A NOTE ON THE UNIT GROUP OF ZS_4

A. YILMAZ

1. INTRODUCTION

Hughes and Pearson [³] characterized the group $V = V(ZS_3)$ of units of augmentation 1 in ZS_3 by showing that V is isomorphic to the subgroup of GL(2, Z) consisting of matrices the column sums of which are 1 modulo 3. Their approach was to construct a 6×6 matrix from a complete set of irreducible representations of S_3 ; then invert the matrix, and then solve a system of six linear congruences modulo 6. The same technique was used by Milies [⁴] to describe units in ZD_4 ; by Allen and Hobby [¹] and Yılmaz [⁵] to describe units in ZA_4 and ZS_4 , respectively.

Allen and Hobby [²] have used a different method to obtain a new description of $V(ZS_3)$ as the group of all doubly stochastic matrices in GL(3, Z). This method has the advantage of exploiting the fact that a convex combination of permutation matrices is always doubly stochastic and it will not be required to invert a matrix or to solve any system of a lot of linear congruences. In this note also we use this important fact to obtain a characterization of the group $V = V(ZS_4)$ by doubly stochastic matrices in GL(4, Z).

2. CONSTRUCTION

We write $S_4 = \langle \gamma = (12), \beta = (234) | \gamma^2 = \beta^3 = 1; \gamma \beta^{-1} = (\beta \gamma)^{-1} \rangle$ and agree to list the elements g_i in S_4 in the following order :

$$\begin{split} S_4 &= \{g_1, g_2, \dots, g_{24}\} \\ &= \{[(1), (12) (34), (13) (24), (14) (23)], [(123), (142), (134), (243)], \\ &\quad [(132), (124), (143), (234)], [(12), (34), (1324), (1423)], \\ &\quad [(13), (24), (1234), (1432)], [(14), (23), (1243), (1342)]\} \\ &= \{K_4, g_5 K_4, g_9 K_4, g_{13} K_4, g_{17} K_4, g_{22} K_4\} \end{split}$$

which is also presented as cosets of S_4 modulo K_4 where K_4 is the Klein-4 subgroup of S_4 . Represent S_4 by

A. YILMAZ

$$\rho(\gamma) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} , \quad \rho(\beta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

and extend ρ linearly to ZS_4 . For $\alpha = \sum_{i=1}^{24} a_i g_i \in ZS_4$ it is clear that

$$\rho(\alpha) = X = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \\ A_5 & A_6 & A_7 & A_8 \\ A_9 & A_{10} & A_{11} & A_{12} \\ A_{13} & A_{14} & A_{15} & A_{16} \end{bmatrix}$$

where

$$A_1 = a_1 + a_8 + a_{12} + a_{14} + a_{18} + a_{22} , \\ A_2 = a_2 + a_6 + a_9 + a_{13} + a_{20} + a_{24} , \\ A_3 = a_3 + a_5 + a_{11} + a_{16} + a_{17} + a_{23} , \\ A_4 = a_4 + a_7 + a_{10} + a_{15} + a_{19} + a_{21} , \\ A_5 = a_2 + a_5 + a_{10} + a_{13} + a_{19} + a_{23} , \\ A_6 = a_1 + a_7 + a_{11} + a_{14} + a_{17} + a_{21} , \\ A_7 = a_4 + a_8 + a_9 + a_{15} + a_{20} + a_{22} , \\ A_8 = a_3 + a_6 + a_{12} + a_{16} + a_{18} + a_{24} , \\ A_9 = a_3 + a_7 + a_9 + a_{15} + a_{17} + a_{24} , \\ A_{10} = a_4 + a_5 + a_{12} + a_{16} + a_{19} + a_{22} , \\ A_{11} = a_1 + a_6 + a_{10} + a_{13} + a_{18} + a_{21} , \\ A_{12} = a_2 + a_8 + a_{11} + a_{14} + a_{20} + a_{23} , \\ A_{13} = a_4 + a_6 + a_{11} + a_{16} + a_{20} + a_{23} , \\ A_{13} = a_4 + a_6 + a_{11} + a_{16} + a_{19} + a_{24} , \\ A_{15} = a_2 + a_7 + a_{12} + a_{14} + a_{19} + a_{24} , \\ A_{16} = a_1 + a_5 + a_9 + a_{13} + a_{17} + a_{22} , \\$$

and if α is a unit of augmentation 1, then $\rho(\alpha)$ is a doubly stochastic matrix in GL(4, Z). Hence $\rho(V)$ is a subgroup of the group of doubly stochastic matrices in GL(4, Z).

