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TRANSCENDENCE PROBLEMS CONNECTED WITH DRINFELD 
MODULES 

M. WALDSCHMIDT (*) 

During the last few years several remarkable transcendence results concern
ing Drinfeld modules have been proved, mainly by Jing Yu (see the list of refer
ences at the end of this report). We start here by introducing a generalization, 
due to Y. Hellegouarch, of the notion of Drinfeld module. Next we give a short 
survey of some of the recent transcendence results in this context. Finally we 
give a short description of Anderson's /-motives. 

It's a pleasure to thank Grek Anderson, Gilíes Damamme, Ernst Gekeler, 
David Goss, Yves Hellegouarch, Bernard de Mathan and Dinesh Thakur for 
helpful comments on an earlier draft of this paper. The author is also very 
thankful to the organizors of the Silivri Conference, and to Mehpare BUhan 
for her precious help. 

1. GENERALIZED DRINFELD MODULES 

Let k be a commutative field, X —k [t] the ring of polynomials in one variable 
over k,Q~k (t) its quotient field, which is the field of rational functions in one 
variable, and R = k ((1ft)) the field of formal Laurent power series in I ft, 
which is the completion of k for the valuation defined by — deg : each 
z e R, z ^ O can be written in a unique way 

z = ad td + ad_x td~l + ... -h «i t + a0 + + ... 

with a¡ ek, (i < d) and ad 0 ; we define deg z = d; z is said to be monte i f 
ad = 1. 

We are interested in transcendence problems : an element of R is said to be 
rational i f it belongs to 0, algebraic i f it belongs to the algebraic closure Q of Q 
into R, and transcendental otherwise. 

(*) Lecture presented at the International Symposium in honour of Professor Cahit Arf 
in Silivri 1990. 



58 M. WALDSCHMIDT 

Of course, the letters Z, Q, R are chosen in analogy with the classical nota
tions Z, Q and R for the ring of rational integers, the field of rational numbers 
and the field of real numbers. By the way, the torsion subgroup Q*ors of the 
multiplicative group of Q has just two elements, the same number as for the 
multiplicative group Z* of units of % ; here the multiplicative group Z* of Z is 
just k* ; if k is finite with q elements then this group has q — 1 elements. This is 
why congruences modulo 2 in tb.3 complex situation are often replaced by 
congruences modulo q — 1 when one works over (the ring of polynomials of) a 
finite field F„ . 

The special case k = F 9 has been considered by Carlitz already in 1935; the 
main tool here is the Frobenius z^>zq. One can also deal with the field of ration
al functions of a projective irreducible curve over Fq (in place of F ç (f ), which 
corresponds to the projective line P,), but the generalization we are considering 
now (due to Y. Hellegouarch) is of a different kind and works also in zero charac
teristic : we start with any continuous field endomorphism a of R which induces 
the identity on k. Such an endomorphism is produced by substituting to t an 
element c- (t) of R of degree d > 1 : 

a (0 = cdtJ + cd^ td~' + ... (cjek). 

We define d = deg o\ Carlitz situation corresponds to k = F f l , cr (t) = tq and 

For « > 0 and b0, b{ bn in R, we get a /c-linear endomorphism 
p = b0 a 0 - f bl a 1 + . . . + bn a" (with a0 ^ l R , a1 ^ o, o" = a" H

 a a) which sends 
zeR to 

bQz + bx<s(z)+ ... +bnv"(z)zR. 

We write also za for a (z), hence 

z°l = a' (z) and P (z) - b0 z + bx z" + ... + b„ za" . 

Let R {u} be the ring of these endomorphisms. For beR we denote also by 
b the endomorphism of multiplication by b (namely bo°). Since a (bz) = b" o (z) 
we can write a b ~ b" u. Hence R {c} is a twisted ring of polynomials in a, with 
the product given by the rule 

t n \ f m \ m+n / \ 

Our next aim is to define a Z-module structure on R, i.e. a homomorphism 
ZxR-> R, which induces a map (p from Z into the ring of endomorphisms 
of R. We require 
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— that the image of <p be in R {a}, 
— that <p be a &-homomorphism, 
— and that, for MeZ, the constant term of cp (M) be M: 

q> (M) =" Af Q° + jW, a 1 + ... + Af„ a" . 

