A NOTE ON THE UNIT GROUP OF $Z S_{4}$

A. YILMAZ

1. INTRODUCTION

Hughes and Pearson [${ }^{3}$] characterized the group $V=V\left(Z S_{3}\right)$ of units of augmentation 1 in $Z S_{3}$ by showing that V is isomorphic to the subgroup of $G L(2, Z)$ consisting of matrices the column sums of which are 1 modulo 3 . Their approach was to construct a 6×6 matrix from a complete set of irreducible representations of S_{3}; then invert the matrix, and then solve a system of six linear congruences modulo 6 . The same technique was used by Milies $\left[{ }^{4}\right]$ to describe units in $Z D_{4}$; by Allen and Hobby [${ }^{1}$] and Yılmaz [${ }^{5}$] to describe units in $Z A_{4}$ and $Z S_{4}$, respectively.

Allen and Hobby [²] have used a different method to obtain a new description of $V\left(Z S_{3}\right)$ as the group of all doubly stochastic matrices in $G L(3, Z)$. This method has the advantage of exploiting the fact that a convex combination of permutation matrices is always doubly stochastic and it will not be required to invert a matrix or to solve any system of a lot of linear congruences. In this note also we use this important fact to obtain a characterization of the group $V=V\left(Z S_{4}\right)$ by doubly stochastic matrices in $G L(4, Z)$.

2. CONSTRUCTION

We write $S_{4}=<\gamma=(12), \beta=(234) \mid \gamma^{2}=\beta^{3}=1 ; \gamma \beta^{-1}=(\beta \gamma)^{-1}>$ and agree to list the elements g_{i} in S_{4} in the following order :

$$
\begin{aligned}
S_{4}= & \left\{g_{1}, g_{2}, \ldots, g_{24}\right\} \\
= & \{[(1),(12)(34),(13)(24),(14)(23)],[(123),(142),(134),(243)] \\
& {[(132),(124),(143),(234)],[(12),(34),(1324),(1423)] } \\
& {[(13),(24),(1234),(1432)],[(14),(23),(1243),(1342)]\} } \\
= & \left\{K_{4}, g_{5} K_{4}, g_{9} K_{4}, g_{13} K_{4}, g_{17} K_{4}, g_{22} K_{4}\right\}
\end{aligned}
$$

which is also presented as cosets of S_{4} modulo K_{4} where K_{4} is the Klein-4 subgroup of S_{4}. Represent S_{4} by

$$
\rho(\gamma)=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad, \quad \rho(\beta)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

and extend ρ linearly to $Z S_{4}$. For $\alpha=\sum_{i=1}^{24} a_{i} g_{i} \in Z S_{4}$ it is clear that

$$
\rho(\alpha)=X=\left[\begin{array}{llll}
\mathrm{A}_{1} & \mathrm{~A}_{2} & \mathrm{~A}_{3} & \mathrm{~A}_{4} \\
\mathrm{~A}_{5} & \mathrm{~A}_{6} & \mathrm{~A}_{7} & \mathrm{~A}_{8} \\
\mathrm{~A}_{9} & \mathrm{~A}_{10} & \mathrm{~A}_{11} & \mathrm{~A}_{12} \\
\mathrm{~A}_{13} & \mathrm{~A}_{14} & \mathrm{~A}_{15} & \mathrm{~A}_{16}
\end{array}\right]
$$

