COMMUTATIVITY CONDITIONS FOR SEMI-PRIME RINGS *)

HAMZA A.S. ABUJABAL

In the present paper we prove the following: "Let m, n and s be any positive integers, and let R be a semi-prime ring with center Z(R). If R satisfies one of the conditions $x^m y^n - x y^s x \in Z(R)$ or $x^m y^n - y x^s y \in Z(R)$ for each $x, y \in R$, then R is commutative". This result generalized Wei Zongxuan and Khan et al. Also the commutativity of a semi-prime ring has been proved under different set of conditions.

1. INTRODUCTION

Throughout the present paper R will represent an associative ring (may be without unit) with center Z(R). Recently, Wei Zongxuan [5] proved that a semi-prime ring R is commutative if any one of the conditions

$$x^2 y^2 - x y^2 x \in Z(R) \text{ for all } x, y \in R,$$
 (1)

$$x^2 y^2 - y x^2 y \in Z(R)$$
 for all $x, y \in R$ (2)

is satisfied. Later, Khan et al [3] extended the above results. The purpose of the present paper is to generalize the results of Wei Zongxuan [5] and Khan et al [3]. Other commutativity theorems for semi-prime rings are obtained under different set of conditions. By GF(q), we mean the Galois field (finite field) wit q elements,

and
$$(GF(q))_2$$
 the ring of all 2×2 matrices over $GF(q)$. Set $e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$,

$$e_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $e_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ in $(GF(p))_2$ for a prime p .

2. PRELIMINARY RESULT

In preparation for the proof of our results, we need the following lemma:

Lemma ($[^2$, Theorem]). Let f be a polynomial in n non-commuting

^{*)} AMS (1980) Subject classification (1985 Revision): 16 A 70.

Key words and phrases: Semi-prime ring, commutativity, polynomial identity.

indeterminates $x_1, x_2, ..., x_n$ with relatively prime integral coefficients. Then the following are equivalent:

- (1) For any ring satisfying the polynomial identity f = 0, C(R) is a nil ideal.
- (2) For every prime p, $(GF(p))_2$ fails to satisfy f = 0.
- (3) Every semi-prime ring satisfying f = 0 is commutative.

3. MAIN RESULTS

The following is the main results of this paper.

Theorem 1. Let m, n and s be any fixed positive integers, and let R be a semi-prime ring satisfying

$$x^m y^n - x y^s x \in Z(R) \quad \text{for all } x, y \in R. \tag{3}$$

Then R is commutative.

Proof. Let
$$x = e_{11}$$
 and $y = e_{12} + e_{22}$. Then
$$x^m y^n - x y^s x = e_{12} \notin Z(R).$$

Therefore, x and y fail to satisfy (3). Thus R is commutative by Lemma.

Theorem 2. Let m, n and s be any fixed positive integers, and let R be a semi-prime ring satisfying

$$x^{m} y^{n} - y x^{s} y \in Z(R) \quad \text{for all } x, y \in R.$$
 (4)

Then R is commutative.

Proof. If
$$x = e_{11} + e_{12}$$
 and $y = e_{21} + e_{22}$, then
$$x^m y^n - y x^s y = e_{11} + e_{12} - e_{21} - e_{22} \notin Z(R).$$

Thus x and y fail to satisfy (4). Therefore, R is commutative by Lemma.

Theorem 3. Let m and n be fixed non-negative integers, and let R be a semi-prime ring satisfying

$$(yx)^m - xy^n x \in Z(R) \text{ for all } x, y \in R.$$
 (5)

Then R is commutative.

Proof. Let
$$x = e_{12} + e_{21}$$
 and $y = e_{11}$. Now, if $(m, n) = (0, 0)$, then
$$x^2 = e_{11} + e_{22} \notin Z(R).$$

Let m = 0 and $n \ge 1$. Then (5) gives

$$xy^n x = e_{22} \notin Z(R).$$

Next, let (m, n) = (1, 0). Then

$$yx = e_{12} \notin Z(R)$$
.

If m = 1 and $n \ge 1$, then (5) yields

$$yx - xy^n x = e_{12} - e_{22} \notin Z(R).$$

Finally, let m > 1. If n = 0, then

$$(yx)^m - x^2 = e_{11} + e_{22} \notin Z(R).$$

Suppose that $n \ge 1$. Then

$$(yx)^m - xy^n x = e_{22} \notin Z(R).$$

Hence in all cases x and y fail to satisfy (5). Therefore, R is commutative by Lemma.