Definition. A generalized Drinfeld module is a £-homornorphism <p: Z-».K{o-} 
such that <p (a) = a o ° for aek and 

<p(M)^Mo-° mod (R {a} a) for all MeZ. 

Let us write the image of t: 

. <p(i) = f o-0 + Oj o- + ... - f a„a"e.R{(7} ' 

with a„ ^ 0; then « is the rank of 9 . The associated Z-module structure on R 
is given by 

Z X R • £ 
(M,x) • <${M)x. 

When K is a subfield of R containing Q, we say that <p is defined over K if, for 
all MeZ, the coefficients M,- of <p (M) belong to i£ 

Example. I f we set (p (i) — to0 ~ o, we get the (generalized) Carlitz module. 
We shall denote it by y . 

We need now to introduce special functions. Let us denote by R {{&}} the 
•a-adic completion of R {a} . Here is the exponential map : 

Theorem 1 [HI]. Let (p be a generalized Drinfeld module of rank n : 

<p (i) = ra° + o-+ ... + a„cneR{a}. 

There exists a unique element 

e, = <*° + a + ... + 6M a* + ... e R { { a } } 

such that 

<?„ t o° = (p (0 . 

For all Jl/e Z one has e9 M u° — (p (Af) ev . Further, if we set 

[A] *= o* (f) - *, and F„ = [A] a ([A - 1]) ... a*"1 ([1]), (A > 1), 

then Fhbh belongs to Z {a} [â  a„]. Furthermore, if we assume deg a > 2, 
then e,, induces a ^-linear continuous map ev : R—>R such that 

e,9{z) = Z + ^ b h z ° \ 

Example. In the case <p = y (generalized Carlitz module), one gets 
Fkbh = {~\f and 
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e = a 0 | 
Ft F2 

Next we introduce the logarithm. We first set 

a = mi 

and then we define B c R by 

a = max {deg a j , = deg cr 

5 
2 e R ; deg z < 1 — i if (p is of rank n > 1, 

d ~ 1 ) 

z G J? ; deg z < ~ \ if (p is of rank « = 1. 

Theorem 2 [HI], Under the assumption of Theorem 1, there exists a 
unique log 9 e R {{a}} such that 

f log,, = log, (p ( i ) . 

This element log, satisfies 

ev log, = log, e9 = a0 . 

Further, i f we set 

£ A = [ A ] [ A - 1 ] . . . [ 1 J , ( A > 1) 
and 

lo& f = a° + i , a + „ . + c m a " ' + ... 

then L A c A belongs to Z { c r } ^ a j . Furthermore, i f d = deg o- > 2, then log,, 
induces a /c-linear continuous map log 9 : B-* R such that 

log,(z) = z + 2 c / . z , l f t -

Let us restrict now our attention to the special case of the generalized 
Carlitz module y. The exponential is 

a 
e„ = o u  o 

T —' " 

Fi F2 while the logarithm is 

logT = o° + 

In this case a — 0, « = 1, d—q and 

.5 = j z G C ; deg z < 9 

ff - 1 
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We also assume that the characteristic of k does not divide d -— 1 and that c (/) 
is monic. 

Theorem 3 [HI]. There exists %e R{tll(4~n) (defined modulo a multipli
cative constant in k*) such that 

er (n M) = 0 for all MeZ 
and 

eY (x + 7i M) — ey (x) for all MeZ and xeR. 
We now consider some transcendental questions. 

Definition. An element 9 e is said to be a-algebraic (over Q) i f there 
exists a non-zero element MeQ {a} such that MO = 0 . 

This means that the <2-vector space generated by Gff", (n e N), is of finite 
dimension. Of course, an element of R is said to be u-transcendental if it is not 
a-algebraic. When a is the Frobenius then otranscendence is equivalent to 
transcendence over Q. 

Theorem 4 [HI]. Assume deg a > 2 ; assume also that cr (t) is a power of 
t, that the degree n of q> (?) satisfies 1 < n < d, and that 0 is neither a pole of 
di (1 < i < n) nor a zero of a, . Then eT (1) is o-transcendental. 

The proof of Theorem 4 uses an extension of a method due to Wade 
[Wl - 5]. 