where

$$
\begin{align*}
& \mathrm{A}_{1}=a_{1}+a_{8}+a_{12}+a_{14}+a_{18}+a_{22}, \\
& \mathrm{~A}_{2}=a_{2}+a_{6}+a_{9}+a_{13}+a_{20}+a_{24}, \\
& \mathrm{~A}_{3}=a_{3}+a_{5}+a_{11}+a_{16}+a_{17}+a_{23}, \\
& \mathrm{~A}_{4}=a_{4}+a_{7}+a_{10}+a_{15}+a_{19}+a_{21}, \\
& A_{5}=a_{2}+a_{5}+a_{10}+a_{13}+a_{19}+a_{23}, \\
& A_{6}=a_{1}+a_{7}+a_{11}+a_{14}+a_{17}+a_{21}, \\
& A_{7}=a_{4}+a_{5}+a_{9}+a_{15}+a_{20}+a_{22}, \\
& A_{8}=a_{3}+a_{6}+a_{12}+a_{16}+a_{18}+a_{24}, \tag{1}\\
& A_{9}=a_{3}+a_{7}+a_{9}+a_{15}+a_{17}+a_{24}, \\
& A_{10}=a_{4}+a_{5}+a_{12}+a_{16}+a_{19}+a_{22}, \\
& A_{11}=a_{1}+a_{6}+a_{10}+a_{13}+a_{18}+a_{21}, \\
& A_{12}=a_{2}+a_{8}+a_{11}+a_{14}+a_{20}+a_{23}, \\
& A_{13}=a_{4}+a_{6}+a_{11}+a_{16}+a_{20}+a_{21}, \\
& A_{14}=a_{3}+a_{8}+a_{10}+a_{15}+a_{18}+a_{23} . \\
& A_{15}=a_{2}+a_{7}+a_{12}+a_{14}+a_{19}+a_{24}, \\
& A_{16}=a_{1}+a_{5}+a_{9}+a_{13}+a_{17}+a_{22},
\end{align*}
$$

and if α is a unit of augmentation 1 , then $\rho(\alpha)$ is a doubly stochastic matrix in $G L(4, Z)$. Hence $\rho(V)$ is a subgroup of the group of doubly stochastic matrices in $G L(4, Z)$.

Whenever $M \in G L(4, Z)$ we agree that $t_{i}=t_{i}(M)$ will denote the sum (or pseudotrace) of the four entries in M which occur in the locations where the permutation matrix $\rho\left(g_{i}\right)$ has l's. We now form the six sums from the coefficients of α; namely,

$$
\begin{array}{ll}
s_{1}=a_{1}+a_{2}+a_{3}+a_{4} & s_{4}=a_{13}+a_{14}+a_{15}+a_{16} \\
s_{2}=a_{5}+a_{6}+a_{7}+a_{8} & s_{5}=a_{17}+a_{18}+a_{19}+a_{20} \\
s_{3}=a_{9}+a_{10}+a_{11}+a_{12} & s_{6}=a_{21}+a_{22}+a_{23}+a_{24}
\end{array}
$$

which correspond to the respective six cosets of S_{4} modulo K_{4}, and further, form the sums $\sigma_{0}=s_{1}+s_{2}+s_{3}$ and $\sigma_{1}=s_{4}+s_{5}+s_{6}$ corresponding to the cosets of S_{4} modulo A_{4}. We then easily write down the following equalities from (1) for a matrix $M \in \mathrm{p}\left(V Z S_{4}\right)$:

$$
t_{i}=4 a_{i}+ \begin{cases}\sigma_{0}-s_{1}+t_{i}^{\prime \prime} & \text { for } \quad i=1,2,3,4 \tag{2}\\ \sigma_{0}-s_{2}+i_{i}^{\prime \prime} & \text { for } \quad i=5,6,7,8 \\ \sigma_{0}-s_{3}+t_{i}^{\prime \prime} & \text { for } \quad i=9,10,11,12 \\ \sigma_{1}-s_{4}+t_{i}^{\prime} & \text { for } \quad i=13,14,15,16 \\ \sigma_{1}-s_{5}+t_{i}^{\prime} & \text { for } \quad i=17,18,19,20 \\ \sigma_{1}-s_{6}+t_{i}^{\prime} & \text { for } \quad i=21,22,23,24\end{cases}
$$

where $t_{i}^{\prime}, t_{i}^{\prime \prime}$ are the corresponding pseudo-traces of the matrices $X^{\prime}, X^{\prime \prime}$ respectively, which are the components of X in (1) decomposed as

$$
\begin{equation*}
\mathrm{p}(\alpha)=X=X^{\prime}+X^{g} \tag{3}
\end{equation*}
$$

so that each entry of X^{\prime} is the sum of the first three summands of the associated entry of X while those of $X^{\prime \prime}$ are the sums of the last three. Observe that this decomposition of X permits us to write $t_{i}=t_{i}^{\prime}+t_{i}^{\prime \prime}$, and $t_{i}^{\prime \prime}(i=1, \ldots, 12)$ and $t_{i}^{\prime}(i=13, \ldots, 24)$ are always even numbers. Moreover, X^{\prime} has row sums $=$ column sums $=\sigma_{0}$ and X^{n} has row sums $=$ column sums $=\sigma_{1}$.

