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SOME OLD AND RECENT ARITHMETICAL RESULTS
CONCERNING MODULAR FORMS AND RELATED ZETA FUNCTIONS

G. SHIMURA

I. NEAR HOLOMORPHY AND ARITHMETICITY

Our first topic is the arithmeticity of the values of a F-invariant function,
not necessarily meromorphic, on a hermitian symmetric space ##, where I" is an
arithmetic discontinuous group acting on 4. ‘Nc start with the simplest case in
which 5 is the upper half plane

H={zeC|lm(z) > 0}

and I' is a congruence subgroup of SL,(Z). Here for any commutative ring 4
with identity element we denote by SL,(A4) the group of all (2 X 2)-matrices
of determinant | with entries in 4, and call a subgroup of SL,(Z) a congruence

subgroup if it contains
1 0
= mod
(o 1) im)

5

for-some positive integer N. For o = (a 3) e SL,(R) and ze H we put
‘ ‘ _ c

a(z)-: (az 4 b)Y [(cz + d), (l.1a)
JuZ)y=cz + d. (1.1b)

Further for ke Z and a function f: H— C we define f|j,e: H— C by
(fllew @) =Jju (@ " fla(z) (zeii). (1.2)

Given a congruence subgroup I" of SL,(Z), we call a holomorphic function f
on H a (holomorphic) modular form of weight k with respect to I' if the
following two conditions are satisfied :

flleY =1 for every yer. (1.3a)

For every ueSL,(Z) one has (f|| o) (2)== Zc“” exp(2minz/N,) with
n=0

cmeC and 0< N, cZ. (1.3b)
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The last condition implies in particular that

f@) = z c,.exp (2w inz/N)
n=0
with ¢,€ C and 0 < Ne Z. Given a subfield L of C, we say that f is L-rational
if ¢,&L for ail n. ' _

A modular function with respect to I' is a meromorphic function i) on H
such that ¢ = ffg with two modular forms f and g of the same weight with
respect to I. We call ¢ L-rational if we can choose L-rational f and g. We
are now ready to state the main thecrem of . complex mult1p11cat10n due to
Kronecker and Weber, in a simplified form :

Thesrem 10 Let K be an imaginary quadraﬁc field embedded in C, and
¢ a Q,-rational modular function with rtespect to a congruence. subgroup of
SL,(Z). Then ¢ (v), if finite, belongs to K, for every e Hn K.

Here for a subfield L of C we denote by L, the maximal abelian extension
of L in C, In fact, an explicit law of reciprocity for the extension K (¢ (1))/K

(Koo)

can be given in the sense that if o with a prime ¥ of K

unramified in K (9 (1)), then ¢ (v)° = ¢'(t) with ¢’ determined by ¢, =, and
. In a certain case, ¢ (1)" = ¢ (") with ¢’ determined by <+ and *B. This is
so if ¢ is the standard modular function J=g /(g;Z — 27¢ ), in which case
K(J (7)) is the Hilbert class field over K prov1ded Z | Z~ is a fractional ideal
in K,

Our aim is to answer the following two questions :

(1) Can one obtain a similar result with non-meromorphic functions in place
of @1

(1) Can one generalize the above-theorem (as well as its non-meromorphic
version) fo the higher-dimensional ease?

Let us first answer (I). We do this by introducing the notion of near

holomorphy A function f: H— C is cal]ed nearly holomorphic if it is of the
M

form f(z) = Z ymp (z) with holomorphic functions p,, on H, 0 = MeZ,
m=0

and y = Im(z). It can easily be shown that f has such an expression if and

only if (»*3/dz)¥*+! f=0. Now we call such an f nearly holomorphic modular

Jorm of weight k with respect to I’ if it satisfies (1.3a) and the following

condition :
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. For every aeSLy(Z) one has

L

Ul @ = Z ()™ D CampexP @ Tinz/N)

m=0 n=0 -

with ¢,,, € C and 0 < N, eZ. : (1.4)

We call f L-rational i Cyun €L for all m and n Then we have :

Theorem 1.1, The assertion of Theorem 1.0 is true for ¢ = f/g with
Qab-rati‘onal nearly holomorphic modular forms f and g of the same weight.

