Istanbul Univ. Fen Fak. Mat. Der. 51 (1992), 29-34

QUADRATIC MEAN FUNCTION OF ENTIRE DIRICHLET SERIES

J. S. GUPTA - SHAKTI BALA

Let *E* be the set of all entire functions $f(s) = \sum_{n \in N} a_n e^{s\lambda_n}$ defined by an everywhere convergent Dirichlet series whose exponents are subjected to the condition $\limsup_{n \to +\infty} \frac{\log n}{\lambda_n} = D \in R_+ \cup \{0\}$ (R_+ is the set of positive reals). Also let $I_2(\sigma, f)$ be the quadratic mean function of an $f \in E$, on $\operatorname{Re}(s) = \sigma$, defined as $I_2(\sigma, f) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |f(\sigma + it)|^2 dt$. In this paper we have studied a few results pertaining to the function I_2 .

1. Let *E* be the set of mappings $f: C \to C$ (*C* is the complex field) such that the image under *f* of an element $s \in C$ is $f(s) = \sum_{n \in N} a_n e^{s\lambda_n}$ with

 $\limsup_{n \to +\infty} \frac{\log n}{\lambda_n} = D \in R_+ \cup \{0\} \ (R_+ \text{ is the set of positive reals}), \text{ and } \sigma_c^f = +\infty$ (σ_c^f is the abscissa of convergence of the Dirichlet series defining f); N is the set of natural numbers 0, 1, 2,..., $< a_n \mid n \in N >$ is a sequence in C, $s = \sigma + it$, σ , $t \in R$ (R is the field of reals), and $< \lambda_n \mid n \in N >$ is a strictly increasing unbounded sequence of nonnegative reals. Since the Dirichlet series defining f converges for each $s \in C$, f is an entire function. Also, since $D \in R_+ \cup \{0\}$, we have ([1], p. 168), $\sigma_a^f = +\infty$ (σ_a^f is the abscissa of absolute convergence of the Dirichlet series defining f) and that f is bounded on each vertical line $\operatorname{Re}(s) = \sigma_0$.

Let $f \in E$ be an entire function. The maximum modulus function M of f on any vertical line $\text{Re}(s) = \sigma$, is defined as

$$M(\sigma, f) = \sup_{t \in \mathbb{R}} \{ |f(\sigma + it)| \}, \quad \forall \sigma < \sigma_c^f,$$
(1.1)

the maximum term function μ , for $\operatorname{Re}(s) = \sigma$, in the Dirichlet series defining f, is defined as

$$\mu(\sigma, f) = \max_{n \in N} \{ |a_n| e^{\sigma \lambda_n} \}, \quad \forall o < \sigma_c^f,$$
(1.2)

and the quadratic mean function I_2 of f on $\operatorname{Re}(s) = \sigma$, is defined as

$$I_2(\sigma, f) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |f(\sigma + it)|^2 dt, \quad \forall \sigma < \sigma_c^f.$$
(1.3)

In this paper we study a few results regarding the function I_2 .

2. First we show that :

Theorem 1. If $f \ g \in E$ are two entire functions such that for any $s \in C$, $f(s) = \sum_{m \in N} a_m e^{s\lambda_m}$, $g(s) = \sum_{n \in N} b_n e^{s\mu_n}$, and h is the Dirichlet product of f and g, i.e. for any $s \in C$, $h(s) = \sum_{p \in N} c_p e^{s\nu_p}$ where $c_p = \sum_{\lambda_m + \mu_n = \nu_p} a_m b_n$, then $h \in E$, and

$$\mu(\sigma, h) < (I_2(\sigma, f) \ I_2(o, g))^{1/2}.$$
(2.1)

Proof. $h \in E$ follows from the fact [2] that E is an algebra. Also, we have

$$\begin{aligned} |c_p| e^{\sigma v_p} &= \left| \sum_{\lambda_m + u_n = v_p} a_m b_n \right| e^{\sigma v_p} \\ &\leq \sum_{\lambda_m + u_n = v_p} |a_m| |b_n| e^{\sigma (\lambda_m + u_n)} \\ &\leq \left(\sum_{m \leq p} |a_m|^2 e^{2\sigma \lambda_m} \right)^{1/2} \left(\sum_{n \leq p} |b_n|^2 e^{2\sigma u_n} \right)^{1/2} \\ &< (I_2(\sigma, f) I_2(\sigma, g))^{1/2}, \end{aligned}$$

in view of the fact ([³], formula (2.2)) that for any $f \in E$,

 $I_2(\sigma, f) = \sum_{n \in N} |a_n|^2 e^{2\sigma\lambda_n}$. Since the last inequality is true for all p, it follows that

$$\mu(\sigma, h) < (I_2(\sigma, f) \ I_2(\sigma, g))^{1/2}.$$

We give below two interesting applications of (2.1).

i) If f, g, h are of Ritt orders p_1, p_2 , and p, respectively, then

$$\mathbf{p} \le \mathbf{p}_1 + \mathbf{\rho}_2 \,; \tag{2.2}$$

a result established otherwise by the first author ([4], Theo. 1).

