QUADRATIC MEAN FUNCTION OF ENTIRE DIRICHLET SERIES

J. S. GUPTA - SHAKTI BALA

Let E be the set of all entire functions $f(s)=\sum_{n \in N} a_{n} e^{s \lambda_{n}}$ defined by an everywhere convergent Dirichlet series whose exponents are subjected to the condition $\lim _{n \rightarrow+\infty} \sup \frac{\log n}{\lambda_{n}}=D \in R_{+} \cup\{0\}$ (R_{+}is the set of positive reals). Also let $I_{2}(\sigma, f)$ be the quadratic mean function of an $f \in E$, on $\operatorname{Re}(s)=\sigma$, defined as $I_{2}(\sigma, f)=\lim _{T \rightarrow+\infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{2} d t$. In this paper we have studied a few results pertaining to the function I_{2}.

1. Let E be the set of mappings $f: C \rightarrow C$ (C is the complex field) such that the image under f of an element $s \in C$ is $f(s)=\sum_{n \in N} a_{n} e^{s \lambda_{n}}$ with $\limsup _{n \rightarrow+\infty} \frac{\log n}{\lambda_{n}}=D \in R_{+} \cup\{0\}\left(R_{+}\right.$is the set of positive reals), and $\sigma_{c}^{f}=+\infty$ (σ_{c}^{f} is the abscissa of convergence of the Dirichlet series defining f); N is the set of natural numbers $0,1,2, \ldots,<a_{n} \mid n \in N>$ is a sequence in $C, s=\sigma+i t$, $\sigma, t \in R(R$ is the field of reals $)$, and $<\lambda_{n} \mid n \in N>$ is a strictly increasing unbounded sequence of nonnegative reals. Since the Dirichlet series defining f converges for each $s \in C, f$ is an entire function. Also, since $D \in R_{+} \cup\{0\}$, we have ($\left[^{1}\right], \mathrm{p} .168$), $\sigma_{a}^{f}=+\infty\left(\sigma_{a}^{f}\right.$ is the abscissa of absolute convergence of the Dirichlet series defining f) and that f is bounded on each vertical line $\operatorname{Re}(s)=\sigma_{0}$.

Let $f \in E$ be an entire function. The maximum modulus function M of f. on any vertical line $\operatorname{Re}(s)=\sigma$, is defined as

$$
\begin{equation*}
M(\sigma, f)=\sup _{t \in R}\{|f(\sigma+i t)|\}, \quad \forall \sigma<\sigma_{c}^{f} \tag{1.1}
\end{equation*}
$$

the maximum term function μ, for $\operatorname{Re}(s)=\sigma$, in the Dirichlet series defining f, is defined as

$$
\begin{equation*}
\mu(\sigma, f)=\max _{n \in N}\left\{\left|a_{n}\right| e^{\sigma \lambda_{n}}\right\}, \quad \forall \sigma<\sigma_{c}^{f}, \tag{1.2}
\end{equation*}
$$

and the quadratic mean function I_{2} of f on $\operatorname{Re}(s)=\sigma$, is defined as

$$
\begin{equation*}
I_{2}(\sigma, f)=\lim _{T \rightarrow+\infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{2} d t, \quad \forall \sigma<\sigma_{c}^{f} \tag{1.3}
\end{equation*}
$$

In this paper we study a few results regarding the function I_{2}.
2. First we show that :

Theorem 1. If $f, g \in E$ are two entire functions such that for any $s \in C$, $f(s)=\sum_{m \in N} a_{m} e^{s \lambda_{m}}, g(s)=\sum_{n \in N} b_{n} e^{s u_{n}}$, and h is the Dirichlet product of f and g, i.e. for any $s \in C, h(s)=\sum_{p \in N} c_{p} e^{s v_{p}}$ where $c_{p}=\sum_{\lambda_{m}+u_{n}=v_{p}} a_{m} b_{n}$, then $h \in E$, and

$$
\begin{equation*}
\mu(\sigma, h)<\left(I_{2}(\sigma, f) I_{2}(o, g)\right)^{1 / 2} \tag{2.1}
\end{equation*}
$$

