ON A TYPE OF P-SASAKIAN MANIFOLD**

U.C. DE-N. GUHA

The object of this paper is to study a type of P-Sasakian manifold in which $R(X, Y) . C=0$ where C is the conformal curvature tensor, R is the Riemannian curvature and $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y.

INTRODUCTION

Let (M^{n}, g) be an n-dimensional Riemannian manifold admitting a 1 -form η which satisfies the conditions

$$
\begin{gather*}
\left(\nabla_{H} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)=0 \tag{1}\\
\left(\nabla_{S} \nabla_{Y} \eta\right)(Z)=-g(X, Z) \eta(Y)-g(X, Y) \eta(Z)+2 \eta(X) \eta(Y) \eta(Z) \tag{2}
\end{gather*}
$$

where ∇ denotes the operator of covariant differentiation with respect to the metric tensor g. If moreover ($M^{\prime \prime}, g$) admits a vector field ξ and a (1-1) tensor field ϕ such that

$$
\begin{align*}
g(X, \xi) & =\eta(X) \tag{3}\\
\eta(\xi) & =1 \tag{4}\\
\nabla_{X} \xi & =\phi X \tag{5}
\end{align*}
$$

then such a manifold is called a para Sasakian manifold or briefly a P-Sasakian manifold by I. Sato and K. Matsumoto [1], [²]. This paper deals with a type of P-Sasakian manifold in which

$$
\begin{equation*}
R(X, Y) \cdot C=0 \tag{6}
\end{equation*}
$$

where C is the conformal curvature tensor, R is the Riemannian curvature and $R(X, Y)$ is considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X, Y. In this connection we mention the work of T. Adati and T. Miyazawa [3], [4], T. Adati and K. Matsumoto ['] who studied P-Sasakian manifolds. Also we can mention the works of K. Sekigawa [${ }^{6}$], Z. I. Szabo [], L. Verstraelen [${ }^{5}$], M. Petrovic-Torgasev and L. Verstraelen [${ }^{9}$] who studied Riemannian manifolds and hyper surfaces of such manifolds satisfying the condition $R(X, Y) . R=0$ or a condition similar to it.

[^0]Let $\left(M^{n}, g\right)$ be an n-dimensional Riemannian manifold admitting a 1 -form η which satisfies the condition

$$
\left(\nabla_{X} \eta\right)(Y)=-g(X, Y)+\eta(X) \eta(Y) .
$$

If moreover $\left(M^{n}, g\right)$ admits a vector field ξ and a (1-1) tensor field ϕ such that conditions (3), (4) and (5) are satisfied, then it has been called a special P-Sasakian manifold or briefly a SP-Sasakian manifold [${ }^{1}$], [2] . In this paper it is proved that if in a P-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ the relation (6) holds then the manifold is conformally flat and hence is an SP-Sasakian manifold. Also it is shown that a conformally symmetric P-Sasakian manifold (M^{n}, g) $(n>3)$ is an SP-Sasakian manifold [n has been taken >3 because it is known that $C=0$, when $n=3$].

1. PRELIMINARIES

It is known $\left[{ }^{1}\right],\left[^{2}\right]$ that in a P-Sasakian manifold the following relations hold:

$$
\begin{gather*}
\phi \xi=0 \tag{1.1}\\
\phi^{2} X=X-\eta(X) \xi \tag{1.2}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{1.3}\\
S(X, \xi)=-(n-1) \eta(X) \tag{1.4}\\
\eta(R(X, Y) Z)=g(X, Z) \eta(Y)-g(Y, Z) \eta(X) \tag{1.5}\\
R(\xi, X) Y=\eta(Y) X-g(X, Y) \xi \tag{1.6}\\
R(\xi, X) \xi=X-\eta(X) \xi \tag{1.7}\\
R(X, Y) \xi=\eta(X) Y-\eta(Y) X . \tag{1.8}
\end{gather*}
$$

The above results will be used in the next section.
2. P-SASAKIAN MANIFOLD SATISFYING $R(X, Y) . C=0$

We have

$$
\begin{gather*}
C(X, Y) Z=R(X, Y) Z-\frac{1}{n-2}[g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X- \\
- \tag{2.1}
\end{gather*}
$$

where S is the Ricci tensor, r is the scalar curvature and Q is the symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor $S\left[{ }^{10}\right]$, i.e.