Nearly holomorphic forms can be obtained in the following way: Define
a differential operator &% for. 0 < p eZ by

: 1 k. -
80 — Bkizpze Bpra Ops B =m | (1.5)
‘ 2w\ 2iy 0z

Then we can show that if f is a holomorphic modular form of weight k, then
8 fisa nearly holomorphic modular form of weight k + 2p. If fis L-rational,
S0 18 Sﬂ J- There is also a naturally defined nearly holomorphic form obtained
from an Eisenstein series

E, G, s)—(z/z)Z(a I (= A P>

"whei'e 0<<melZ, seC, and‘ (¢, d) runs over all relatively prime pairs of
integers. This is convergent for Re (25 4 'm) > 2 ; moreover if we put

CENES =L@ EmEG, (1.7)
'thf.:rgl_'___we .obtain : ' ' -

‘Proposition 1.2. There is a function on H X C, real analytic in z and
holomorphic in 5, which coincides with I' (s + m) E¥ (z, 5) for Re 2s 4 m) = 2.

Moreover, given a compact subset 4 of C, one has | I'(s + m) EX(z,8)] = by°
if seAd and y > 1, where & and ¢ are posjtive constants depending only on A,

Thus we can speak of E,, (z, 0) for every such m, including the case m = 2.
Obviously E,, (z, 0) is holomorphic in z if m > 2; 1n fact, it is a modulal form
of weight m. If m =2, hOWGVGI we have

o0

v Ez(z,m:,‘3 '+1—z4z(zci)emw,
S 20 =— ,

nm‘ 0<d[n

and tlus is a nearly holommpluc modular form of weight 2. We can prove :




48 G. SHIMURA

Proposition 1.3. Every nearly holomorphic modular form of weight k& is
of the form
{CSS"/Z)—I E,(z,0) if ke2Z,

fl@) = Z k20 8p T+ if K¢z, (1.8)

OSpEk(2
where g, is a holomorphic modular form of weight & — 2p and ce C.

We note here an interesting fact :

Proposition 1.4. The function =" E}(z,) is a Q-rational nearly holo-
morphic modular form of weight m for every teZ such that —m < ¢ < 0.

Let us now turn to the higher-dimensional case. We restrict our exposition
to the case in which the group is Sp(n; Z), where

Sp(n, A) = {a e M,,(4) |'odo = J}, 'J=(? _(1)"),

for any commutative ring A with identity element, and the space is

H,={zeM, (O)[t, =z and Im(z) is positive definite}
(The symbol M, (A) denotes the set of all (m X m)-matrices with entries

in A). For o = (a Z)ESp(n,R) with a, b, ¢, d of size n and ze H, we put
[

a(z2) = (az + ) (cz + )7, (1.92)
Ju(2) = det(cz 4 d) . (1.9b)

For keZ and f: H,—> C we cap define f||,a: H,—» C by (1.2) with H, in
place of H. Given a congruence subgroup I of Sp(n, Z) (which can be defined
in the same fashion as in the case n = 1), we call a helomorphic function f on H,
a Siegel modular form of weight k with respect to I' if it satisfies (1.3a) and the
following condition :

For every aeSp(n, Z) one has (1.10)
(Sl ) (@) = Z Coy - €Xp (27 . tr (h2)/N,)
heS

with ¢, €C ond O < N, eZ, where
S ={he M, (Z) |k is symmetric and positive definite}

(In fact, (1.10) is automatically satisfied if n>1). Then a Siegel modular
Junction is a meromorphic function ¢ = f/g with Siegel modular forms f and
g of the same weight. The L-rationality can be defined in the same fashion as
in the case n =1,
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To generalize Theorem 1.0, we take a CM-field of degree 2n, by which we
mean a totaly imaginary quadratic extension K of a totally real algebraic number
field F of degree ». Then we can always find a ring-injection A : K~» M,, (Q)
such that A(a®) = J.'AMa) Jt, where p is the generator of Gal(K/F). Given
such a A, we see that A({ceKjoo®” = 1}) is a subgroup of Sp (s, Q) and
has a unique common fixed point T on H,. Moreover, there is a ring-injection
p: K— M, (C) determined by

Ma)( ):(.T)H(a) @ex. (L.11)

i
Let X’ be the field generated over Q by tr(u(a)) for all ae K. Then K’ is a
CM-field whose degree may or may not be equal to [K: Q]. In this setting a
generalization of Theorem 1.0 can be given as follows :

T
i

n n

Theorem 1.5. Let ¢ be a @, -rational Siegel modular function. Then
¢ (%), if finite, belongs to K .