Proof. $h \in E$ follows from the fact $\left[{ }^{2}\right]$ that E is an algebra. Also, we have

$$
\begin{aligned}
\left|c_{p}\right| e^{\sigma v_{p}} & =\left|\sum_{\lambda_{m}+\mu_{n}=v_{p}} a_{m} b_{n}\right| e^{\sigma v_{p}} \\
& \leq \sum_{\lambda_{m}+u_{n}=v_{p}}\left|a_{m}\right|\left|b_{n}\right| e^{\sigma\left(\lambda_{m}+u_{n}\right)} \\
& \leq\left(\sum_{m \leq p}\left|a_{m}\right|^{2} e^{2 \sigma \lambda_{m}}\right)^{1 / 2}\left(\sum_{n \leq p}\left|b_{n}\right|^{2} e^{2 \sigma u_{n}}\right)^{1 / 2} \\
& <\left(I_{2}(\sigma, f) I_{2}(\sigma, g)\right)^{1 / 2},
\end{aligned}
$$

in view of the fact ($\left[^{3}\right]$, formula (2.2)) that for any $f \in E$,
$I_{2}(\sigma, f)=\sum_{n \in N}\left|a_{n}\right|^{2} e^{2 a \lambda_{n}}$. Since the last inequality is true for all p, it follows that

$$
\mu(\sigma, h)<\left(I_{2}(\sigma, f) I_{2}(\sigma, g)\right)^{1 / 2}
$$

We give below two interesting applications of (2.1).
i) If f, g, h are of Ritt orders $\mathrm{p}_{1}, \mathrm{p}_{2}$, and ρ, respectively, then

$$
\begin{equation*}
\mathrm{p} \leq \mathrm{p}_{1}+\rho_{2} \tag{2.2}
\end{equation*}
$$

a result established otherwise by the first author ($[4]$, Theo. 1).
The result in (2.2) follows from (2.1) and the following facts : a) that for any entire function $f \in E$ of Ritt order $\mathrm{p} \in R_{+}^{*} \cup\{0\}$, in view of ($\left[{ }^{5}\right]$, Theo. 5), ($[6]$, Theos. 2.7 and 2.8), and ($\left[^{3}\right]$, Theo. 3), respectively,

$$
\begin{align*}
p=\limsup _{\sigma \rightarrow+\infty} \frac{\log \log M(\sigma, f)}{\sigma} & =\lim _{\sigma \rightarrow+\infty} \frac{\log \log \mu(\sigma, f)}{\sigma}= \\
& =\lim _{\sigma \rightarrow+\infty} \frac{\log \log I_{2}(\sigma, f)}{\sigma} \tag{2.3}
\end{align*}
$$

and b) that $\left({ }^{3}\right]$, Theo. 1) $\log I_{2}(\sigma, f)$ is an increasing convex function of σ.
Remark. The result in the last equality in (2.3) although has been established for entire function $f \in E$ of Ritt order $\mathrm{p} \in R_{+}$and for $D=0$, but by a slight modification in the argument the result holds for any $f \in E$.
ii) If f, g, h are of the same Ritt order $\mathrm{p} \in R_{+}$and types T_{1}, T_{2} and T, respectively, then

$$
\begin{equation*}
T \leq T_{1}+T_{2} \tag{2.4}
\end{equation*}
$$

a result established otherwise by the first author ([4], Theo. 2).
As previously, the result in (2.4) follows from (2.1), in view of the fact, that for any entire function $f \in E$ of Ritt order $\mathrm{p} \in R_{+}$and type $T \in R_{+}^{*} \cup\{0\}$, we have, in view of ([$\left.{ }^{5}\right]$, Theo. 5), ($\left[{ }^{[}\right]$, Theo. 5), and ($\left[{ }^{3}\right]$, Theo. 3), respectively,

$$
\begin{align*}
T=\operatorname{hm} \sup _{\sigma \rightarrow+\infty} \frac{\log M(\sigma, f)}{e^{\rho \sigma}} & =\lim \sup _{\sigma \rightarrow+\infty} \frac{\log \mathrm{p}(\sigma, f)}{e^{\rho \sigma}}= \\
& =\limsup _{\sigma \rightarrow+\infty} \frac{\frac{1}{2} \log I_{2}(\sigma, f)}{e^{\rho \sigma}} \tag{2.5}
\end{align*}
$$