$$
g(Q X, Y)=S(X, Y)
$$

Therefore

$$
\begin{align*}
\eta(C(X, Y) Z) & =g(C(X, Y) Z, \xi)= \\
& =\frac{1}{n-2}\left[\left(\frac{r}{n-1}+1\right)(g(Y, Z) \eta(X)-g(X, Z) \eta(Y))-\right. \\
& -(S(Y, Z) \eta(X)-S(X, Z) \eta(Y))] \tag{2.2}
\end{align*}
$$

Putting $Z=\xi$ in (2.2) we get

$$
\begin{equation*}
\mathfrak{\eta}(C(X, Y) \xi)=0 \tag{2.3}
\end{equation*}
$$

Again putting $X=\xi$ in (2.2) we get

$$
\begin{align*}
\eta(C(\xi, Y) Z) & =\frac{1}{n-2}\left[\left(1+\frac{r}{n-1}\right) g(Y, Z)-S(Y, Z)-\right. \\
& \left.-\left(\frac{r}{n-1}+n\right) \eta(Y) \eta(Z)\right] \tag{2.4}
\end{align*}
$$

Now

$$
\begin{aligned}
(R(X, Y) . C)(U, V) W & =R(X, Y) C(U, V) W-C(R(X, Y) U, V) W- \\
& -C(U, R(X, Y) V) W-C(U, V) R(X, Y) W
\end{aligned}
$$

In virtue of (6) we get

$$
\begin{align*}
& R(X, Y) C(U, V) W-C(R(X, Y) U, V) W- \\
- & C(U, R(X, Y) V) W-C(U, V) R(X, Y) W=0 . \tag{2.5}
\end{align*}
$$

Therefore

$$
\begin{align*}
& g(R(\xi, Y) C(U, V) W, \xi)-g(C(R(\xi, Y) U, V) W, \xi)- \\
- & g(C(U, R(\xi, Y) V) W, \xi)-g(C(U, V) R(\xi, Y) W, \xi)=0 . \tag{2.6}
\end{align*}
$$

From this it follows that

$$
\begin{align*}
{ }^{\prime} C(U, V, W, Y) & -\eta(Y) \eta(C(U, V) W)+\eta(U) \eta(C(Y, V) W)+ \\
& +\eta(V) \eta(C(U, Y) W)+\eta(W) \eta(C(U, V) Y)- \\
& -g(Y, U) \eta(C(\xi, V) W)-g(Y, V) \eta(C(U, \xi) W)- \\
& -g(Y, W) \eta(C(U, V) \xi)=0 \tag{2.7}
\end{align*}
$$

where

$$
{ }^{\prime} C(U, V, W, Y)=g(C(U, V) W, Y) .
$$

Putting $Y=U$ in (2.7) we get

$$
\begin{align*}
C(U, V, W, U) & -\eta(U) \eta(C(U, V) W)+\eta(U) \eta(C(U, V) W)+ \\
& +\eta(V) \eta(C(U, U) W)+\eta(W) \eta(C(U, V) U)- \\
& -g(U, U) \eta(C(\xi, V) W)-g(U, V) \eta(C(U, \xi) W)- \\
& -g(U, W) \eta(C(U, V) \xi)=0 \tag{2.8}
\end{align*}
$$

Let $\left\{e_{i}\right\}, i=1,2, \ldots, n$ be an orthonormal basis of the tangent space at any point. Then the sum $1 \leq i \leq n$ of the relation (2.8) for $U=e_{i}$ gives

$$
\begin{equation*}
\eta(C(\xi, V) W)=0 \tag{2.9}
\end{equation*}
$$

Using (2.3) we have from (2.7)

$$
\begin{align*}
& C(U, V, W, Y)-\eta(Y) \eta(C(U, V) W)+\eta(U) \eta(C(Y, V) W)+ \\
& \quad+\eta(V) \eta(C(U, Y) W)+\eta(W) \eta(C(U, V) Y)- \\
& \quad-g(Y, U) \eta(C(\xi, V) W)-g(Y, V) \eta(C(U, \xi) W)=0 \tag{2.10}
\end{align*}
$$