We use the equations

$$
a_{i}= \begin{cases}{\left[\left(s_{1}-\sigma_{0}\right)+t_{i}^{\prime}\right] / 4} & \text { for } \quad i=1,2,3,4 \tag{4}\\ {\left[\left(s_{2}-\sigma_{0}\right)+t_{i}^{\prime}\right] / 4} & \text { for } \quad i=5,6,7,8 \\ {\left[\left(s_{3}-\sigma_{0}\right)+t_{i}^{\prime}\right] / 4} & \text { for } \quad i=9,10,11,12 \\ {\left[\left(s_{4}-\sigma_{1}\right)+t_{i}^{\prime \prime}\right] / 4} & \text { for } \quad i=13,14,15,16 \\ {\left[\left(s_{5}-\sigma_{3}\right)+t_{i}^{\prime \prime}\right] / 4} & \text { for } \quad i=17,18,19,20 \\ {\left[\left(s_{6}-\sigma_{1}\right)+t_{i}^{\prime \prime}\right] / 4} & \text { for } \quad i=21,22,23,24\end{cases}
$$

derived from (2) to obtain coefficients a_{i} from M and then associate with M the group ring element

$$
\begin{equation*}
\alpha_{M}=\sum_{i=1}^{24} a_{i} g_{i} \in Z S_{4} \tag{5}
\end{equation*}
$$

It is obvious that an arbitrary matrix $M \in G L(4, Z)$ may produce coefficients a_{i} which are not integers. We can easily check that if $\alpha \in V\left(Z S_{4}\right)$ and $M=\mathrm{p}(\alpha)$, then the group ring element α_{M} determined by equations (4) has integer coefficients.

3. RESULT

Theorem. Let $M=\left(m_{i j}\right)$ be a doubly stochastic matrix in $G L(4, Z)$ and α_{M}, the group ring element (5) with coefficients defined by (4). Then $\alpha_{M} \in Z S_{4}, \mathrm{p}\left(\alpha_{M}\right)=M$ and the group $V\left(Z S_{4}\right)$ is isomorphic to the group of doubly stochastic matrices in $G L(4, Z)$.

Proof. The homomorphism $\mu: Z S_{4} \rightarrow Z\left[S_{4} / K_{4}\right] \cong Z S_{3}$ given by

$$
\begin{align*}
\mu\left(\sum_{i=1}^{24} a_{i} g_{i}\right) & =\sum_{i=1}^{24} a_{i}\left(g_{i} K_{4}\right) \tag{6}\\
& =s_{1}\left(g_{1} K_{4}\right)+s_{2}\left(g_{5} K_{4}\right)+s_{3}\left(g_{9} K_{4}\right)+s_{4}\left(g_{13} K_{4}\right)+ \\
& +s_{5}\left(g_{17} K_{4}\right)+s_{6}\left(g_{22} K_{4}\right)
\end{align*}
$$

maps units in $Z S_{4}$ to units $Z S_{3}$ and $V\left(Z S_{3}\right)$ is isomorphic to the group of all doubly stochastic matrices in $G L(3, Z)\left[^{2}\right]$. Therefore, if $\alpha \in V\left(Z S_{4}\right)$ then $\mu(\alpha) \in V\left(Z S_{3}\right)$ and hence $\sum_{i=1}^{6} s_{i}=1$. On the other hand, the homomorphism $\lambda: Z S_{4} \rightarrow Z\left[S_{4} / A_{4}\right] \cong Z<x>$ with $x^{2}=1$, given by $\lambda\left(\sum_{i=1}^{24} a_{i} g_{i}\right)=\sigma_{0}\left(g_{1} A_{4}\right)+\sigma_{1}\left(g_{13} A_{4}\right)$ maps units in $Z S_{4}$ to units in $\left.Z<x\right\rangle$ which has only trivial units. So, if $\alpha \in V\left(Z S_{4}\right)$ then $\lambda(\alpha)$ has coefficients $\sigma_{0}=1, \sigma_{1}=0$ or $\sigma_{0}=0, \sigma_{1}=1$ since $\sigma_{0}+\sigma_{1}=1$. Accordingly, in the decomposition $\mathrm{p}(\alpha)=X=X^{\prime}+X^{\prime \prime}$ in (3) we have that one of X^{\prime} and $X^{\prime \prime}$ is always doubly stochastic while the other is always doubly zero (row sums $=$ column sums $=0$) whenever $\alpha \in V$. Observe that X^{\prime} in (3) is a combination of matrices in $\mathrm{p}\left(A_{4}\right)$ and $X^{\prime \prime}$ is a combination of the remaining twelve odd permutation matrices. Hence, for any $X \in \mathrm{p}(V)$, if $|X|=1$, then $\sigma_{0}=1, \sigma_{1}=0$ and if $|X|=-1$, then $\sigma_{0}=0, \sigma_{1}=1$, and that component X^{\prime} or $X^{\prime \prime}$ of X which has $\sigma_{i}=1(i=0,1)$ is doubly stochastic while the other is doubly zero.