Remark. The result in the last equality has been proved under the condition that $D=0$, but is true for any $D \in R_{+} \cup\{0\}$.

Next we find that :
Theorem 2. If $f \in E$ is an entire function of Ritt order $\mathrm{p} \in R_{+}$and perfectly regular growth and type $T \in R_{+}$, then

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \frac{I_{2}^{\prime}(\sigma, f)}{I_{2}(\sigma, f) \rho T e^{\sigma \sigma}}=2 \tag{2.6}
\end{equation*}
$$

where $I_{2}^{\prime}(\sigma, f)$ denotes the derivative of $I_{2}(\sigma, f)$ with respect to σ.
Proof. From (2.5), we get for any $\varepsilon \in R_{+}$and sufficiently large o,

$$
\begin{equation*}
(2 T-\varepsilon) e^{\rho \sigma}<\log I_{2}(\sigma, f)<(2 T+\varepsilon) e^{\rho \sigma} . \tag{2.7}
\end{equation*}
$$

Also, since $\log I_{2}(\sigma, f)$ is an increasing convex function of σ, we may write for any $\sigma, \sigma_{0}\left(\sigma>\sigma_{0}\right)$,

$$
\begin{equation*}
\log I_{2}(\sigma, f)=\log I_{2}\left(\sigma_{0}, f\right)+\int_{\sigma_{0}}^{\sigma} \frac{I_{2}^{\prime}(x, f)}{I_{2}(x, f)} d x \tag{2.8}
\end{equation*}
$$

Now, for any $k \in R_{+} \cup\{0\}$, we have

$$
\begin{align*}
\int_{\sigma}^{\sigma+k} \frac{I_{2}^{\prime}(x, f)}{I_{2}(x, f)} d x & =\int_{0}^{\sigma+k} \frac{I_{2}^{\prime}(x, f)}{I_{2}(x, f)} d x-\int_{0}^{\sigma} \frac{I_{2}^{\prime}(x, f)}{I_{2}(x, f)} d x \\
& =\log I_{2}(\alpha+k, f)-\log I_{2}(o, f), \text { in view of }(2.8) \\
& \leq(2 T+\varepsilon) e^{\rho(\sigma+k)}-(2 T-\varepsilon) e^{\rho \sigma}, \text { in view of }(2.7) \\
& =e^{\rho \sigma}\left\{2 T\left(e^{\rho k}-1\right)+\varepsilon\left(e^{\rho k}+1\right)\right\} \tag{2.9}
\end{align*}
$$

But

$$
\begin{equation*}
\int_{\sigma}^{\sigma+k} \frac{I_{2}^{\prime}(x, f)}{I_{2}(x, f)} d x \geq \frac{I_{2}^{\prime}(x, f)}{I_{2}(x, f)} k \tag{2.10}
\end{equation*}
$$

Hence, from (2.9) and (2.10),

$$
\begin{equation*}
\frac{I_{2}^{\prime}(\sigma, f)}{I_{2}(\sigma, f) e^{\rho \sigma}}<\frac{2 T\left(e^{\rho k}-1\right)+\varepsilon\left(e^{\rho k}+1\right)}{k} \tag{2.11}
\end{equation*}
$$