2. TRANSCENDENCE RESULTS : HISTORICAL SURVEY 

We take here k = ¥q , Z = [ i ] , 6 = F f l ( f ) , R = Fff ((I/O), and a is the 
Frobenius a (z) = z*7. Carlitz exponential is 

^ ) = 2 ( - 1 ) f t z , ? * / F ' ' ' 

with 

Fh = [h] [h - \]« ... [ I ] * * - 1 and [A] = i * f i - f, 
and Carlitz logarithm is 

log(z) = ] > V / £ A , 
A 5:0 

with £ A = [A] [A — 1] ... [1] . These series define analytic functions on the 
completion C of the algebraic closure R of R; more precisely e (z) is entire in 
C, while log is analytic in 

B=\zeC ; deg z < —-— I . 
( q - i ) 

The functional equation for e (z) is 



62 M. WALDSCHMIDT 

e (tz) = te (z) — e (z)q ; 

its zeroes are {Mn;MeFg [t]} , for some TteC which is uniquely defined 
modulo F* (this means that n11"1 is well defined). Also we have 

n.f 1-^)-' 
These functions were introduced by Carlitz in 1935 [C] . Six years later, 

Wade proved the theorem which corresponds to Hermite-Lindemann's theorem 
on the transcendence of ea and log a : if a e C* « algebraic {over Q = F ?(T')), 
then e (a) is transcendental (over Q) ; consequently i f a e C* R 5 is algebraic, 
then log (a) is transcendental. In particular e (1) (which corresponds to the real 
number 2.71828182...) and TE (period of Carlitz exponential, corresponding to 
3.14159265...) are both transcendental [W3]. 

Shortly afterwards [W2], Wade proved the analog of Gel'fond-Schneider's 
result on the transcendence of a 0 : i f a ^ 0 and p ^ g are algebraic, then 
e (P log (a)) is transcendental. Further transcendence results were also obtained 
by Wade [W3, 4, 5]; for instance the numbers 

60 ' GO CO 

k = \ A = l k=l 

for /• and s rational integers S: 2 with r not a power of p, are all transcendental. 
Wade's method looks like Euler's proof of the irrationality of the real number 
e ; let us consider the transcendence proof of the number 

we start by assuming that e (1) is in Q ; then an easy argument shows that there 
exists a non-zero, polynomial 

A, X«l + A,_, X"'-1 - f ... -|- A0eZ [X] 

with e (1) as a root. Choose a large rational integer p ; the number 

(Aj-l)W 

vanishes; Wade decomposes this number in 1$ + Q$, where 1$ is in Z while 
deg Q» < 0. Of course one deduces / p = Q& — 0. The most difficult part of the 
proof is to show that I & is not congruent to 0 modulo F$ , which yields the 
desired contradiction. 
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i A quite different method of proof, connected with automata theory, has 
been given by Allouche [Al] for several of Wade's results. We give here a sketch 
of proof for the transcendence of 

along the method of Allouche. 

The main tool is a result of Christol, Kamae, Mendes-France and Rauzy : 

a formal power series ^ a „ f " w ' t n coefficients a„ in ¥ q is algebraic over 

Fq (t) if and only i f the set of subsequences 

{n->aqktt+r ; k > 0, 0 < r < qk - 1} 

is finite. Let us write 

^ f \ ( i - - ^ — ) ^ T \ ( i - t Q j - t 

Define also a e F 9 [[1 ft]] by 

a = | | f l 

one readily checks 

' - B ( - ^ - H ( - ^ ) - - ( - ^ r -
hence a is algebraic over Fq (t). On the other hand 

H=0 

where the sequence a («)«so is defined by 

, , CO if n is not of the form E/er (V — 1) , 
( ( — l ) C a r d / i f there exists a finite set / such that '«=£;<=/ (q}— 1). 

The desired result that % is transcendental is reduced to the fact that the set 
of sequences 

{« -> j a (qk n + r) [ ; £ > 0 , 0 < r < ^ — 1} 

is infinite. Now j a (n) I is the characteristic function of the set 
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1 
n e N ; n = ek (qk — 1), sk = 0 or 1, eA = 0 for sufficiently large k ( . 

For each, k ~> 2, we consider the sequence (bk (n))„;>o which is defined by 
bk (ri)= \a(qk n -\- qk — k)\ , One checks that 

bk{n) = 

ak — 1 
0 for 0 < n < " 1, 

q - 1 
qk — 1 

1 i f « = V - 1, 
q - 1 

hence these sequences are pairwise distinct for different values of k. For further 
details we refer to Allouche's paper [Al ] . 