The reciprocity-law can also be given in this case,

We call f: H,~» C nearly holomorphic if it is a polynomial in the entries
of 3! with holomorphic functions as coefficients, where y =1Im(z). Such an
f is called a nearly holomorphic modular form of weight k with respect to I if
it satisfies (1.3a) and the condition

For every e Sp(n, T) one has

M
Ne® @) =D Pam @ Y D oy exp @i tr (BN (112)

me=1 heS
With Cenn€C, 0 < N, eZ, and polynomials p,, (&' y™Y) in the entries of the
matrix w1 y7h ‘
We call f L-rational if c,,, and the coefficients of p,,, belong to L for all
m and h. Then we have:

Theorem 1.6. The assertion of Theorem 1.4 is true for ¢ = f/g with
Q,,-rational nearly holomorphic modular forms f and g of the same weight.

The generalizations of (1.5), (1.6), and (1.7) are given by

AL = (i) det ()t 1k

_det (_1._—";:._6_@_ __@__)p det (p)s+o—te+D/2 | (1.13)
2 Z
E,(z5) = detGY D ju @~ 1u @72, (1.14a)

ael
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[n/2]

E¥(z, 5) = E, (z, 5) §(23 + m) H (s - 2m — 20), ' (1.14b)

where T:'F;-P, Tp—{ (g z)ef}. It can be shown that (i) if f is an
I-rational holomorphic or nearly holomorphic modular form of weight &, then

ALf is an L-rational nearly holomorphic modular form of weight & 4 2p;
Gi) if » is odd, EX(z t) is nearly holomorphic for every integer ¢ such that
(n+1Dj2—m=t=<0 with a few exceptions; a similar but somewhat different
type of result holds for even n,

Nearly holomorphic functions can be defined on an arbitrary complex
Kiahler manifold. Let £ be a fundamental 2-form on such a manifold ¥ of
complex dimension #. Every point of ¥ has a coordinate neighborhood ¥ in which

. .. . . . # ‘

Q —=id3¢ with a real-valied function 9 on U. Put Aﬂ:i.th dz, Adz,
pa=1

with complex coordinates z, ,..., z, on U, define n vector fields X ,..., X, by

Z hog X, = 8/0Z,. Then a functz'qn on v is annihilated by all monomials of
a=1

the X, of degree r if and only if it is a polynomzal in B(P/BZU a@/az,,
of degree << v with holomorphic functions on U as coefficients. We call aCc®
function on ¥ nearly holomorphic if its restriction to every such U is such a
polynomial. ¥ V' = H,, we can take ¢ = — log(det (Im (z))), and find that this
definition is-consistent with the previous one.

Among general Kiéhler mamfolds hermitian symmetrlc spaces form the
“class of manifolds on which nearly holomorphic functions appear most naturally.
Any hermitian symmetric space ¥ of noncompact type can be given as V=G/K
with a semisimple noncompact group G and its maximal compact subgroup X.
Let 6 and T be their Li¢ algebras, and G¢ = T @B, S B the well known
decomposition such that ., and B_ correspond to holomorphic and antiholo:
morphlc tangent vectors on ¥ at the origin. Then a nearly holomorphic function
on ¥V corresponds exactly to a functlon on G annihilated by all homogeneous
eleménts of afixed deégree in the symmetrlc algebra over B_. If I is an arithmetic
discrete subgroup of G, then we can speak of nearly holomorphic autorhorphic
forms on V with respect to I, and the results similar to Theorems 1.5 and 1.6
can be obtained.

1L SPECIAL VALUES OF SOME ZETA FUNCTIONS
. Let I = ST, (Z). Though all the results in. this section can be extended to
the case of modular forms with respect to congruence subgroups of I', we
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consider for simplicity only those of level 1, that is, those with respect to I
Let M, denote the set of all modular forms of level 1 and weight k. We assume
that 0 < k€ 2Z, since M, = {0} for odd k and M, = C. We call an element

=

F@) = z a, e of M, a cusp form if a, = 0, and denote by S, the subset
n=0 X .
of M, consisting of the cusp forms. As an example we mention

ARy =q] =g  (g=e),
n=1

which is an element of S, (In fact, S, = {0} for k << 12). For two elements
S and g of M, we define their inner product {f, g} by

gy = f f@DE@ P duz @n
'l

whenever the integral is convergent, which is the case if f or g is a cusp form.
Here z=x 1+ iy as usual, ® =TI — H, and dyz is the invariant measure
¥y rdxdy on H, It is known that

M, =S, ®CE  (k>?2), (2.22)
(S, EY> =0, Q2D
where E} = FE,(z,0) with the series E(z,s) of (1.6).

We associate a Dirichlet series D(s} to each fe M, by
Dys) = a,n. 2.3)
ne=l . L.

This is convergent for sufficiently large Re(s), and can be continued to the
whole s-plane as a meromorphic function. In fact, if we put :

Ry (s) == (2m)™ I'(5) Dy (5), 2.4
then R, is holomorphic everywhere except for possible simple poles at s =0
and s =k, and satisfies _
' Rk — 5) = i* Ry(s). ' 2.5)
The residue of Ry at s =0 is -— a,, and hence R, is entire if f€.5,.