We now decompose a doubly stochastic matrix $M \in G L(4, Z)$ as $M=M^{\prime}+M^{n}$ so that, if $|M|=1$, then M^{\prime} is doubly stochastic ($\sigma_{0}=1, \sigma_{1}=0$) and if $|M|=-1$ then $M^{\prime \prime}$ is doubly stochastic ($\mathrm{o}_{0}=0, \sigma_{1}=1$), the other component being doubly zero in each case. In this way each pseudo-trace t_{l} of M can be
written $t_{i}=t_{i}^{\prime}+t_{i}^{\prime \prime}$ where t_{i}^{\prime} and $t_{i}^{\prime \prime}$ are the corresponding pseudo-traces of M^{\prime} and $M^{\prime \prime}$ resp.. Further, among many possible decompositions of M we must choose the one which has $t_{i}^{\prime \prime}(i=1, \ldots, 12)$ and $t_{i}^{\prime}(i=13, \ldots, 24)$ even integers; so that the congruences

$$
\begin{gather*}
t_{i}^{\prime} \equiv\left\{\begin{array}{lll}
\sigma_{0}-s_{1} & (\bmod 4) & \text { for } i=1, \ldots, 4 \\
\sigma_{0}-s_{2} & (\bmod 4) & \text { for } i=5, \ldots, 8 \\
\sigma_{0}-s_{3} & (\bmod 4) & \text { for } i=9, \ldots, 12
\end{array}\right. \\
t_{i}^{\prime} \cong\left\{\begin{array}{lll}
\sigma_{1}-s_{4} & (\bmod 4) & \text { for } i=13, \ldots, 16 \\
\sigma_{1}-s_{5} & (\bmod 4) & \text { for } i=17, \ldots, 20 \\
\sigma_{1}-s_{6} & (\bmod 4) & \text { for } i=21, \ldots, 24
\end{array}\right. \tag{7}
\end{gather*}
$$

hold, which ensures that the numerators in (4) are multiples of 4 . Thus the sums $\sigma_{0}, \sigma_{1}^{\prime}, t_{i}^{\prime}, t_{i}^{\prime \prime} \mathrm{in}$ equations (4) are uniquely determined by M. The only sums to be determined in (4) are the $s_{i}(i=1, \ldots, 6)$. We know that $\mu\left(V\left(Z S_{4}\right)\right)=V\left(Z S_{3}\right)$, and the image of $V\left(Z S_{3}\right)$ under p is the reduced doubly stochastic matrix

$$
\left[\begin{array}{ccc|c}
s_{1}+s_{6} & s_{3}+s_{4} & s_{2}+s_{5} & 0 \tag{8}\\
s_{2}+s_{4} & s_{1}+s_{5} & s_{3}+s_{6} & 0 \\
s_{3}+s_{5} & s_{2}+s_{6} & s_{1}+s_{4} & 0 \\
\hline 0 & 0 & 0 & \Sigma s_{i}
\end{array}\right]=\left[\left.\frac{R}{0} \right\rvert\, \frac{0}{1}\right]
$$

the first constituent of which contains as its entries the sums of $s_{i} s$ of M in pairs. Thus to determine the s_{i} 's of M, we first reduce M to its form (8); so that 3×3 matrix R will again be doubly stochastic in $G L(3, Z)$, which represents a unit of augmentation 1 in $Z S_{3}$. Because σ_{0} and σ_{1} are already known from M, the six pseudo-traces