Whenever $M \in GL(4, Z)$ we agree that $t_i = t_i(M)$ will denote the sum (or pseudotrace) of the four entries in M which occur in the locations where the permutation matrix $\rho(g_i)$ has 1's. We now form the six sums from the coefficients of α ; namely,

78

(1)

A NOTE ON THE UNIT GROUP OF ZS,

$$s_{1} = a_{1} + a_{2} + a_{3} + a_{4}$$

$$s_{4} = a_{13} + a_{14} + a_{15} + a_{16}$$

$$s_{2} = a_{5} + a_{6} + a_{7} + a_{8}$$

$$s_{5} = a_{17} + a_{18} + a_{19} + a_{20}$$

$$s_{3} = a_{9} + a_{10} + a_{11} + a_{12}$$

$$s_{6} = a_{21} + a_{22} + a_{23} + a_{24}$$

which correspond to the respective six cosets of S_4 modulo K_4 , and further, form the sums $\sigma_0 = s_1 + s_2 + s_3$ and $\sigma_1 = s_4 + s_5 + s_6$ corresponding to the cosets of S_4 modulo A_4 . We then easily write down the following equalities from (1) for a matrix $M \in p(VZS_4)$:

$$t_{i} = 4a_{i} + \begin{cases} \sigma_{0} - s_{1} + t_{i}'' & \text{for } i = 1, 2, 3, 4 \\ \sigma_{0} - s_{2} + i_{i}'' & \text{for } i = 5, 6, 7, 8 \\ \sigma_{0} - s_{3} + t_{i}'' & \text{for } i = 9, 10, 11, 12 \\ \sigma_{1} - s_{4} + t_{i}' & \text{for } i = 13, 14, 15, 16 \\ \sigma_{1} - s_{5} + t_{i}' & \text{for } i = 17, 18, 19, 20 \\ \sigma_{1} - s_{6} + t_{i}' & \text{for } i = 21, 22, 23, 24 \end{cases}$$

$$(2)$$

where t'_i , t''_i are the corresponding pseudo-traces of the matrices X', X'' respectively, which are the components of X in (1) decomposed as

$$p(\alpha) = X = X' + X'' \tag{3}$$

so that each entry of X' is the sum of the first three summands of the associated entry of X while those of X" are the sums of the last three. Observe that this decomposition of X permits us to write $t_i = t'_i + t''_i$, and t''_i (i = 1, ..., 12) and t'_i (i = 13, ..., 24) are always even numbers. Moreover, X' has row sums=column sums = σ_0 and X" has row sums = column sums = σ_1 .

We use the equations

$$a_{i} = \begin{cases} [(s_{1} - \sigma_{0}) + t'_{i}]/4 & \text{for } i = 1, 2, 3, 4 \\ [(s_{2} - \sigma_{0}) + t'_{i}]/4 & \text{for } i = 5, 6, 7, 8 \\ [(s_{3} - \sigma_{0}) + t'_{i}]/4 & \text{for } i = 9, 10, 11, 12 \\ [(s_{4} - \sigma_{1}) + t''_{i}]/4 & \text{for } i = 13, 14, 15, 16 \\ [(s_{5} - \sigma_{1}) + t''_{i}]/4 & \text{for } i = 17, 18, 19, 20 \\ [(s_{6} - \sigma_{1}) + t''_{i}]/4 & \text{for } i = 21, 22, 23, 24 \end{cases}$$
(4)

derived from (2) to obtain coefficients a_i from M and then associate with M the group ring element

$$\alpha_M = \sum_{i=1}^{24} a_i g_i \in ZS_4 \,. \tag{5}$$

A, YILMAZ

It is obvious that an arbitrary matrix $M \in GL(4, Z)$ may produce coefficients a_i which are not integers. We can easily check that if $\alpha \in V(ZS_4)$ and $M = p(\alpha)$, then the group ring element α_M determined by equations (4) has integer coefficients.