We are interested in the arithmetic nature of the values D,(m) for some
integers m when f is a cusp form, an assumption we make throughout the rest of
the paper. Since R;is entire and I'(s) has a pole at every meZ, <0, we see
from (2.4) that D;(m) =0 for such an m. Therefore, in view of (2.5), it is

natural to consider D,(m) for an integer m belonging to the open interval
(0, k), which may be called the critical interval for Dy .
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To state the result on D,(rn), we need the notion of Hecke cigenform. Without
details, let us merely say that one can define a C-linear endomorphism T, on S,
called a Hecke operator, for each neZ, = 0. Moreover the 7, are hermitian

]

with respect to (2.1) and form a commutative ring. Thus S, is spanned by their

L]

common eigenfunctions, which we call Hecke eigenforms. If f(z) = Z a,n”s
: n=1

is a Hecke eigenform, then a, # 0. We call it normalized if a;, = 1. For a

normalized Hecke eigenform we know that 7, (f) = a,f for every n and D,

has an Fuler product :

D) =[O0 —app= + -2y (2.6)

For h(z) = Z ¢, e¥™z e M, let K, denote the field generated over Q byA
n=0
the ¢,. If /' is a normalized Hecke eigenform, then K is a totally real algebraic
number field of finite degree. Clearly K, = Q if /= A. Now we have:

Theorem 2.1, If f is a normalized Hecke eigenform, then R, (m)/R,(n) € K
for every two integers m and » inside the critical interval such that m = n (mod 2).
Postponing the proof, let us introduce another type of Dirichlet series

w

D(sifg) = Za,, b, ns 2.7)

n=1

Here f and g, are the same as above and g(z) = Z b, e¥inz e M, with < k.
n=10

At first sight this may look artificial, but in fact it has been observed in recent

years by several researchers that the series of type (2.7) are natural arithmetical

objects which can be extended to the higher-dimensional case without losing

their good arithmetic properties, while the higher-dimensional analogues of (2.3)

have no such advantages.

To express (2.7) by an integral, let us assume for simplicity. that ¢, and b,
are all real, since the general case can easily be reduced to this special case.
Observing that

f(z)“g (Z)- — Z Z Qpy bn eZni(m—n)x e~2n(m+n)y ,

m=1 n==0

we obtain

o0

1
[r@g@ar = a,6,cm,
9

n==1

and hence
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o0 1
[ [1@e@adxy=tdy = @my= 1) Diss £ 0. (28)
0 ¢

Let I},:{i(é T)‘meZ} and ¥=I.—H. Since {x +iy|0<x <1}

represents W, the left-hand side of (2.8) can be written f w feystldyz Let A

be a complete set of representatives for I',—[I". Then U a® represents [,—H,
T oaed
and therefore

fq, f(z)E(é")ydez:wa F@ eyt dyz

ued
A varyealdye
acAd

o e T .
Since (fgy'thoa =f gyt (2): |j.(2)|727%, the last integral over © can
be 'written ‘

[, o= D @ @ dy s = (S @8 (D Bt (5 + 1 — )

ecd

with E,, of (1.6). By virtue of Proposition 1.2, we can show that the lést inner
product times {(2s +2 —k ~ 1) I'(s+:1—1) is convergent for every . In
this way we can show that if 0 <2/ < k, then

oy srrs+1-nNE2s+2—-k—DD(sf g)

is ‘entire and invariant under s— &k +7—1 — 5.

Theorem 2.2. Put C(s) =L(2s -+ 2 —k —~ D D(s; f, g) with a normalized
Hecke eigenform f Then C(1)erd+i— ’(ff) K, K, for every mteger t such
that 1 —1 <<t < k. : ,

Notice that C(m) =0 if { —1=meZ, and hence (/— 1,k) is the
*critical interval” for € (In all my papers in References the inner product
{f, &> was defined with an extra factor 1/(f4dyz) on the right-hand side of
{2:1), and hence the above theorem differs from [8, Theorem 4] by that factor).