$$
\bar{t}_{i}= \begin{cases}3 s_{i}+\sigma_{1} & \text { for } \quad i=1,2,3 \tag{9}\\ 3 s_{i}+\sigma_{0} & \text { for } \quad i=4,5,6\end{cases}
$$

of R will give the $s_{i}(i=1, \ldots, 6)$ of M. Note that at least one entry in each row or column of M must be an odd integer; hence it is always possible to reduce M to the form (8). Further, among several possible reduced forms we choose the one with $|R|=|M|$ and which allows all solutions s_{i} in (9) in Z.

It can be observed from (1) that the (i, j)-entry of $\mathrm{p}\left(\alpha_{M}\right)$ is of the form $\mathrm{p}\left(\alpha_{M}\right)_{i j}=a_{k}+a_{l}+a_{m}+a_{u}+a_{v}+a_{w}$ with $k, l, m \in\{1, \ldots, 12)$ and $u, v, w \in\{13, \ldots, 24\}$. On the other hand,

$$
\begin{aligned}
& \begin{array}{l}
t_{k}+t_{l}+t_{m}+t_{u}+t_{v}+t_{w}=4\left(a_{k}+a_{l}+a_{m}+a_{u}+a_{v}+a_{w}\right)+2 \sum_{r=1}^{6} s_{r}+ \\
\quad+t_{k}^{\prime \prime}+t_{l}^{\prime \prime}+t_{m}^{\prime \prime}+t_{u}^{\prime}+t_{v}^{\prime}+t_{w}^{\prime}
\end{array} \\
& =4 \cdot \rho\left(\alpha_{M}\right)_{i j}+2+2\left[3 . \rho\left(\alpha_{M}\right)_{i j}+\Sigma a_{r}\right] \text { with } r \notin\{k, l, m, u, v, w\} \\
& =10 \cdot \mathrm{p}\left(\alpha_{M}\right)_{i j}+2+2\left[1-\mathrm{p}\left(\alpha_{M}\right)_{i j}\right], \text { since } \sum_{r=1}^{24} a_{r}=1 \\
& =8 \cdot \rho\left(\alpha_{M}\right)_{i j}+4 .
\end{aligned}
$$

Hence $\left.\mathrm{p}\left(\alpha_{M}\right)_{i j}=\left[t_{k}+t_{l}+t_{m}+t_{u}+t_{y}+t_{w}\right)-4\right] / 8$ where each pseudo-trace includes the (i, j)-entry while the remaining summands in these pseudo-traces are the entries which he outside the i th row $-j$ th column. Furthermore, since M has row sums $=1$, we can write

$$
t_{k}+t_{l}+t_{m}+t_{u}+t_{v}+t_{w}=7 m_{i j}+\left(1-m_{i j_{1}}-m_{i_{\mathrm{j}}}-m_{i j_{3}}\right)+4
$$

where j_{1}, j_{2} and j_{3} are the indices of the columns other than the $j^{\text {th }}$. Therefore,

$$
t_{k}+t_{l}+t_{m}+t_{u}+t_{v}+t_{w}=8 m_{i j}+4+1-\left(\sum_{r=1}^{3} m_{i j r}+m_{i j}\right)=8 m_{i j}+4
$$

and it follows that $\rho\left(\alpha_{M}\right)_{l j}=m_{i j}$, and $\mathrm{p}\left(\alpha_{M}\right)=M$.
Finally, since $\mathrm{p}(\alpha)=I$ if and only if $\alpha=1$, the homomorphism ρ restricted to V is an isomorphism of $V\left(Z S_{4}\right)$ onto the group of doubly stochastic matrices in $G L(4, Z)$, and the proof of the theorem is complete.

