A NOTE ON ABSOLUTE σ-SUMMABILITY

E. SAVAŞ

The purpose of this paper is to introduce and discuss the spaces of absolutely σ-summable sequences.

1. INTRODUCTION

Let S be the set of all sequences real or complex and let l_{∞}, c and c_{0} denote, respectively the Banach spaces of bounded, convergent and null sequences normed as usual by $\|x\|=\sup _{k}\left|x_{k}\right|$.

Let σ be a one-to-one mapping of the set of positive integers into itself such that $\sigma^{m}(n) \neq n$ for all positive integers n and m where $\sigma^{m}(n)=\sigma\left(\sigma^{m-1}(n)\right)$, $m=1,2, \ldots$. A continuous linear functional ϕ on l_{∞}, c is an invariant mean or σ-mean if (i) $\phi(x) \geqslant 0$ when the sequence $x=\left(x_{n}\right)$ has $x_{n} \geqslant 0$ for all n, (ii) $\phi(e)=1$, where $e=(1,1, \ldots)$ and (iii) $\phi\left(x_{\sigma(n)}\right)=\phi(x)$, for all $x \in l_{\infty}$, when $\sigma(n)=n+1$, a $\sigma-$ mean is often called a Banach limit (see, Banach [1]) and V_{σ}, the set of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences (see, Lorentz $\left[^{2}\right]$).

If $x=\left(x_{n}\right)$, we write $T x=\left(x_{\sigma(n)}\right)$. The space V_{σ} can be characterized either (i) as the set of all bounded sequences x for which there is an L so that $\lim t_{m n}(x)=L$ uniformly in n where

$$
t_{m n}(x)=\frac{1}{m+1}\left(\sum_{i=0}^{m} T^{i}(x)\right)_{n} n=1,2, \ldots
$$

(the nth component of the sequence) or (ii) as the set of all bounded sequences x for which $\lim _{m} \frac{1}{m+1} \sum_{i=0}^{m} T^{i}(x)$ is of the form $L e$, where $L=\sigma-\lim x$ (see, for explanation $[5]$ and $\left[{ }^{9}\right]$).

Put

$$
\Psi_{m n}(x)=t_{m n}(x)-t_{m-1, n}(x)
$$

A straightforward calculation shows that,

$$
\Psi_{m n}(x)=\left\{\begin{array}{cc}
\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left(T^{j} x_{n}-T^{j-1} x_{n}\right), & (m \geqslant 1) \\
x_{n} & ,(m=0)
\end{array}\right.
$$

Let $\left(p_{m}\right)$ be a sequence of real numbers such that $p_{m}>0$ and $\sup p_{m}<\infty$. We define (see, Savaş [$\left.{ }^{8}\right]$),

$$
\begin{aligned}
l^{\sigma}(p) & =\left\{x: \sum_{m}\left|\Psi_{m n}(x)\right|^{p_{m}} \text { converges uniformly in } n\right\} \\
l^{\sigma \sigma}(p) & =\left\{x: \sup _{n} \sum_{m}\left|\Psi_{m n}(x)\right|^{p_{m}}<\infty\right\}
\end{aligned}
$$

If $p_{m}=p$ for all m we write l_{p}^{σ} and $l_{p}^{\text {sa }}$ in place of $l^{\sigma}(p)$ and $l^{\sigma \sigma}(p)$. If $p=1$, we write l^{σ} for l_{p}^{σ} and this denotes the set of all absolutely σ-convergent sequences (see, Savaş $\left[{ }^{6}\right]$).

Let $A=\left(a_{n k}\right)$ be an infinite matrix of real or complex numbers. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for each n.

Let X and Y be any two nonempty subsets of S. If $x=\left(x_{k}\right) \in X$ then $A x=\left(A_{n}(x)\right) \in Y$. We say that A defines a matrix transformation from X into Y and we denote it by $A: X \longrightarrow Y$. By (X, Y) we mean the class of matrices A such that $A: X \longrightarrow Y$. If in X and Y there is some notion of limit or sum, then we write (X, Y, P) to denote the subset of (X, Y) which preserves the limit or sum.

The summability methods of real or complex sequences by infinite matrices are of three types (see, Maddox $\left[^{3}\right]$, p. 185) - ordinary, absolute and strong. In the same it is expected that the concept of invariant mean must give rise to three types of summability methods - invariant, absolute invariant and strongly invariant. The σ-summable sequences were introduced by Raimi [${ }^{5}$] and discussed by Schaefer [${ }^{9}$] and some others. The spaces of strongly $\sigma-$ summable sequences have been discussed by Savaş [$\left.{ }^{6},{ }^{7}\right]$.

