X^{\prime} X . \\
& \rightarrow E(\widehat{\beta}) \neq \beta \rightarrow \widehat{\beta} \text { is a bias estimator of } \beta .
\end{align*}
$$

Coming to the variance of $\widehat{\beta}$, for Z is an arbitrary constant it does not affect the variance of $\tilde{\beta}$. Then by the definition of variance

$$
\begin{align*}
V \tilde{\beta}) & =E[\widehat{\beta}-E(\widehat{\beta})]\left[\tilde{\beta}^{\prime}-E\left(\tilde{\beta}^{\prime}\right)\right] . \text { Using (1) and (2) } \\
& =E\left[G X^{\prime} Y-H \beta\right]\left[Y^{\prime} X G^{\prime}-\beta^{\prime} H^{\prime}\right] . \text { Since } H=G X^{\prime} X \\
& =E\left[G X^{\prime} Y-G X^{\prime} X \beta\right]\left[Y^{\prime} X G^{\prime}-\beta^{\prime} X^{\prime} X G^{\prime}\right] \\
& =G X^{\prime} E(Y-X \beta)\left(Y^{\prime}-\beta^{\prime} X^{\prime}\right) X G^{\prime} \\
& =G X^{\prime} E\left(\varepsilon \varepsilon^{\prime}\right) X G^{\prime} \\
& =G X^{\prime} X G^{\prime} o^{2} \\
& =G \sigma^{2} . \tag{3}
\end{align*}
$$

Which is a similar result to the regression situation when $X^{\prime} X$ is non-singular.
Estimating the error variance

$$
\begin{align*}
S S E & =\left(Y^{\prime}-\widehat{Y^{\prime}}\right)(Y-\widehat{Y}) \\
& =\left(Y^{\prime}-Y^{\prime} X G X Y\right)\left(Y-X G X^{\prime} Y\right) \\
& =Y^{\prime}\left(I-X G X^{\prime}\right) Y . \tag{4}
\end{align*}
$$

Now G was not unique but $X G X^{\prime}$ was invariant. Hence no matter which G is used (4) will take the same value. Furthermore $X(H-I)$ is null,

$$
\begin{align*}
S S E & =Y^{\prime} Y-Y^{\prime} X \widehat{\beta} \\
& \mp Y^{\prime} Y-\tilde{\beta^{\prime}} X^{\prime} Y \tag{5}
\end{align*}
$$

Although G is not unique $X G X^{\prime}$ is, hence (5) will be invariant and unique.

In order to obtain the expected value of $S S E$, it will be enough to put $Y=X \beta+\varepsilon$ in (5) and remember that ($I-X G X^{\prime}$) is an idempotent matrix with rank $n-r$ and use the following theorem:

Theorem 3. Let X be a random vector with $E(X)=0$ and $V(X)=\sigma^{2} I$; and A be an idempotent vector with rank r then

$$
\begin{equation*}
E\left(X^{\prime} A X\right)=r \sigma^{2} . \tag{6}
\end{equation*}
$$

Now ;

$$
\begin{align*}
S S E & =\left(\beta^{\prime} X^{\prime}+\varepsilon^{\prime}\right)\left(I-X G X^{\prime}\right)(X \beta+\varepsilon) \\
& =\varepsilon^{\prime}\left(I-X G X^{\prime}\right) \varepsilon . \tag{7}
\end{align*}
$$

After using (6) in (7)

$$
E(S S E)=(n-r) \sigma^{2},(r=r(X))
$$

and so an unbiased estimator of o^{2} is

$$
\widehat{\sigma}^{2}=\frac{S S E}{n-r}
$$

7. ESTIMABLE FUNCTIONS

We saw that $\widehat{\beta}$ is not an unbiased estimator of β. But certain linear combinations of the elements of the solutions $\widehat{\beta}$ have a unique and unbiased value no matter what solution of β is used, these combinations are $Q^{\prime} \beta$ where Q^{\prime} is such that $Q^{\prime} H=Q^{\prime}$ and called estimable functions.

For any arbitrary vector $W^{\prime}, W^{\prime} H \beta$ is an estimable function.
Since

$$
Q^{\prime}=W^{\prime} H \quad \rightarrow \quad Q^{\prime} H=W^{\prime} H^{2}=W^{\prime} H=Q^{\prime}
$$

Hence for any vector $W^{\prime}, W^{\prime} H \beta$ is unique and $E\left(Q^{\prime} \widehat{\beta}\right)=Q^{\prime} \beta$. To show this :
and

$$
\begin{aligned}
Q^{\prime} \widehat{\beta} & =W^{\prime} H \widehat{\beta} \\
& =W^{\prime} G X^{\prime} Y
\end{aligned}
$$

$$
\begin{aligned}
E\left(Q^{\prime} \hat{\beta}\right) & =W^{\prime} G X^{\prime} E(Y) \\
& =W^{\prime} G X^{\prime} X \beta \\
& =Q^{\prime} \beta
\end{aligned}
$$

After making the necessary calculation, the variance of this estimable function and its estimator are found as

$$
\begin{gathered}
V\left(Q^{\prime} \widehat{\beta}\right)=W^{\prime} G W \sigma^{2} \\
\sigma^{2}=\frac{\left(Y^{\prime} Y-Y^{\prime} X G X^{\prime} Y\right)}{n-r} .
\end{gathered}
$$

REFERENCES

['] CARTER, W.H. and : Ortogonal Contrasts and the generalized inverse in fixed ef. MYERS, R.H. fects analysis of variance, The Amer. Statis., 5 (1972), 32-34.
$\left[{ }^{2}\right]$ MAZUNDAR, S., : Correspondence Between a linear restriction and a generalLIVE, C.C. and BRYCE, G.R. ized inverse in linear Model Analysis, The Amer. Statis., 2 (1980), 103-104.
[³] MOORE, E.H. : On the reciprocal of the general algebraic matrix (Abstract). Bull. Amer. Math. Soc., 26 (1920), 394-395.
[4] MOORE, E.H. : General Analysis; American Philosophical Society, Philadelphia, 1935.
[] PENROSE, R. : A generalized inverse of matrices, Proc. Camb. Phil. Soc., 51 (1955), 406-413.
[${ }^{6}$] SEARLE, S.R. $:$ Restrictions and generalized inverses in linear models, The Amer. Statis., 1 (1974), 53-54.
[7] SPEED, F.M. : An application of the generalized inverse to the one way classification, The Amer. Statis., 1 (1974), 16-18.
[${ }^{8}$] RAO, CR. : Generalized Inverse of Matrices and its Applications, John Willey and Sons Inc., 1971.

