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ON THE ALGEBRAIC INDEPENDENCE OF CERTAIN
TRANSCENDENTAL NUMBERS

M.H. ORYAN
(Dedicated to the emory of 70 th birthday of Professor Orhan §. Igen)

In this paper it is proved by using of Durand’s Lemma that some
transcendental numbers are algebraic independent.
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be a power series with a, €7, a,> 1 and increasing integers e, satisfying the
following conditions ;
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It follows from (2) that the radius of convergence of (1) is infinity and that
the number

log {l. e. m. (ay, a, ..., a,)}

u = lim sup
no o log a,

is finite with 1 < u <

g—1

Tt is proved by the author that for a non-zero algebraic number o of degree
m smaller than o/(2z) f(a) is an U-number of degree < m (See [*, Theorem
2, p. 144},

In this paper we prove the following -
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THEOQOREM. Let f(x) be a power series as in (1) such that (2), (3) and (4)
hold. Let o, ,,..., ¢, be non-zero algebraic numbers with pairwise different
absolute values, Then the numbers f(g,), f(0,) ,..., f (¢, are algebraic independent,

For the proof of the theorem we use the following lemma of A. Durand
[?, Theorem 2, p. 260}

LEMMA 1 (Durand), Let o, ,..., 5,, be complex numbers and assume that

(] o

sequences (o,,,) ..., (5, ,) of algebraic numbers exist with the following
1

A= =1

~ properties :

: 1 )
G 0<|0j41 — Ojgt,n| = . |oj—a;,.] (forj=1,.,m—1)

t na
(ii)0<|cl_cl,n|SH/\(Gjun) Sj!
==l

where 8 = [Q (0,,,33 Tn. ) Ql and &, = [Q(5;, ) : Q.

Then the numbers o,,..., ¢, are algebraic independent.

Proof of Theerem. Let K —Q(u,...,0,), d=[K:Q] and
0<|om|<|o, <. <|o].

It holds 1 =u =

" and a, < 4, < a“*t= for nz=n,, € >0 sufficiently
g —

small, where A, =1 c.m. (g, ,...,a,). Let
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It follows from (2) that lim ! -0, Therefore we obtain for nz=n () = n,
nre Apiy
2. gy |+t
|7, | = 2 do [t (5)
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Moreover we have from (5) for # = u, (o)) = n, (v;)

P
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‘We have further from (6)
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So we obtain for # = n, (0;)
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We obtain for N > N, = max (n, (0,),..., 1, (@,))
4 o, BNt
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for | =j=m,if 2n < |—2—|™" | Because of min |—2—|>1 it exists
Oy, 1=i<m| oy,

for every neN a natural number N, = N,(n, o,,...,0,) such that for all
ay

N = N, it holds
)’N+1
Giyq

For arbitrary neN we get (8) for 1 < j<'m and for N = max (N,, N,)
which is the first condition of Durand’s lemma.

2n < min
1=ji<m

For the proof (ii) we need the following lemma of Cijsouw and Tijdemann
[}, Lemma 1, p.302] .

LEMMA 2. Let o be an algebraic number of degree m and height H,
Suppose d is a positive integer such that 4 ¢ is an algebraic integer. Then

apy
For sufficiently large » and for sufficiently small g, > 0 we get from (4)
and Lemma 2 that

H=(2d.max(l,

H(o;,,) < awdter, (9)
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We have therefore
A (o,0) =2 L(o;,) .
=29 (1+3(c;,w) - Hoj, ) =22.(1 + ). aigre

and

__ 8
A ©w) 20N < A (o, ) = 27 (L) a0

Because of (3) for every ne N there exists an integer N, = N, (1, o, ,..., &)

such that for infinitly many N = N, it holds

4 a, |°n+ i S L.
0<|[fla) — o x| <— . !ALJ—<IE A (o5, ) 2N, (10
] 3 AN J= .
To every nelN we correspond the least integer N for which
N >max (N, N,,N,) and (10) hold. ‘We call this integer ¥ (x). We put in
Durand’s Lemma _
O . =0Cj yim for j=1L2,...,m;n=1,2,._,

so we obtain the conditions (i) and (i) from (8) and (10). Hence the theorem is
proved.
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Bu ¢alismada Durand Lemmas:- kulianilarak bazi transandant sayi-
_larm cebirsel bajiimstz _olduklarl gisterilmektedir.
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