The purpose of this paper is to introduce and discuss the spaces of absolutely σ-summable sequences. Also some matrix transformations have been characterized,

2. ABSOLUTE σ-SUMMABILITY

We define,

$$
\begin{aligned}
& \left|\ddot{A}_{\sigma}, p\right|=\left\{x: \sum_{m}\left|\Psi_{m n}(A x)\right|^{p_{m}} \text { converges uniformly in } n\right\} \\
& \left|A_{\sigma \sigma}, p\right|=\left\{x: \sup _{n} \sum_{m}\left|\Psi_{m n}(A x)\right|^{p_{m}}<\infty\right\}
\end{aligned}
$$

where

$$
\Psi_{m n}(A x)=\sum_{k} a(n, k, m) x_{k}
$$

is such that

$$
a(n, k, m)=\left\{\begin{array}{cc}
\frac{1}{m(m+1)} \sum_{j=1}^{m} j\left(a\left(\sigma^{j}(n), k\right)-a\left(\sigma^{j-1}(n), k\right)\right) ; & m \geqslant 1 \\
a_{n k} & ; \\
\therefore \quad & m=0
\end{array}\right.
$$

The notation $a(n, k)$ denotes the element $a_{n k}$ of the matrix A. If $p_{m}=p$ for all m we write $\left|A_{\sigma}\right|_{p}$ and $\left|A_{\sigma \sigma}\right|_{p}$ for $\left|A_{\sigma}, p\right|$ and $\left|A_{\sigma \sigma}, p\right|$ respectively.

When $\sigma(n)=n+1,\left|A_{\sigma}, p\right|$ and $\left|A_{\sigma \sigma}, p\right|$ become $|\hat{A}, p|$ and $|\hat{A}, p|$ which are studied in [${ }^{4}$].

We have
THEOREM 1. $\left|A_{\sigma}, p\right| \subset\left|A_{\sigma \sigma}, p\right|$.
The proof follows on the same lines as adopted by Savas $\left.{ }^{8}\right]$ for $l^{\sigma}(p)$. So we omit it.

REMARK. It is now a pertinent question, whether $\left|A_{\sigma \sigma}, p\right| \subset\left|A_{\sigma}, p\right|$.
We are not able to answer this question and it remains open.
A linear topological X is called a paranormed space if there exists a subadditive function $g: X \longrightarrow R^{+}$such that $g(0)=0, g(x)=g(-x)$ and $\lambda \longrightarrow \lambda_{0}, x \longrightarrow x_{0}$ imply $\lambda x \longrightarrow \lambda_{0} x_{0}$ for $\lambda \in C$ and $x \in X$

We now have
THEOREM 2. (i) $\left|A_{\sigma}, p\right|$ is a linear topological space paranormed by

$$
\begin{equation*}
g(x)=\sup _{n}\left(\sum_{m}\left|\sum_{k} a(n, k, m) x_{k}\right|^{p_{m}}\right)^{1 / M} \tag{2.1}
\end{equation*}
$$

where $M=\max \left(1, \sup p_{m}\right)$.
(ii) $\left|A_{\sigma}, p\right| \subset\left|A_{\sigma}, q\right|$ for $p_{m} \leqslant q_{m}$.

Proof. From Theorem 1, (2.1) is true for $x \in\left|A_{\sigma}, p\right|$. It can be proved by "standard" arguments that g is a paranorm on $\left|A_{\sigma}, p\right|$. First, we will claim that for a fixed $x, \lambda x \longrightarrow 0$ as $\lambda \longrightarrow 0$. For, if $x \in\left|A_{\sigma}, p\right|$, then given $\varepsilon>0$ there exists a K such that, for all n,

$$
\begin{equation*}
\sum_{m \geq K}\left|\sum_{k} a(n, k, m) x_{k}\right|^{p_{m}}<\varepsilon \tag{2.2}
\end{equation*}
$$

So if $0<\lambda \leqslant 1$, then

$$
\sum_{m \geq K}\left|\sum_{k} \lambda a(n, k, m) x_{k}\right|^{p_{m}} \leqslant \sum_{m>K}\left|\sum_{k} a(n, k, m) x_{k}\right|^{p_{m}}<\varepsilon,
$$

and since for fixed K,

$$
\sum_{m=0}^{K-1}\left|\sum_{k} \lambda a(n, k, m) x_{k}\right|^{p_{m}} \longrightarrow 0
$$

as $\lambda \longrightarrow 0$.
If $p_{m}=p$ for all m, then g is a norm for $p \geqslant 1$ and p-norm for $0<p<1$. To prove (ii), let $x \in\left|A_{\sigma}, p\right|$. Then there exists an integer K such that

$$
\sum_{m \geq K}\left|\sum_{k} a(n, k, m) x_{k}\right|^{p_{m}} \leqslant 1 .
$$

Hence for $m \geqslant K\left|\sum_{k} a(n, k, m) x_{k}\right| \leqslant 1$
and

$$
\left|\sum_{k} a(n, k, m) x_{k}\right|^{q_{m}} \leqslant\left|\sum_{k} a(n, k, m) x_{k}\right|^{p_{m}}
$$

The uniform convergence of $\left|\sum_{k} a(n, k, m) x_{k}\right|^{p_{m}}$ therefore follows from that of $\left|\sum_{k} a(n, k, m) x_{k}\right|^{q_{m}}$.

