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QUADRATIC MEAN FUNCTION OF ENTIRE DIRICHLET SERIES 

J. S. GUPTA - S H A K T I B A L A 

Let E be the set of all entire functions f(s)= ^ an e5*" defined by an 
neN 

everywhere' convergent Dirichlet series whose exponents are subjected to the 

condition lim sup ~?% n- = D e R+U {0} (R+ is the set of positive reals). Also 

let Iz(<xtf) be the quadratic mean function of an feE, on Re(i)=o-, 
T 

defined as I a ( f f ( / ) = lim - J — / |/(cr+i7)| 2 dt. In this paper we have 
r - + » 2T J 

—T 
studied a few results pertaining to the function 7a. 

1. Let E be the set of mappings f: C-> C (C is the complex field) 

such that the image under / of an element i e C is f(s) = ^ a n ex" with 
neN 

lim sup = D G J ? + U {0} (R+ is the set of positive reals), and o{ = + 0 0 

(a/ is the abscissa of convergence of the Dirichlet series defining/); N is the 
set of natural numbers 0, 1, 2 <an | n e N > is a sequence in C, s= cr-f it, 
CT, teR(Ji is the field of reals), and < Xn | nsN> is a strictly increasing 
unbounded sequence of nonnegative reals. Since the Dirichlet series defining / 
converges for each seC, f is an entire function. Also, since D e R+ u {0}, we 
have (p], p. 168), a f—+°° {&{ is the abscissa of absolute convergence of the 
Dirichlet series defining / ) and that / is bounded on each vertical line 
Re (s) = a 0 . 

Let fe E be an entire function. The maximum modulus function M of / , 
on any vertical line Re (s) = a, is defined as 

M(G ,f) = sup { + it) | }, vo- < (1.1) 

the maximum term function fi, for Re (s) = a, in the Dirichlet series defining / , 
is defined as 

^ ( a ) / ) = m a x { | f l J ^ » } ; V o - < a / , (1.2) 
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and the quadratic mean function I 2 of / , on Re (s) ~ a, is defined as 
r 

I2(v,f) = lim - L f \f(p+it)Pdt, vv<af. (1.3) 
T-+«> IT J 

In this paper we study a few results regarding the function I 2 . 

2. First we show that : 

Theorem 1. I f / , geE are two entire functions such that for any i e C , 

f(s) = e A m , g(s) = ^ b n , and h is the Dirichlet product of / and 

g> i.e. for any seC, h(s) = ^ CP E™P where cp = ^ amK> ^•ea h^K 
p€N 

and 

V(v,h)<(I2(<y,f) I2(o,g)y12. (2.1) 

Proof, h e E follows from the fact [ 2] that E is an algebra. Also, we 
have 

1 ^ = 1 2 

^ 2 k j i ^ i ^ ^ ' 0 

< ( / 2 ( a , / ) / 2 (o- , s ) ) 1 / 2 , 
in view of the fact ([ 3 ] , formula (2.2)) that for any feE, 

I2(<5 ,f) = ^ I an I 2 e 2 o J i " • Since the last inequality is true for all p , i t follows 
neN 

that 
u ( c , A ) < ( / 2 ( o - , / ) / . ( o - ^ ) ) 1 ' 2 . 

We give below two interesting applications of (2.1). 

i) If f,g,h are of Ritt orders p r , p 2 , and p, respectively, then 

p < p, + p 2 ; (2.2) 

a result established otherwise by the first author ([ 4 ] , Theo. 1). 
The result in (2.2) follows from (2.1) and the following facts : a) that for 

any entire function feE of Ritt order pei?+ U {0}, in view of ([ 5 ] , Theo. 5),. 
([ 6 ] , Theos. 2.7 and 2.8), and ([3J, Theo. 3), respectively, 
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log log M(<5 , / ) log log , / ) 
p = lira sup — — —-—— == lim sup a-i+co CT . . «-*+«> (T 

(2.3) 
= lim sup log log/2(cr ,f) 

and b) that ([ 3 ] , Theo. 1) logI 2 (ex, /) is an increasing convex function of o\ 

Remark. The result in the last equality in (2.3) although has; been 
established for entire function f e E of Ritt order p e R+ and for D = 0, but 
by a slight modification in the argument the result holds for any feE. 

ii) I f / , g, h are of the same Ritt order p e i? + and types 71, , T2 and T, 
respectively, then 

r < 7 \ + r 2 ; (2.4) 
a result established otherwise by the first author ([ 4 ], Theo. 2). 