3. RESULT

Theorem. Let $M = (m_{ij})$ be a doubly stochastic matrix in GL(4, Z)and α_M , the group ring element (5) with coefficients defined by (4). Then $\alpha_M \in ZS_4$, $p(\alpha_M) = M$ and the group $V(ZS_4)$ is isomorphic to the group of doubly stochastic matrices in GL(4, Z).

Proof. The homomorphism $\mu: ZS_4 \rightarrow Z[S_4/K_4] \cong ZS_3$ given by

$$\mu \left(\sum_{i=1}^{24} a_i g_i \right) = \sum_{i=1}^{24} a_i (g_i K_4)$$

$$= s_1 (g_1 K_4) + s_2 (g_5 K_4) + s_3 (g_9 K_4) + s_4 (g_{13} K_4) + s_5 (g_{17} K_4) + s_6 (g_{22} K_4)$$

$$(6)$$

maps units in ZS_4 to units ZS_3 and $V(ZS_3)$ is isomorphic to the group of all doubly stochastic matrices in GL(3, Z) [²]. Therefore, if $\alpha \in V(ZS_4)$ then $\mu(\alpha) \in V(ZS_3)$ and hence $\sum_{i=1}^{6} s_i = 1$. On the other hand, the homomorphism

$$\lambda: ZS_4 \rightarrow Z[S_4/A_4] \cong Z < x > \text{ with } x^2 = 1, \text{ given by } \lambda\Big(\sum_{i=1}^{24} a_i g_i\Big) = \sigma_0(g_1A_4) + \sigma_1(g_{13}A_4)$$

maps units in ZS_4 to units in Z < x > which has only trivial units. So, if $\alpha \in V(ZS_4)$ then $\lambda(\alpha)$ has coefficients $\sigma_0 = 1$, $\sigma_1 = 0$ or $\sigma_0 = 0$, $\sigma_1 = 1$ since $\sigma_0 + \sigma_1 = 1$. Accordingly, in the decomposition $p(\alpha) = X = X' + X''$ in (3) we have that one of X' and X'' is always doubly stochastic while the other is always doubly zero (row sums = column sums = 0) whenever $\alpha \in V$. Observe that X' in (3) is a combination of matrices in $p(A_4)$ and X'' is a combination of the remaining twelve odd permutation matrices. Hence, for any $X \in p(V)$, if |X| = 1, then $\sigma_0 = 1$, $\sigma_1 = 0$ and if |X| = -1, then $\sigma_0 = 0$, $\sigma_1 = 1$, and that component X' or X'' of X which has $\sigma_i = 1$ (i = 0, 1) is doubly stochastic while the other is doubly zero.

We now decompose a doubly stochastic matrix $M \in GL(4, Z)$ as M = M' + M''so that, if |M| = 1, then M' is doubly stochastic ($\sigma_0 = 1$, $\sigma_1 = 0$) and if |M| = -1 then M'' is doubly stochastic ($\sigma_0 = 0$, $\sigma_1 = 1$), the other component being doubly zero in each case. In this way each pseudo-trace t_i of M can be written $t_i = t'_i + t''_i$ where t'_i and t''_i are the corresponding pseudo-traces of M'and M'' resp.. Further, among many possible decompositions of M we must choose the one which has t''_i (i = 1, ..., 12) and t'_i (i = 13, ..., 24) even integers; so that the congruences