As noticed by Allouche, the remark that the above number a satisfies 
tq a = (tq — t) aq extends to the number 

tiJ - 1 
f « ' + 1 - l 

indeed the following relations hold 

r = i - ^ r n i 

hence ( i 4 1) y = (tq — t) yq , and y is algebraic over F g (i). In fact y 9 " 1 = 
aq~l (1 — I /O 9 • This corrects a misprint in [Da-Hl], which was Allouche's 
starting point. 

In her thesis in 1978 J.M. Geijsel [Gei] developped further the so-called 
Gel'fond-Schneider method and gave also transcendence results on values of 
^-functions. 

In 1983 Jing Yu started his work on Drinfeld's modules. For simplicity we 
describe here the situation in a special case (which corresponds to the projective 
line in place of a more general algebraic curve; see [D], [De-H]). 

Let I be a lattice in C (a finitely generated sub-Z-module of C, whose 
intersection with any disc {zeC; degz< r} is finite). The function 

eL(z) = z I ! 
cceZ. 

is entire (the product is uniformly convergent on every disc), it is F -additive : 
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eL (z, + z2) = eL (z,) + eL (z2) , eL (az) = (z) for o e F ? 1 

and periodic of period lattice L ; hence eL induces an isomorphism of additive 
groups CjL —> C. Since L is a Z-module, the natural Z-module structure of C 
gives rise via eL to another Z-module structure on C: 

eL 

0 L >• C >• C — > - 0 

^ f t 
0 • >- L >• C >- C >• 0 

for aeZ, where 0 £ (a) is the endomorphism of C which yields a commutative 
diagram : 

eL{az) = ®L(a)(eL(z)) . 

It is not difficult to check that for each a e Z, the two functions 

eL (az) and J J (e^ (z) - (7)) 

ye — LIL 
a 

are proportional (they have the same zeroes). Therefore <E>£ (a) is a polynomial 
in CT : 

* i 0 ) = « G ° + ax °" + ••• + an a " » 

of degree n = d deg a, where d is the rank of the Z-module L . 

Let AT be a subfield of C containing Q. The Drinfeld module 0 L is defined 
over K i f at e K for all a e Z and all /. 

Jing Yu stated two conjectures in 1983 [Yl ] , which he solved completely 
three years later [Y4] (a quite different solution was also given independently by 
Dubovitskaia in [Du], using Wade's method of [Wl], assuming the rank is<g) : 
/ / <E>L is a Drinfeld module defined over the algebraic closure Q of Q in C, then 

— each non-zero element of L is transcandental, 

— if a # 0 is algebraic over Q, then eL (a) is transcendental. 

In the case where the rank d of L is 1, the Drinfeld module is isomorphic 
(over Q) to Carlitz module, and the result follows from Wade's work. In [Yl ] , 
Yu proved the second conjecture (and therefore also the first one) in the case 
d < q. In [Y2], he provided a new analog to GelTond-Schneider's theorem for 
a Drinfeld module of rank one : i f and a2 are non zero and algebraic, and if 
they have logarithms /,. and l2 (which means eL (/,-) = a, for / = 1, 2) which are 
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Q-Iinearly independent, then lv and l2 are also g-linearly independent. A version 
of the six exponentials theorem is proved in [Y3] : let <&L be a Drinfeld module 
of rank d which is defined over Q, let xi x2d+x be Q-linearly independent 
elements of C, and let yx , y2 be elements of C which are linearly independent 
over the field KL of endomorphisms of L . Then at least one of the 4d - f 2 numbers 

is transcendental. 

The main paper of this period [Y4] where Jing Yu provides an analog of 
the classical criterion of Schneider-Lang for functions of one variable. This ena
bles him to deduce the expected results corresponding to Hermite-Lindemann and 
Gel'fond-Schneider theorems; for instance he proves the analogs of Schneider's 
results on the transcendence of complex numbers related to elliptic functions. 
As a consequence he obtains the transcendence of the values of the Drinfeld mo
dular function j (see [Gel]) at points which are algebraic and not quadratic. 