4. AN EXAMPLE

We give now an example which illustrates how the proof of the theorem applies to the doubly stochastic matrix

$$
M=\left[\begin{array}{rrrr}
0 & 1 & -1 & 1 \\
24 & -8 & -3 & -12 \\
6 & -1 & -2 & -2 \\
-29 & 9 & 7 & 14
\end{array}\right] \in G L(4, Z)
$$

Since $|M|=1, M$ has $\sigma_{0}=1, \sigma_{1}=0$ and the reduced form (8) of M may be achieved by the following steps:

$$
\begin{aligned}
M & \rightarrow\left[\begin{array}{rrrr}
0 & 1 & -1 & 1 \\
24 & 4 & -15 & 0 \\
6 & 1 & -4 & 0 \\
-29 & -5 & 21 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
24 & 4 & -15 & 0 \\
6 & 1 & -4 & 0 \\
-29 & -5 & 21 & 0
\end{array}\right] \rightarrow \\
& \rightarrow\left[\begin{array}{rrrr}
24 & 4 & -15 & 0 \\
6 & 1 & -4 & 0 \\
-29 & -5 & 21 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
6 & 1 & -4 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
6 & -4 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow \\
& \rightarrow\left[\begin{array}{rrrr}
6 & -4 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
3 & -7 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
3 & -7 & 4 \\
1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right] \rightarrow \\
& \rightarrow\left[\begin{array}{rrrr}
3 & -7 & 4 & 0 \\
-2 & 8 & -3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
3 & -6 & 4 & 0 \\
-2 & 6 & -3 \\
0 & 1 & 0 \\
0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{r|l}
R & 0 \\
\hdashline 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Now, R has $\bar{t}_{1}=9, \bar{t}_{2}=3, \bar{t}_{3}=-9, \bar{t}_{4}=-8, \bar{t}_{5}=10, \bar{t}_{6}=1$ and so, M has $s_{1}=3, s_{2}=1, s_{3}=-3, s_{4}=-3, s_{5}=3, s_{6}=0$ from (9). The decomposition of M is

$$
M=M^{\prime}+M^{y}=\left[\begin{array}{rrrr}
0 & 4 & -1 & -2 \\
12 & 4 & -3 & -12 \\
3 & 5 & -2 & -5 \\
-14 & -12 & 7 & 20
\end{array}\right]+\left[\begin{array}{rrrr}
0 & -3 & 0 & 3 \\
12 & -12 & 0 & 0 \\
3 & -6 & 0 & 3 \\
-15 & 21 & 0 & -6
\end{array}\right]
$$

and the required pseudo-traces are

$$
\begin{aligned}
& \left\{t_{1}^{\prime}, \ldots, t_{12}^{\prime}\right\}=\{22,18,-22,-14,36,-24,12,-20,24,-4,-16,0\} \\
& \left\{t_{13}^{\prime \prime}, \ldots, t_{24}^{\prime \prime}\right\}=\{3,-9,27,-21,-15,21,9,-15,-24,-12,36,0\}
\end{aligned}
$$

Hence (4) gives the coefficients of $\alpha_{M} \in V$ as

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots, a_{24}\right)= \\
& =(6,5,-5,-3,9,-6,3,-5,5,-2,-5,-1,0,-3,6,-6,-3,6,3,-3,-6,-3,9,0) .
\end{aligned}
$$

The theorem implies that $\mathrm{p}\left(\alpha_{M}\right)=M$ and the same process applied to $M^{-1}=\mathrm{p}\left(\alpha_{M}^{-1}\right)$ determines the coefficients of α_{M}^{-1}.

REFERENCES
['] ALLEN, P.J. and : A characterization of units in $Z A_{4}$, J. Algebra, 66 (1980), HOBBY, C. 534-543.
[²] ALLEN, P.J. and : A note on the unit group of $Z S_{3}$, Proc. Amer. Math. Soc., 99 HOBBY, C. (1987), 9-14.
$\left[^{2}\right]$ HUGHES, I. and : The group of units of the integral group ring $Z S_{3}$, Canad. PEARSON, K.R. Math. Bull., 15 (1972), 529-534.
[${ }^{4} \mathrm{I}$ MILIES, C . \quad The units of the integral group ring $Z D_{4}$, Bol. Soc. Brasil. Mat., 4 (1972), 85-92.
['] YILMAZ, A. \quad A characterization of units in $Z S_{1}$, Hacettepe Bull. Nat. Sci. Eng., 14 (1985), 41-52

DEPARTMENT OF MATHEMATICS
HACETTEPE UNIVERSITY
BEYTEPE-ANKARA/TURKEY