The result in (2.2) follows from (2.1) and the following facts : a) that for any entire function $f \in E$ of Ritt order $p \in R_+^* \cup \{0\}$, in view of ([⁵], Theo. 5), ([⁶], Theos. 2.7 and 2.8), and ([³], Theo. 3), respectively,

QUADRATIC MEAN FUNCTION OF ENTIRE DIRICHLET SERIES

$$p = \limsup_{\sigma \to +\infty} \frac{\log \log M(\sigma, f)}{\sigma} = \limsup_{\sigma \to +\infty} \frac{\log \log \mu(\sigma, f)}{\sigma} =$$
$$= \limsup_{\sigma \to +\infty} \frac{\log \log I_2(\sigma, f)}{\sigma},$$
(2.3)

and b) that ([3], Theo. 1) log $I_2(\sigma, f)$ is an increasing convex function of σ .

Remark. The result in the last equality in (2.3) although has been established for entire function $f \in E$ of Ritt order $p \in R_+$ and for D = 0, but by a slight modification in the argument the result holds for any $f \in E$.

ii) If f g, h are of the same Ritt order $p \in R_+$ and types T_1 , T_2 and T, respectively, then

$$T \le T_1 + T_2;$$
 (2.4)

a result established otherwise by the first author ([4], Theo. 2).

As previously, the result in (2.4) follows from (2.1), in view of the fact, that for any entire function $f \in E$ of Ritt order $p \in R_+$ and type $T \in R_+^* \cup \{0\}$, we have, in view of ([⁵], Theo. 5), ([⁷], Theo. 5), and ([³], Theo. 3), respectively,

$$T = \limsup_{\sigma \to +\infty} \frac{\log M(\sigma, f)}{e^{\rho\sigma}} = \limsup_{\sigma \to +\infty} \frac{\log \mu(\sigma, f)}{e^{\rho\sigma}} =$$
$$= \limsup_{\sigma \to +\infty} \frac{\frac{1}{2} \log I_2(\sigma, f)}{e^{\rho\sigma}}.$$
(2.5)

Remark. The result in the last equality has been proved under the condition that D = 0, but is true for any $D \in R_+ \cup \{0\}$.

Next we find that:

Theorem 2. If $f \in E$ is an entire function of Ritt order $p \in R_+$ and perfectly regular growth and type $T \in R_+$, then

$$\lim_{\sigma^{\gamma+\infty}} \frac{I_2'(\sigma, f)}{I_2(\sigma, f) \rho T e^{\rho\sigma}} = 2, \qquad (2.6)$$

where $I'_2(\sigma, f)$ denotes the derivative of $I_2(\sigma, f)$ with respect to σ .

Proof. From (2.5), we get for any $\varepsilon \in R_+$ and sufficiently large o,

$$(2T-\varepsilon) e^{\varepsilon\sigma} < \log I_2(\sigma, f) < (2T+\varepsilon) e^{\varepsilon\sigma}.$$
(2.7)

Also, since $\log I_2(\sigma, f)$ is an increasing convex function of σ , we may write for any σ , $\sigma_0(\sigma > \sigma_0)$,

J. S. GUPTA - SHAKTI BALA

$$\log I_2(\sigma, f) = \log I_2(\sigma_0, f) + \int_{\sigma_0}^{\sigma} \frac{I_2'(x, f)}{I_2(x, f)} dx.$$
 (2.8)

Now, for any $k \in R_+ \cup \{0\}$, we have

$$\int_{\sigma}^{\sigma+k} \frac{I_{2}'(x,f)}{I_{2}(x,f)} dx = \int_{0}^{\sigma+k} \frac{I_{2}'(x,f)}{I_{2}(x,f)} dx - \int_{0}^{\sigma} \frac{I_{2}'(x,f)}{I_{2}(x,f)} dx,$$

= $\log I_{2}(\sigma+k,f) - \log I_{2}(\sigma,f)$, in view of (2.8),
 $\leq (2T+\varepsilon) e^{\rho(\sigma+k)} - (2T-\varepsilon) e^{\rho\sigma}$, in view of (2.7),
 $= e^{\rho\sigma} \{2T(e^{\rho k}-1) + \varepsilon(e^{\rho k}+1)\}.$ (2.9)

But

 $\int_{\sigma}^{\sigma+k} \frac{I_2'(x,f)}{I_2(x,f)} dx \ge \frac{I_2'(x,f)}{I_2(x,f)} k.$ (2.10)