In 1988, there was a special year at the Institute for Advanced Study of Prin
ceton devoted to Drinfeld modules, and there, Jing Yu investigated further the 
subject by using methods in several variables together with Anderson's theory 
of motives. His proof [Y5] of the Schneider-Lang criterion in higher dimension 
involves the same interpolation formulae as in the complex cases (which are due 
to F. Gross) or the p-adic case (Ph. Robba). This enables him to obtain a first 
analog of Baker's result, using an idea of Bertrand and Masser. The use of a 
trace argument restricts the final result to the separable closure of Q; another 
approach, based on Schneider's method in several variables, enabled recently 
L. Denis [De] to avoid this restriction for homogeneous linear forms in the 
case of complex multiplication. 

The later works [Y6] and [Y7] of Jing Yu rest on his several dimensional 
Schneider-Lang criterion, combined with abelian /-modules and Hilbert-Blu-
menthal-Drinfeld modules; the most interesting feature of these results is that 
their complex analogs are not yet known : the transcendence theoiy in finite 
characteristic is ahead of the complex one. Before we describe these new 
progresses, we first have to go back half a century ago. 

In 1935, Carlitz had also defined zeta values : 

where n is a positive rational integer, and a runs over the monic elements of Z. 
These values have also a product expansion 

eL(x,yj)t U < * ' < 2 r f + 1, .7= 1,2) 

a 
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2 » = n o - / ' - 0 ) - 1 , 

where p runs over the monic irreducible elements of Z. This product also con
verges for n = 1, and £,(1) can be considered as the analog of Euler constant 

(see [Gol] and [Th4] for connections with gamma functions). Carlitz studied the 
numbers £(/Z)/TE" for n > 1, n = 0 mod (p ~ 1), and proved that they are 
algebraic : like in Euler's case for the values of the Riemann zeta function at 
even positive integers, these numbers are essentially quotient of a "Bernouilli 
number" by a "factorial". 

As noticed by Anderson and Thakur [A-Th], Carlitz and Wade knew al
ready enough to prove the transcendence of t, (n), (and also of 'C, (n)Jn if q ^ 2), 
for n = 1, and more generally for n a power of p; but this remained considered 
as an open problem until recently. Anderson and Thakur express \ (ri) essen
tially as a coordinate of logarithm of an algebraic point (both at infinity and 
v-adica[Iy), thus reducing the transcendence question to analogues of H^niite-
Lindemann, Gel'fond-Schneider-Mahler-Lang results, which were subsequently 
proved by Jing Yu. 

In 1988, Jing Yu [Y6] established the transcendence of t,{n) for all n > 1, 
and the transcendence of ^(n)fn" for all positive n ^ 0 mod (p ~ 1). 

D. Goss has been able to define t, (s) for s in a much larger topological space, 
in particular for s a negative integer, and to interpolate these values v-adically 
for v e Spec R. Jing Yu also showed that *£„ (n) is transcendental for n e Z, 
n > 0, n ^ 0 mod (q — 1) (this value vanishes i f // = 0 mod (q — 1)). Further
more the transcendence results extend to those zeta functions arising from 
totally real abelian extensions (see [Gol]). 

Wade's result on the transcendence of % yields the transcendence of 
£ (q — 1); Thakur [Th2] and Damamrne and Hellegouarch [Da-HI] had extended 
this proof to (s) for s<q2, and Damamrne [Da2] succeeded to develop Wade's 
method so as to obtain the transcendence of ^ (n) for all n > 0. This proof is quite 
different from Jing Yu's one, and should yield further results like the tran
scendence of values of certain /,-functions (see [Da-H2]). 

There are a few effective results connected with these qualitative statements. 
In particular Cherif and de Mathan [Chi,2], [Ch-M] have surprisingly good 
estimates for the diophantine approximation of ^(1) for q~2, using a method 
which is inspired by Apery's proof of the irrationality of Z,Q (3). Notice that 
for q = 2, the number (n) vT" is rational for all positive rational integer n, and 
the conjectures concerning n ^ 0 mod (q — 1) disappear. 
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Finally, we mention a result of algebraic independence due to A. Thiery [T], 
namely the analog of the complex theorem due to Chudnovsky which yields the 
transcendence of r ( l / 4 ) and T(l /3) . It involves the analog of Weierstrass zeta 
function, introduced by Gekeler [Ge 3,4] and associated with elliptic integrals 
of second kind. 

'S t-

In this last lecture we explain briefly what are Anderson's i-motives [A], and 
we present further transcendence results. Finally we suggest several directions 
for further researches. 