Corollary 1 ([5 , Theorem]). A semi-prime ring R is commutative if R satisfies one of the following conditions:

- (1) $x^2 y^2 x y^2 x \in Z(R)$ for every $x, y \in R$.
- (2) $x^2 y^2 y x^2 y \in Z(R)$ for every $x, y \in R$.
- (3) $(yx)^2 xy^2x \in Z(R)$ for every $x, y \in R$.

Corollary 2 ([³, Theorem]). Let R be a semi-prime ring. Then the following statements are equivalent:

- (1) R is commutative.
- (2) There exist positive integers m and n such that

$$[x^m y^n - x y^n x, x] = 0$$
 for all $x, y \in R$.

(3) There exist positive integers s and t such that

$$[x^s y^t - y x^s y, x] = 0$$
 for all $x, y \in R$.

Example. The non-commutative ring of 3×3 strictly upper triangular matrices over the ring Z of integers which satisfies the conditions (2) and (3) of Corollary 2 rules out the possibility of extending the results of Theorem 1 and Theorem 2.

Theorem 4. Let m and n be fixed non-negative integers, and let R be a semi-prime ring. If R satisfies

$$(xy)^m - xy^n x \in Z(R) \text{ for all } x, y \in R,$$
 (6)

then R is commutative.

Proof. In case $m \le 1$, let $x = e_{12} + e_{21}$ and $y = e_{22}$. Suppose that (m, n) = (0, 0). Then (6) gives

$$x^2 = e_{11} + e_{22} \notin Z(R)$$
.

If m = 0 and $n \ge 1$, then

$$xy^n x = e_{11} \notin Z(R).$$

Next, let (m, n) = (1, 0). Then

$$xy = e_{12} \notin Z(R).$$

If m = 1 and $n \ge 1$, then

$$xy - xy'' x = -e_{11} + e_{12} \notin Z(R).$$

Now, let m > 1. Suppose that $x = e_{21} + e_{22}$ and $y = e_{22}$. Thus

$$(xy)^m - xy^n x = e_{22} - e_{21} - e_{22} = -e_{21} \notin Z(R).$$

By Lemma, R is commutative.

As a consequence of Theorem 4, we have

Corollary 3 ([4]). A semi-prime ring R satisfying

$$(xy)^2 - xy^2 x \in Z(R)$$
 for every $x, y \in R$

is commutative.

Theorem 5. Let m and n be fixed non-negative integers, and let R be a semi-prime ring satisfying

$$xy^m x - yx^n y \in Z(R)$$
 for every $x, y \in R$. (7)

Then R is commutative.

Proof. Let
$$x=e_{22}$$
 and $y=e_{12}+e_{22}$. Then
$$x\,y^m\,x-y\,x^n\,y=e_{22}-e_{12}-e_{22}=-e_{12}\notin Z(R).$$

Thus x and y fail to satisfy (6). Therefore, R is commutative by Lemma.

Corollary 4 ([1]). If R is a semi-prime ring satisfying

$$xy^2x - yx^2y \in Z(R)$$
 for every $x, y \in R$,

then R is commutative.

REFERENCES

[1] AWTAR, R.

: A remark on the commutativity of certain rings, Proc. Amer. Math. Soc., 41 (1973), 370-372.

['] KEZLAN, T.P.

: A note on commutativity of semiprime P1-rings, Math. Japon., 27 (1982), 267-268.

[3] KHAN, M.A., QUADRI, M.A.: On a commutativity condition for semi-prime rings, and ALI, A.

Acta Sei. Natur. Univ. Jilin, 3 (1989), 37-38.

[4] YUANCHUN, GUO : Acta Sei. Natur. Univ. Jilin, 3 (1982), 13-17.

[5] ZONGXUAN, WEI : A note on the commutativity of semi-prime rings, 5

(1985), 109-110.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KING ABDUL AZIZ UNIVERSITY P. O. BOX 31464, JEDDAH - 21497 SAUDI ARABIA

ÖZET

Bu çalışmada Wei Zongxuan, Khan ve diğerlerinin elde etmiş oldukları sonuçları genelleştiren şu teorem ispat edilmektedir : "m, n, s herhangi üç pozitif tam sayı, R de merkezi Z(R) olan bir yarı-asal halka olsun. Eğer R her x, $y \in R$ için $x^m y^n - x y^s x \in Z(R)$ ve $x^m y^n - y x^s y \in Z(R)$ koşullarından biri gerçekleniyorsa R komütatiftir". Bundan başka, farklı koşullar altında bir yarı-asal halkanın komütatifliği de ispat edilmektedir.