THEOREM 3. Let $\inf p_{m}>0$. Then $\left|A_{\sigma \sigma}, p\right|$ is a linear topological space paranormed by g.

Proof. The proof is routine, but there exists an essential difference between the proof of Theorem 3 and that of Theorem 2 (i). If $x \in\left|A_{\sigma \sigma}, p\right|$ then (2.2) is not true (by definition). We now use the assumption that inf $p_{m}>0$.

Let $\theta=\inf p_{m}$ such that $0>0$. Then for $|\lambda| \leqslant 1,|\lambda|^{p_{m}} \leqslant|\lambda|^{\theta}$, so that $g(\lambda x) \leqslant|\lambda|^{9} g(x)$. The result now clearly follows.

3. MATRIX TRANSFORMATIONS

In this section we consider matrix transformations between some classes of sequences.

THEOREM 4. $A \in\left(l, l^{\sigma \sigma}, p\right)$ if and only if

$$
\begin{align*}
& \sup _{n, k} \sum_{k}|a(n, k, m)|<\infty \tag{3.1}\\
& \sum_{m} a(n, k, m)=1 \quad(\forall n, k) . \tag{3.2}
\end{align*}
$$

The condition (3.1) is necessary and sufficient for $A \in\left(l, l^{\sigma \sigma}\right)$ as mentioned in $\left[{ }^{8}\right]$.

To prove the sufficiency of (3.2) we have

$$
\begin{aligned}
\sum_{m} \Psi_{m n}(A x) & =\sum_{m} \sum_{k} a(n, k, m) x_{k} \\
& =\sum_{k} x_{k} \sum_{m} a(n, k, m)=\sum_{k} x_{k}
\end{aligned}
$$

the change of order of summation in the above step is justified by absolute convergence.

To prove the necessity of (3.2), suppose that $A \in\left(l, l^{\sigma \sigma}, P\right)$, that is, we are given that

$$
\begin{equation*}
\sum_{m} \Psi_{m n}(A x)=\sum_{k} x_{k} \tag{3.3}
\end{equation*}
$$

For a fixed $r \in Z^{+}$, define x_{k} as

$$
x_{k}= \begin{cases}1, & k=r \\ 0, & k \neq r\end{cases}
$$

Then (3.3) reduces to condition (3.2) and by assumption r is fixed the result follows.

Next we have
THEOREM 5. For $1 \leqslant p<\infty,\left(l, l_{p}^{\sigma \sigma}\right)$ is a Banach space normed by

$$
\begin{equation*}
\|A\|=\sup _{n, m}\left(\sum_{k}|a(n, k, m)|^{p}\right)^{1 / p} \tag{3.4}
\end{equation*}
$$

$\left(l, l^{\sigma \sigma}, P\right)$ is closed and convex in $\left(l, l^{\sigma \sigma}\right)$.

The proof uses ideas similar to those used in characterising $\left(l, l_{p}\right)$.
REMARK. The space $\left(c, V_{\sigma}\right)$ is a Banach space and $\left(c, V_{\sigma}, P\right)$ is closed and convex in (c, V_{σ}). These results do not appear anywhere but can be proved as in Maddox in [${ }^{3}$].

R-EFERENCES

[${ }^{2}$] BANACH, S. : Théorie des operations linéaires, Warszawa, 1932.
[${ }^{2}$] LORENTZ, G.G. : A contribution to the theory of divergent sequences, Acta Math., 80 (1948). 167-190.
[${ }^{2}$] MADDOX, I.J. : Elements of Functional Analysis, Cambridge Univ. Press, 1970.
[4] NANDA, S . : Absolute almost convergence and absolute almost summability, Rendiconti di Matematica, Series VII, 5 (1985), No. 1-2, 41-49.
[] RAIMI, R.A. : Invariant means and invariant matrix methods of summability, Duke Math. J., 30 (1963), 81-94.
["] SAVAS, E. : On strong σ-convergence, J. Orissa Math. Soc., 5 (1986), 45-53.
$\left.\mathrm{t}^{*}\right]$ SAVAŞ, E. : Strongly σ-summable and strongly σ-convergent sequences, Bull. Cal. Math., 81 (1989), 173-178.
[3] SAVAS, E. : Some sequence spaces involving invariant means, Indian J. Math., 31 (1989), No. 1, 1-8.
[${ }^{[}$] SCHAEFER, P. : Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), (1), 104-110.

DEPARTMENT OF MATHEMATICS
FIRAT UNIVERSITY
ELAZIĞ/TURKEY

ÖZET

Bu çalşsmada mutlak σ - toplanabilir dizi uzayları incelenmektedir.