As in section 2, we denote by Z the ring F g [f] of polnomiais in one vari
able over the finite field F 9 , by Q the field F g (i) of rational functions in /, by 
R its completion F^ ((1/0), a n d hy C the completion of an algebraic closure R 
of R. 

We start with a special case which is called the Cavlitz module of dimension 
n : this is a homomorphism of A-algebras 

<E> : Z -> End (C) , 

which is therefore determined by the image of t: 

*xn + x\ 

In other words <&(/) = tI-\-N + Ex, where 

0 1 . . . 0 s 

xï 0 
1 

. . . 0 

and E = 
0 . . . 0 

1 . . . 0 

Hence we replace the ring C{%), which occured in the one dimensional case, by 
the ring C„{T} of polynomials in x with coefficients in MnXn(Z), where 

in + n 

2 ' " 5>* -2 2>' X", 
,¡=0 I \j"=0 / 0 \t+j=h 

where i*,- and Q} are n X n matrices. Notice that for a n x n matrix M with 

entries mH , the entries of the matrix MT' are mf, , 
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More generally, we define (*) a t-moduh of dimension « as a homomorphism 
of /c-algebras <E> : Z - » C„ {x} such that <E> (à) = a T° for aeFq (v/here T° is the 
identity) and 

with g;£ MnX!l(C), and £•„ is upper triangular with diagonal (t,...,t). 

The exponential map associated to <& is the unique analytic additive map 
e® such that 

* , (g 0 z) = a>(i)e.(z), ( zeC) , 

which means that the following diagram is commutative (the left vertical arrow 
is multiplication by gQ) : 

C > C" 

go I m 
Y y 

C" >• C 

The Taylor expansion of this function at the origin is 
CO 

/i = l 

for some pA e M„ x „ (C). We shall assume that e 9 is surjective (this property holds 
at least for Carlitz modules of any dimension). We also assume that the coeffi
cients gj, (0 < i < d) are in Q; hence the matrices p/( , (h > 1) have algebraic 
entries. 

The logarithmic map is a local inverse log^ to e® : 

log* o (z) log^ (z) = z, 

and satisfies the functional equation 

logo, ( $ (t)z)=g0\ogqt{z). 

Example. For the Carlitz module of dimension «, one can compute 
explicitely the components of e9 and log^ . The most interesting ones are on one 
side the first component of the value of e® at a point of which all coordinates 
but the first one vanish : 

(*) The definition varies slightly from one text to another. 
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CO 

( 
X 

0 ) 
.if 

0 

and on the other side the last component of the value of log^ at a point of which 
all coordinates but the last one vanish : 

log 0 ( 
0 

0 
x ) 

as far as the exponential map is concerned, one can notice the similarity with 
Carlitz functions 

which have ressemblance with classical cylinder (Bessel) functions and whose 
transcendence properties had been studied by G.M. Geijsel [Gei]. 

From his criterion of Schneider-Lang in several dimensions (cartesian prod-

Q as above, when u e C" is such that (u) e Q" , each non-zero coordinate 
of u is transcendental. Recently (Luminy, June 1990), he announced a result which 
describes all linear dependence relations with coefficients in Q between coordi
nates of such a point u. 

Here also the most interesting coordinate of a "logarithm" u (i.e. of a point 
a such that (u) E Q") is always the last one. Let us denote by 3?^ c c the 
g-vector space of so-called "last coordinate logarithms", namely 

^ , = { / e C ; there exists log=(log I log„) e C" with e* (log) 6 Q" and log,, = / } . 

Then if /), . . . , /„ are idrlmeariy independent elements of J?®, it follows that 
1, / j / „ are CMinearly independent. Here, denotes the ring of endomorphisms 
of O, which is a finite extension of Q. 

ucts), Jing Yu deduces the transcendence of 2J/LO X9 /L" for n > 1 and x e Q, 

as well as of xq'/F". More generally, for a Drinfeld module defined over 
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From the work of Anderson and Thakur [A-Th], it follows that the value 
t, (n) of Carlitz's zeia function is a last coordinate logarithm. Therefore a cor
ollary of Jing Yu's results is the transcendence of £, («) for all n > 1. 