Hence, from (2.9) and (2.10),

$$\frac{I_2'(\sigma,f)}{I_2(\sigma,f)e^{\sigma\sigma}} < \frac{2T(e^{\kappa}-1)+\varepsilon(e^{\kappa}+1)}{k}.$$
(2.11)

Since k is arbitrary but belongs to $R_+ \cup \{0\}$ and the left hand side of (2.11) is independent of k, it follows that

$$\limsup_{\sigma \to +\infty} \frac{I_2'(\sigma, f)}{I_2(\sigma, f) e^{\rho\sigma}} \le 2 \rho T.$$
(2.12)

Similarly, we can show that

$$\liminf_{\sigma \to +\infty} \frac{I_2'(\sigma, f)}{I_2(\sigma, f) e^{c\sigma}} \ge 2 \rho T.$$
(2.13)

Hence the theorem.

- 5

Theorem 2 leads easily to the following well known fact :

Corollary 1. If $f \in E$ is an entire function of Ritt order $p \in R_+$ and is of perfectly regular growth and type $T \in R_+$, then it is of regular growth.

From (2.6) we find that

$$\log\left(\frac{I_2'(\sigma,f)}{I_2(\sigma,f)}\right) \sim \log 2 \rho T + \rho \sigma.$$

32

QUADRATIC MEAN FUNCTION OF ENTIRE DIRICHLET SERIES

33

Hence

INDIA

$$\lim_{\sigma \to +\infty} \frac{\log(I_2'(\sigma, f) / I_2(\sigma, f))}{\sigma} = \mathsf{p},$$

showing that f is of regular growth, since ([⁸], Formula (7.3.13)),

$$\lim_{\sigma \to +\infty} \frac{\log (I_2'(\sigma, f) / I_2(\sigma, f))}{\sigma} = \lim_{\sigma \to +\infty} \frac{\log \log I_2(\sigma, f)}{\sigma}$$

Remark. Since the lower type of entire functions in E of irregular growth is always zero ([⁹], p. 250), with the same argument, it can be shown that Theorem 2 holds for such functions also.

REFERENCES

[']	MANDELBROJT, S.	:	The Rice Institute Pamphlet (Dirichlet series), No. 4, Vol. 31, Houston, 1944.
[²]	GUPTA, J.S.	:	On the algebra of entire Dirichlet series (Unpublished).
[°]	GUPTA, J.S.	:	On the mean values of integral functions and their derivatives defined by Dirichlet series, Amer. Math. Monthly, 71 (1964), 520-523.
[⁴]	GUPTA, J.S.	:	On the order and type of integral functions defined by Dirichlet
			series, İst. Üniv. Fen Fak. Mec. Ser. A, 26 (1961), 37-43.
[⁵]	RITT, J.F.	:	On certain points in the theory of Dirichlet series, Amer. J. Math., 50 (1928), 73-86.
[*]	RAHMAN, Q.I.	:	On the maximum modulus and the coefficients of an entire Dirichlet series, Tôhoku Math. J. (2), 8 (1956), 108-113.
[*]	SUGIMURA, K.	:	Übertragung einiger Sätze aus der Theorie der ganzen Funktionen auf Dirichletsche Reihen, Math. Z., 29 (1929), 246-277.
[°]	GUPTA, J.S.	:	A study in integral functions and their derivatives defined by Dirichlet series, Ph. D. Thesis, I.I.T. Kanpur, 1963.
[*]	SRIVASTAVA, R.S.L. and SINGH, PREM	:	On the λ -type of entire functions of irregular growth defined by Dirichlet series, Mont. Fur. Math., 70 (1966), 249-255.
UNIVERSITY OF JAMMU			GOVT. COLLEGE FOR WOMEN
JAMMU - 180004			GANDHI NAGAR
JAMMU AND KASHMIR			JAMMU - 180004

JAMMU AND KASHMIR

INDIA

J. S. GUPTA - SHAKTI BALA

ÖZET

E, üsleri $\limsup_{n \to \infty} \frac{\log n}{\lambda_n} = D \in R_+ \cup \{0\}$ koşulunu gerçekleyen, her yerde yakınsak bir Dirichlet serisi ile tanımlanan bütün $f(s) = \sum_{n \in N} a_n e^{s\lambda_n}$ tam fonksiyonlarının cümlesini göstersin. $I_2(\sigma, f)$ de $\operatorname{Re}(s) = \sigma$ üzerinde bir $f \in E$ nin $I_2(\sigma, f) = \lim_{T \to +\infty} \frac{1}{2T} \int_{-T}^{T} |f(\sigma + it)|^2 dt$ şeklinde tanımlanan kuadratik ortalama fonksiyonu olsun. Bu çalışmada *L* fonksiyonuna ilişkin hazı so-

ortalama fonksiyonu olsun. Bu çalışmada I_2 fonksiyonuna ilişkin bazı sonuçlar elde edilmektedir.