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A NOTE ON ABSOLUTE o-SUMMABILITY
E. SAVAS

The purpose of this paper is to introduce and discuss the spaces of
absolutely ¢ - summable sequences.

1. INTRODUCTION

Let S be the set of all sequences real or complex and let /,, ¢ and ¢,
denote, respectively the Banach spaces of bounded, convergent and null sequences
normed as usual by || x || = sup |x.].

k

Iet o be a one-to-one mapping of the set of positive integers into itself
such that ¢™ (m)s¢n for all positive integers # and m where o™ (n) = o (c" ' (n)),
m=1,2,.... A continuous linear functional ¢ on /. , ¢ is an invariant mean or
o-mean if (i) ¢(x) = 0 when the sequence x = (x,) has x, = 0 for all n,
(i) ¢ (€) = 1, where e = (1, 1,...) and (i) ¢ (x, ;) = ¢ (x), for all x € ls, when
o(n) =n -+ 1, a o~-mean is often called a Banach limit (see, Banach [']) and
V., the set of bounded sequences all of whose invariant means are equal, is
the set of almost convergent sequences (see, Lorentz [?]).

If x == (x,), we write Tx = (X, (). The space ¥, can be characterized either
{i) as the set of all bounded sequences x for which there is an L so that
lim ¢,,(x) = L uniformly in » where
H-

b (%) = m}i-l (zm;T"(x))n n=12,..

i=0

(the » th component of the sequence) or (i) as the set of “all bounded sequences

! 1 Z T' (x) is of the form I e, where L— 6~ lim x (sce,

f=0

for explanation [°] and [7]).

x for which lim
m M

Put -
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\I’mn (x) = I (.)C) Iyt (x) .

A straightforward calculation shows that,

< . .
T o)=Yy — i(Tix, — T 'x), (m>1
=) s D iWn =), )
j=1
| X, , (m=10).

Let (p,) be a sequence of real numbers such that p, > 0 and sup p,,< c=.
We define (see, Savas [*),

I°(p) = ? X : Z | ¥, (x) {#" converges uniformly in n

m

1 (p) = § X1sup > | ¥y, () | < oo

If p,, = p for all m we write /7 and I'% in place of /° (p) and 1" (p). f
p =1, we write [ for /7 and this denotes the set of all absolutely o - convergent
sequences (see, Savas [6])

Let A = (a,z) be an infinite matrix of real or complex numbers. We write

Ax = (4, (x)) if A, (x) = Z au Xy, converges for each n.

Let X and Y be any two nonempty subsets of S. If x = (x,)eX then
Ax=(4,(x))eY. We say that A defines a matrix transformation from X
into ¥ and we denote it by 4: X — Y. By (X,¥) we mean the class of
matrices A such that A: X — ¥, If in X and Y there is some notion of limit
or sum, then we write (X, ¥, P) to denote the subset of (X Y) which preserves
the limit or sum.

The summability methods of real or complex sequences by infinite matrices
are of three types (see, Maddox [*], p. 185) - ordinary, absohite and strong. In
the same it is expected that the concept of invariant mean must give rise to three
types of summability methods - invariant, absolute invariant and strongly invariant,
The o-summable sequences were introduced by Raimi [°] and discussed by
Schaefer [°] and some others. The spaces of strongly o -summable sequences have
been discussed by Savag [¢,7]. -

The purpose of this paper is to introduce and discuss the spaces of absolutely
o - summable sequences. Also some matrix transformations have been characterized.
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2. ABSOLUTE o-SUMMABILITY
We define, ‘
| f)iu 2 —é x Z | F,..(4Ax)] 7" converges uniformly in » g

m
| Aus 2| = ?x: SUp D' | ¥, () | 7 < o.o%

where

¥, (Ax) :Z an, k? #1) %,
k
is such that

a{n k,m) = m zj(a(cf_(n),k) %a(_cf“‘ m,k); mz=1
=

\ Dyxe ; m=0.
The notation a(n, k) denotes the element a,, of the matrix A. If p,, = p
for all m we write { A, |, and | A, |, for | A,, p| and | 4,., p | respectively.
When o{(#) ==n+ 1, |A,,p| and |A4,.,,p| become |1f,p| and |ff,p|
which are studied in [*. =~ . :
We have

THEOREM 1. |A4,.,p|c|4..,P].