The main point in the proof of Jing Yu is a so-called zero estimate with mul
tiplicities (analog of results in zero characteristic by Masser, Wustholz and Pbi-
lippon using Nesterenko's work). Let F = Z y{ 4- ••• ~h Z ym be a finitely 
generated module in C; for S>0 denote by T(S) the set of a1yl -\-... -|- amym 

with cij e Z satisfying deg a} < S, (1 < j < m) (this is a finite set with at most 
q"'s elements). We ask whether there exists a non-zero polynomial P in 
C [Xx ,...,X„], of degree < D, which vanishes on F(S)(*). Obviously i f T(S) has 
less than ( D + n ) elements, then indeed such a polynomial exists, as we find its 
coefficients by solving a system of linear equations where the number of un
knowns is less than the number of equations. More generally, if V is a proper 

C") vector subspace of C" such that (r(S) + V)jV has less than j Q d M W ) 

elements, by considering the projection C" -> C"/V, one gets a homogeneous 
linear system of equations which has a non trivial solution. In its simplest 
version, the zero estimates states that these sufficient conditions for the exist
ence of P ¥= 0 are also necessary : more precisely there exists a constant c > 0 
(depending only on the Drinfeld module (C", <£)) such that, i f a non-zero 
polynomial P as above does exist, then there is an integer s > 1 and a subspace 
V of C" stable under the action of ts, and such that 

This zero estimate is useful for several problems; it is an important tool in 
connection with Gel'fond's method for algebraic independence (in the complex 
case this is in fact where the zero estimates appeared for the first time). Here 
one needs a criterion corresponding to the following complex statement (due to 
Gel'fond) : i f 9 is a complex number such that for all sufficiently large N 
(say N > 7Y0) there is a non-zero polynomial PN e Z[X] of degree < N and 
coefficients of absolute values < eN satisfying | PN(Q) | < e~~6N\ then PN(Q) = 0 
for all 7Y > NQ (hence 0 is algebraic). The corresponding criterion for Drinfeld 
modules is given by A. Thiery in [T] and has been extended to several variables 
by P. Philippon. 

There is another very promising approach to the problem of algebraic inde
pendence of logarithms, with the a conjecture due to G. Anderson, the "product 
principle", which states that the product of two last coordinates logarithms 
l^eJ^^ and / 2e~§? a i ( is again a last coordinate logarithm l3eL$3 for some 

(*) For simplicity we do not consider multiplicities here; the problem is then much 
aeasier. 
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suitable 0 3 . In the case of periods (i.e. logarithms of 0), the principle is true 
and the essential points of the proof can be found in [A]. 

As suggested by Anderson, lione can expect that by making use of this 
principle, one should be able to prove results in the spirit of Grothendieck's 
conjecture in zero characteristic which states that the period matrix of an abelian 
variety V over Q should generate over Q a field of transcendence degree equal 
to the dimension of the Mumford Tate group of V". 

One can hope that this work of Anderson and Jing Yu will produce the al
gebraic independence of numbers like (3) and % in the case of the Cariitz module 
of dimension 1. In the complex situation, such a statement is still far out of range 
of the current methods. It may be that the proof of Schanuel's conjecture will 
achieved earlier in the case of finite characteristic than for the complex field. 

The question of diophantine approximation to transcendental numbers 
connected with Drinfeld modules is almost completely open; apart from Geij-
sel's [Gei] and Bundschuh's [B] early transcendence measures, and of the work 
of Cherif and de Mathan, almost nothing is known. Will effective results, like 
lower bounds for linear combinations of logarithms [De], have the same interest 
in finite characteristic as they have in the complex or /j-adic case? 

Another remark is that the known transcendence results for elliptic integ
rals of the third kind do not have analog for Drinfeld modules. 

Of course the main challenge is now to prove in the complex case the 
statements which correspond to Jing Yu's results, for instance the transcendence 
of Euler's constant, and of numbers like t,(2n + 1), £(2iz + l)/n:'" and 
exp(^(2« - f 1)/JI'") for integers n > I and meZ. Kurokawa conjectures on the 
other hand for instance that c, (3)/TE2 is the logarithm of an algebraic number, 
but there is no evidence yet on either side. 

References. We give here a short list of references, starting with papers 
where the main purpose is to establish transcendence results; the second list is 
a selection of some papers devoted to Drinfeld modules. In June 1991 a con
ference on Drinfield modules will take place at Ohio State University; the 
proceedings will be published and this will probably be the best reference for 
some time on this subject. 
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