In virtue of (2.4) and (2.9) we have

$$
\begin{equation*}
S(V, W)=\left(\frac{r}{n-1}+1\right) g(V, W)-\left(\frac{r}{n-1}+n\right) \eta(V) \eta(W) \tag{2.11}
\end{equation*}
$$

Using (2.2), (2.3) and (2.11) the relation (2.10) reduces to

$$
\begin{equation*}
{ }^{\prime} C(U, V, W, Y)=0 \tag{2.12}
\end{equation*}
$$

From (2.12) it follows that

$$
\begin{equation*}
C(U, V) W=0 \tag{2.13}
\end{equation*}
$$

Thus we can state the following theorem :
Theorem 1. A P-Sasakian manifold $\left(M^{n}, g\right)(n>3)$ satisfying the relation $R(X, Y) . C=0$ is conformally flat and hence is an SP-Sasakian manifold [$\left.{ }^{11}\right]$.

For a conformally symmetric Riemannian manifold $\left[{ }^{12}\right]$ we have $\nabla C=0$. Hence for such a manifold $R(X, Y) . C=0$ holds. Thus we have the following corollary of the above theorem :

Corollary. A conformally symmetric P-Sasakian manifold ($\left.M^{n}, g\right)(n>3)$ is an SP-Sasakian manifold [${ }^{13}$].

REFERENCES

1'] SATO, I.
[] SATO, I. and MATSUMOTO, K.
: On a structure similar to the almost contact structure, Tensor, N.S., 30 (1976), 219-224.
: On P-Sasakian manifolds satisfying certain conditions, Tensor, N.S., 33 (1979), 173-178.
[] ADATI, T. and MIYAZAWA, T.
["] ADATI, T. and MIYAZAWA, T.
[5] ADATI, T. and MATSUMOTO, K.
[1] SEKIGAWA, K.
[] SZABO, Z.L
[${ }^{8}$] VERSTRAELEN, L. : A survey of relations between intrinsic and extrinsic

I'] PETROVIC-TORGAREV, M. : On the concircular curvature tensor, the projective tensor
[${ }^{19}$] BISHOP, R.L. and GOLDBERG, S. I.
[1] ADATI, T. and MIYAZAWA, T.
[${ }^{13}$] CHAKI, M.C. and GUPTA, B.
[${ }^{3}$] ADATI, T. and MATSUMOTO, K.
properties for hypersurfaces, Topics in Diff. Geom., Vol. I, II, Debrecen, 1984, 1279-1296. and VERSTRAELEN, L. and the Einstein curvature tensor of Bochner-Kahler manifolds, Math. Rep. Toyama Univ., 10 (1987), 36-61.
: Some properties of P-Sasakian manifolds, TRU Mathematics, 13-1 (1977), 33-42.
: On P-Sasakian manifolds admitting some parallel and recurrent tensor, Tensor, N.S., 33 (1979), 287-292.
: On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Mathematics, 13-1 (1977), 25-32.
: Almost Hermitian manifolds satisfying some curvature conditions, Kodai Math. J., 2 (1979), 384-405.
: Structure theorems on Riemannian spaces satisfying $R(X, Y) . R=0$, I the local version, J. Diff. Geom., 17 (1982), 531-582. Vol I, I, Debrecen, 1984, 1279-1296.
: On conformally flat spaces with commuting curvature and. Ricci transformations, Canad. J. Math., XXIV, No, 5 (1972), 799-804.
: Some properties of P-Sasakian manifolds, TRU Math., 13 (1977), 33-42.
On conformally symmetric spaces, Indian J. Math., 5 (1963), 113-122.
: On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math., 13 (1977), 25-32.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI
KALYANI 741235
WEST BENGAL
INDIA

OZET

Bu çalı̧mada, C konform eğrilik tensörü, R Riemann egrriligi ve $R(X, Y)$ de tensör cebrinin, manifoldun her bir noktasinda X, Y vektörleri için bir türev fonksiyonu olmak üzere, $R(X, Y) . C=0$ koşulunu gerçekleyen bir tür P-Sasakian manifoldu incelenmektedir.

[^0]: *) 1980 Mathematics subject classification (AMS) : Primary 53C25