$$t'_{i} = \begin{cases} \sigma_{0} - s_{1} \pmod{4} & \text{for } i = 1, ..., 4 \\ \sigma_{0} - s_{2} \pmod{4} & \text{for } i = 5, ..., 8 \\ \sigma_{0} - s_{3} \pmod{4} & \text{for } i = 9, ..., 12 \end{cases}$$
$$t''_{i} = \begin{cases} \sigma_{1} - s_{4} \pmod{4} & \text{for } i = 13, ..., 16 \\ \sigma_{1} - s_{5} \pmod{4} & \text{for } i = 17, ..., 20 \\ \sigma_{1} - s_{6} \pmod{4} & \text{for } i = 21, ..., 24 \end{cases}$$

hold, which ensures that the numerators in (4) are multiples of 4. Thus the sums $\sigma_0, \sigma'_1, t'_i, t''_i$ in equations (4) are uniquely determined by *M*. The only sums to be determined in (4) are the $s_i(i=1,...,6)$. We know that $\mu(V(ZS_4)) = V(ZS_3)$, and the image of $V(ZS_3)$ under p is the reduced doubly stochastic matrix

$$\begin{bmatrix} s_1 + s_6 & s_3 + s_4 & s_2 + s_5 & 0\\ s_2 + s_4 & s_1 + s_5 & s_3 + s_6 & 0\\ s_3 + s_5 & s_2 + s_6 & s_1 + s_4 & 0\\ \hline 0 & 0 & 0 & \Sigma s_i \end{bmatrix} = \begin{bmatrix} \frac{R}{0} \\ 1 \end{bmatrix}$$
(8)

the first constituent of which contains as its entries the sums of s_i 's of M in pairs. Thus to determine the s_i 's of M, we first reduce M to its form (8); so that 3×3 matrix R will again be doubly stochastic in GL(3, Z), which represents a unit of augmentation 1 in ZS_3 . Because σ_0 and σ_1 are already known from M, the six pseudo-traces

$$\bar{t}_{i} = \begin{cases} 3s_{i} + \sigma_{1} & \text{for } i = 1, 2, 3\\ 3s_{i} + \sigma_{0} & \text{for } i = 4, 5, 6 \end{cases}$$
(9)

of R will give the s_i (i = 1, ..., 6) of M. Note that at least one entry in each row or column of M must be an odd integer; hence it is always possible to reduce M to the form (8). Further, among several possible reduced forms we choose the one with |R| = |M| and which allows all solutions s_i in (9) in Z.

It can be observed from (1) that the (i, j)-entry of $p(\alpha_M)$ is of the form $p(\alpha_M)_{ij} = a_k + a_l + a_m + a_u + a_v + a_w$ with $k, l, m \in \{1, ..., 12\}$ and $u, v, w \in \{13, ..., 24\}$. On the other hand,

(7)

Hence $p(\alpha_M)_{ij} = [t_k + t_l + t_m + t_u + t_v + t_w) - 4]/8$ where each pseudo-trace includes the (i, j)-entry while the remaining summands in these pseudo-traces are the entries which he outside the *i* th row-*j* th column. Furthermore, since *M* has row sums = 1, we can write

$$t_k + t_l + t_m + t_u + t_v + t_w = 7m_{ij} + (1 - m_{ij_1} - m_{ij_2} - m_{ij_3}) + 4$$

where j_1 , j_2 and j_3 are the indices of the columns other than the j^{th} . Therefore,

$$t_k + t_l + t_m + t_u + t_v + t_w = 8m_{ij} + 4 + 1 - \left(\sum_{r=1}^{3} m_{ijr} + m_{ij}\right) = 8m_{ij} + 4$$

and it follows that $\rho(\alpha_M)_{ij} = m_{ij}$, and $p(\alpha_M) = M$.

Finally, since $p(\alpha)=I$ if and only if $\alpha=1$, the homomorphism ρ restricted to V is an isomorphism of $V(ZS_4)$ onto the group of doubly stochastic matrices in GL(4, Z), and the proof of the theorem is complete.