Since k is arbitrary but belongs to $R_{+} \cup\{0\}$ and the left hand side of (2.11) is independent of k, it follows that

$$
\begin{equation*}
\limsup _{\sigma \rightarrow+\infty} \frac{I_{2}^{\prime}(\sigma, f)}{I_{2}(\sigma, f) e^{\rho \sigma}} \leq 2 \rho T \tag{2.12}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\liminf _{\sigma \rightarrow+\infty} \frac{I_{2}^{\prime}(\sigma, f)}{I_{2}(\sigma, f) e^{\rho \sigma}} \geq 2 \rho T \tag{2.13}
\end{equation*}
$$

Hence the theorem.
Theorem 2 leads easily to the following well known fact :
Corollary 1. If $f \in E$ is an entire function of Ritt order $\rho \in R_{+}$and is of perfectly regular growth and type $T \in R_{+}$, then it is of regular growth.

From (2.6) we find that

$$
\operatorname{iog}\left(\frac{I_{2}^{\prime}(\sigma, f)}{I_{2}(\sigma, f)}\right) \sim \log 2 \rho T+\rho \sigma
$$

Hence

$$
\lim _{\sigma \rightarrow+\infty} \frac{\log \left(I_{2}^{\prime}(\sigma, f) / I_{2}(\sigma, f)\right)}{\sigma}=\mathrm{p}
$$

showing that f is of regular growth, since ($\left[^{8}\right]$, Formula (7.3.13)),

$$
\lim _{\sigma \rightarrow+\infty} \frac{\log \left(I_{2}^{\prime}(\sigma, f) / I_{2}(\sigma, f)\right)}{\sigma}=\lim _{\sigma \rightarrow+\infty} \frac{\log \log I_{2}(\sigma, f)}{\sigma} .
$$

Remark. Since the lower type of entire functions in E of irregular growth is always zero ($\left[^{[}\right]$, p. 250), with the same argument, it can be shown that Theorem 2 holds for such functions also.

REFERENCES

['] MANDELbROJT, S .
[${ }^{2}$] GUPTA, J.S.
[${ }^{3}$] GUPTA, J.S.
[4] GUPTA, J.S.
[5] RITT, J.F. : On certain points in the theory of Dirichlet series, Amer. J. Math., 50 (1928), 73-86.
['] RAHMAN, Q.I. : On the maximum modulus and the coefficients of an entire Dirichlet series, Tôhoku Math. J. (2), 8 (1956), 108-113.
[7] SUGIMURA, K. : Ubertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen, Math. Z., 29 (1929), 246-277.
[] GUPTA, J.S. : A study in integral functions and their derivatives defined by Dirichlet series, Ph. D. Thesis, I.I.T. Kanpur, 1963.
[9] SRIVASTAVA, R.S.L. : On the λ-type of entire functions of irregular growth defined and SINGH, PREM by Dirichlet series, Mont. Fur. Math., 70 (1966), 249-255.

UNIVERSITY OF JAMMU
JAMMU - 180004
JAMMU AND KASHMIR INDIA

GOVT. COLLEGE FOR WOMEN
GANDHI NAGAR
JAMMU - 180004
JAMMU AND KASHMIR
INDIA

Ö Z E T

E, üsleri $\lim _{n \rightarrow \infty} \frac{\log n}{\lambda_{n}}=D \in R_{+} \cup\{0\}$ koşulunu gerçekleyen, her yerde yakınsak bir Dirichlet serisi ile tanımlanan bütün $f(s)=\sum_{n \in N} a_{n} e^{s \lambda_{n}}$ tam fonksiyonlarının cümlesini göstersin. $I_{2}(\sigma, f)$ de $\operatorname{Re}(s)=\sigma$ üzerinde bir $f \in E$ $\operatorname{nin} I_{2}(\sigma, f)=\lim _{T \rightarrow+\infty} \frac{1}{2 T} \int_{-T}^{T}|f(\sigma+i t)|^{2} d t$ şeklinde tanımlanan kuadratil ortalama fonksiyonu olsun. Bu çalş̧mada X_{2} fonksiyonuna ilişkin bazı sonuçlar elde edilmektedir.