The proof follows on the same lines as adopted by Savag [}] for 17 (p).
So we omit it,

REMARK. It is now a pertinent question, whether |A.,,p| < |4,,p]|.
We are not able to answer this question and it remains open,

A linear topological X is called a paranormed space if there exists a

subadditive function g: X —> R* such that g(0) =0, g(x) =g( -~ x) and
A—rdy, x—x, imply A x —>Ayx, for he Cand x ¢ X

We now have

THEOREM 2. (i) | 4., p| is a linear topological space paranormed by
: %
g —sup ( | > atn ke my x| )" @
# m k

where M — max (I, sup p,).

(ii)IAu‘JpICIAuaql forpmsqm'
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Proof, From Theorem 1, (2.1) is true for x € | A,, p|. It can be proved
by “standard” arguments that g is a paranorm on ] A, , p|. First, we will claim
that for a fixed x, Ax —+0 as A ——0. For, if x € | 4., p|, then given >0
there exists a K such that, for all n, .

z’Za(n,k,m)xklp”’<e. 2.2)
} m=K k
Soif 0 <A <1, then
Z|Zla(n,k,m)xk‘pm QZlZa(n,k,m)xk p"’<a,
m=K k m=K k

and since for fixed K,
K—1

Z(Z »a(n, k, m) x, l" —0

=0 k

as A —— 0.

If p,, = p for all m, then g is a norm for p 2 1 and p-norm for 0 < p <1.
To prove (ii), let x € | 4,, p|. Then there exists an integer K such that

Z'Z an, ke, m)x,

m=K k

2
mgl.

Hence form = K IZ gk, m)x, | <1
k

and

' Z an, k, m) x,
k

Z a(n, k, m) x; Ip"' therefore follows from that
k

? P
”' lea(n,k,m)xk| ™.
k

The uniform convergence of

qm '

of IZ am, k, m) x,
2

THEOREM 3, Letinfp, > 0. Then | 4., , p| is a linear topological space
paranormed by g.

Praof. The proof is routine, but there exists an essential difference between
the proof of Theorem 3 and that of Theorem 2 (i). If x e | 4., p| then (2.2)
is not true (by definition). We now use the assumption that inf p, > 0.

Let 0= inf p, such that 0> 0. Then for [A|<<1,|[A]"n < [X]% so
that g(Ax) < |A|° £(x). The result now clearly follows.
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3. MATRIX TRANSFORMATIONS

In this section we consider matrix transformations between some classes
of sequences.

THEOREM 4. A e (/,1°°, p) if and only if

iu;? ; Va(n, k, m)| < oo 3.0

Satkm=1 (vnk). (.2)

m

The condition (3.1) is necessary and sufficient for A4 € (/, I”°) as mentioned
in [%. ‘

To prove the sufficiency of (3.2) we have
DA =D > alkmx,
[ . L k Tl
= Zxk Za(n, k, m):z:x,,c
k " k

the change of order of summation in the above step is justified by absolute
‘COTMVETZENCE, :

To prove the necessity of (3.2), suppose that 4 e ({,I°°, P), that is, we

are given that
D ¥, 4D =D x. (3.3)
m k

For a fixed re Zt , define x, as

; 1, k=r

X = ’ 7

0, ks=r.

Then (3.3) reduces to condition (3.2) and by assumption r is fixed the result

follows.

Next we have

THEOREM 5. Yor 1< p < o, (/,/]7)is a Banach space normed by

n,om

[l =su (> latnkmi? ). 3.4
k

(I, 1°°, P) is closed and convex in (/,1°). 3.5
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The proof uses ideas similar-to those used in characterising (7, /).

REMARK. The space (c, V) is a Banach space and (c, V,, P) is closed
and convex in (¢, V). These results do not appear anywhere but can be proved
as in Maddox in [*].
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Bu caligmada mutlak o - toplanabilir dizi uzaylar incelenmektedir.