4. AN EXAMPLE

We give now an example which illustrates how the proof of the theorem applies to the doubly stochastic matrix

$$M = \begin{bmatrix} 0 & 1 & -1 & 1 \\ 24 & -8 & -3 & -12 \\ 6 & -1 & -2 & -2 \\ -29 & 9 & 7 & 14 \end{bmatrix} \in GL(4, Z).$$

Since |M| = 1, *M* has $\sigma_0 = 1$, $\sigma_1 = 0$ and the reduced form (8) of *M* may be achieved by the following steps:

A NOTE ON THE UNIT GROUP OF ZS4

$$\begin{split} M \to \begin{bmatrix} 0 & 1 & -1 & 1 \\ 24 & 4 & -15 & 0 \\ 6 & 1 & -4 & 0 \\ -29 & -5 & 21 & 0 \end{bmatrix} \to \begin{bmatrix} 0 & 0 & 0 & 1 \\ 24 & 4 & -15 & 0 \\ 6 & 1 & -4 & 0 \\ -29 & -5 & 21 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 0 & 0 & 1 & 0 \\ 6 & 1 & -4 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 0 & 0 & 1 & 0 \\ 6 & 1 & -4 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 0 & 0 & 1 & 0 \\ 6 & 1 & -4 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 6 & -4 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 3 & -7 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 3 & -7 & 4 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 3 & -7 & 4 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 3 & -6 & 4 & 0 \\ -2 & 8 & -3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \to \begin{bmatrix} 3 & -6 & 4 & 0 \\ -2 & 6 & -3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{R}{0} & 0 \\ 0 & 1 & 1 \end{bmatrix} .$$

Now, R has $\overline{t_1} = 9$, $\overline{t_2} = 3$, $\overline{t_3} = -9$, $\overline{t_4} = -8$, $\overline{t_5} = 10$, $\overline{t_6} = 1$ and so, M has $s_1 = 3$, $s_2 = 1$, $s_3 = -3$, $s_4 = -3$, $s_5 = 3$, $s_6 = 0$ from (9). The decomposition of M is

$$M = M' + M'' = \begin{bmatrix} 0 & 4 & -1 & -2 \\ 12 & 4 & -3 & -12 \\ 3 & 5 & -2 & -5 \\ -14 & -12 & 7 & 20 \end{bmatrix} + \begin{bmatrix} 0 & -3 & 0 & 3 \\ 12 & -12 & 0 & 0 \\ 3 & -6 & 0 & 3 \\ -15 & 21 & 0 & -6 \end{bmatrix}$$

and the required pseudo-traces are

$$\{t'_{13}, \dots, t'_{12}\} = \{22, 18, -22, -14, 36, -24, 12, -20, 24, -4, -16, 0\},\$$

$$\{t''_{13}, \dots, t''_{24}\} = \{3, -9, 27, -21, -15, 21, 9, -15, -24, -12, 36, 0\}.$$

Hence (4) gives the coefficients of $\alpha_M \in V$ as

$$(a_1, a_2, \dots, a_{24}) =$$

=(6, 5, -5, -3, 9, -6, 3, -5, 5, -2, -5, -1, 0, -3, 6, -6, -3, 6, 3, -3, -6, -3, 9, 0).

The theorem implies that $p(\alpha_M) = M$ and the same process applied to $M^{-1} = p(\alpha_M^{-1})$ determines the coefficients of α_M^{-1} .

83

A. YILMAZ

REFERENCES

[1] ALLEN, P.J. and A characterization of units in ZA_4 , J. Algebra, 66 (1980), : HOBBY, C. 534-543. [²] ALLEN, P.J. and A note on the unit group of ZS₃, Proc. Amer. Math. Soc., 99 ; HOBBY, C. (1987), 9-14. [^a] HUGHES, I. and : The group of units of the integral group ring ZS_3 , Canad. Math. Bull., 15 (1972), 529-534. PEARSON, K.R. [⁴I MILIES, C. : The units of the integral group ring ZD_4 , Bol. Soc. Brasil. Mat., 4 (1972), 85-92. [^s] YILMAZ, A. : A characterization of units in ZS_4 , Hacettepe Bull. Nat. Sci. Eng., 14 (1985), 41-52

1.1

DEPARTMENT OF MATHEMATICS HACETTEPE UNIVERSITY BEYTEPE-ANKARA/TURKEY

84