Let us now sketch the proof. The above computation shows that
@Um) = I'(s) C() = <f(@) g (@) Bt 5 + 1 — k)

with £ of (1.7). We evaluate this at s =k — 1, Assuming that k—1+#2 we
know that w—* Ef j(z, 0) is a Q-rational element of A, ;. Therefore if we
put h(z)=7'"*g(z) Ef~i(z,0), then & is a K -rational element of M, , so that
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h==p + ME? with peS, and AeC by virtue of (2.2a). Writing p as a linear
combination of Hecke eigenforms, we can put p = pf + r with peC and an
element r of S, such that {f,r) = 0. From the K, rationality of s, we can
derive that p is K -rational and also that pe K;K,. We have then

-k @ml k- DCk — D ={fh>
=LA AR =p S

by virtue of (2.2b), since K; K, « R. This proves our theorem for t =% —1
under the assumption that & — I+ 2.

To treat the case t<<k — 1, put m =¢+ 1 -— k. By Proposition 1.4
pl—k—m EE . (z;m) is Q-rational and nearly holomorphic, and hence by
Proposition 1.3 we have n/—%—"g(z) EE | (z,m)=h+ 84— ¥ with he M, and a
nearly holomorphic form r of weight 4 — 2. Now we can show that
(8;, 8x2q> =0 for any slowly increasing C= function ¢ satisfying (l1.3a)
with & — 2 in place of k, in particular for any nearly holomorphic form g of
weight k& — 2. Therefore, writing the present 4 in the form h=p + A E? as
in the case ¢=1Fk — 1, we obtain the desired result (including even the case
k -1 =12), though the rationality question becomes somewhat more nontrivial,

Coming back to Dy, let us now derive Theorem 2.1 from Theorem 2.2. We
first observe that '

aEi(,0) = by~ +c+ > (> di=t) exvin (2.9)
n=1  0dja ’ '
with suitable constants @, & and ¢; b # 0 only when /= 2. Taking the function
of (2.9) to be g of D(s;f. g), we can derive from (2.7) that in this case
C(s) = Dp(s — 1 + 1) Ds(s). By Theorem 2.2 we have

®AE D — 1+ 1) D) e lfif) K, 2.10)

for every two integers / and ¢ such that 0 <X / = t <C k, e 2Z (Strictly speaking,
the case / = 2 must be excluded, but it.can actually be shown that (2.10) is true
even in this case). Now the argument similar to the proof of nonvanishing-of
¢ on the line Re(s) = 1 shows that D,(s) # 0 for Re(s) = (k + 1)/2. Since
k=12, we see that D.(k — 1) D;(k — 2) +# 0. Now (2.10) shows that the
following products belong to {f,f> K:

™% D (k — 2) D, (k — 1), |
Tk De(m) Dp(k— 1) for O0<m<k—1, me2Z,
T2k Do(m) Dp(ke — 2) for 0 <m<Ck —2, m¢2Z.

Dividing the second and third products by the first one, we obtain Theorem 2.1.
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Theorems 2.1 and 2.2 can be generalized in several ways. First of all, with
any Dirichlet character ¢, one can consider

D(s/,9) = 2 @ (n)a,n,

=]

which includes D;(s) as a special case. Let K, denote the field generated
over (¢ by the values of ¢. Then we have :

Theorem 2.3, There exist two constants p, (f) and p_(f) depending
only on f such that (xi)=" D(m;f, @), for every positive integer m < k,
belongs to p, (f) KK, or p_(f)K,K, according as ¢ (— 1) = (—1)" or
(__ 1)m-~1 . -

This as well as Theorem 2.2 can be further generalized to the case of Hilbert
modular forms. We can also consider D (m; f, g) when f or g is a Hilbert modular
form of half-integral weight. Such values, as well as the higher-dimensional
versions of D (m; f, ¢) are closely related to the periods of differential forms.

BIBLIOGRAPHICAL NOTE

The classical theory of modular forms (in particular, the theory of Hecke
operators and Eisenstein series) can be found in [, 2, ¥]. Theorem 1.0 is classical.
Its modern formulation is given in {* Chapter 6]. Theorem 1.5 is a special
case of a more general result concerning canonical models of []]. Near
holomorphy was introduced in {%, !%. Theorem 1.1 is essentially a reformulation
of a special case of [, Main Theorem II]. Theorem 1.6 follows from {'°,
Proposition 3.9], or rather from its proof maodified in a sunitable way. Proposition
1.3 is included in {*®, Theorem 5.2], and Proposition 1.4, as well as its higher-
dimensional version, in ['°, Theorem 4.2] and ['2, Proposition 35.2]. Theorem
2.1 in the special case f="A was first given in {*]. Tts general case, Theorem 2.2,
and Theorem 2.3 were obtained in {7, %. The most general case involving
Hilbert modular forms of integral or half-integral weight is discussed in [!, %3,
in which the papers on this topic published after 1978 are listed. . The connection
of special values with the periods of differential forms is investigated in [*].
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