As previously, the result in (2.4) follows from (2.1), in view of the fact, 
that for any entire function feE of Ritt order peR+ and type TeR% U {0}, 
we have, in view of ([ 5 ] , Theo. 5), ([ 7 ], Theo. 5), and ([ 3 ] , Theo. 3), respectively, 

_ ,. loB,M(a,f) ,. log u(cr,/") T= hm sup — 2 = lim sup B * J ' = 
1 OCT 4 OfT 

1_, . / « ( 2 - 5 ) 
2 — l o g / 2 ( a , / ) 

= lim sup 

Remark. The result i n the last equality has been proved under the condition 
that D = 0, but is true for any DeR+u {0}. 

Next we find that : 

Theorem 2. Iff e £* is an entire function of Ritt order p e R+ and perfectly 
regular growth and type Te R+, then 

/ 2 ( c T , / ) P r e

p a 

where I'2(G ,f) denotes the derivative of I2(a,/) with respect to o\ 

Proof. From (2.5), we get for any S G R+ and sufficiently large o% 

(2T - e) < log J2 (<r,/) < (2T + e) ep a ' (2.7) 

Also, since log/ 2 (o- , / ) is an increasing convex function of a, we may write 
for any a , c 0 {O- > CT0), 
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1 . ' > , ° 

l o g / 2 ( a , / ) - l o g J a ( a 0 , / ) + f ^ J l d x . (2.8) 
(TO 

Now, for any keR+ U {0}, we have 

J / a ( * , / ) J I2(xJ) J I2(x,f) 
a 0 0 

= log I 2 (or + k,/) - log I 2 (o-,/), in view of (2.8), 
< (2T + e) - {2T - e) ePV in view of (2.7), 
- epa {2T(e"k - 1) + e(e^ + 1)}. (2.9) 

But 

f M^ildx^M^ilk. (2.10) 

J / 2 ( x , / ) / 2 ( x , / ) 
a 

Hence, from (2.9) and (2.10), 

'/£(<*,/) ^ 2 r ( ^ - l ) + s ( ^ + l ) 
I2(a,f)<r Ic 

Since A: is arbitrary but belongs to R4. U {0} and the left hand side of (2.11) 
is independent of k, it follows that 

limsup Iz^? >f) < 2p T. (2.12) 

lim i n f / 2 V U ^ > 2 p T. (2.13) 

Similarly, we can show that 

< i ^ + « I2(a,f)e 

Hence the theorem. 

Theorem 2 leads easily to the following well known fact: 

Corollary 1. I f fe E is an entire function of Ritt order p e R+ and is of 
perfectly regular growth and type TeR+, then it is of regular growth. 

From (2.6) we find that 

i ° g ( T 7 ^ l ~ k ) g 2 p r + p a . 
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Hence 

l j m

 l o g ( J a ( ^ / ) / f 2 ( < r , / ) ) . . . . p > 

a-+«> a 

showing that / is of regular growth, since ([ 8 ] , Formula (7.3.13)), 

l i m ^Z(l2(*J)lh(v>f)) l j m l o g l o g / 2 ( f f , / ) 
o-* + <» O" (7-» + » . O" 

Remark. Since the lower type of entire functions in E of irregular growth 
is always zero ([ 9 ] , p. 250), with the same argument, it can be shown that 
Theorem 2 holds for such functions also. 
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Ö Z E T 

E, üsleri lim sup * o g n . = DeR+U {0} koşulunu gerçekleyen, her yer-, 
n-tco A n 

de yakınsak bîr Dirichlet serisi ile tanımlanan bütün f(s) = ^ « w e1*» t a r a 

/16İV 

fonksiyonlarının cümlesini göstersin. h(v,f) de Re(i)=o" üzerinde b i r / e £ " 
T 

n i n / a ( t r , / ) = lim —i— / \f(^+it)\z di şeklinde tanımlanan kuadratilc 
3--.+«) 2T J 

—T 
ortalama fonksiyonu olsun. Bu çalışmada 72 fonksiyonuna ilişkin bazı so­
nuçlar elde edilmektedir. 


