SUBCLASSES OF UNIVALENT MEROMORPHIC FUNCTIONS

A. DERNEK

Let M_{n} be the classes of regular functions $f(z)=z^{-1}+a_{0}+a_{1} z+\ldots$ defined in the annulus $0<\left|z^{\text {g }}\right|<1$ and satisfying $\operatorname{Re} \frac{f^{n+1} f(z)}{I^{n} f(z)}>0$ $(n=0,1,2, \ldots)$, where $I f(z)=f(z)^{*}\left(z^{-1}-z(1-z)^{-2}\right), I^{n} f(z)=1\left(I^{n-1} f(z)\right)$ and ${ }^{*}$ is the Hadamard convolution. We denote by $R_{n}(x ; \beta)$ the set of all functions $f(z)=z^{-1}+a_{0}+a_{1} z+\ldots$ such that

$$
\operatorname{Re}\left\{(x+\beta) \frac{I^{n+1} f(z)}{I^{n} f(z)}-\alpha \frac{I^{n+2} f(z)}{I^{n+1} f(z)}\right\}>0 \quad(|z|<1, \alpha>0, \beta>0)
$$

It is proved that $M_{n+1} \subset M_{n}$ and $R_{n}(x, f) \subset M_{n}$. In particular we obtain the radius of M_{n+1} for the class M_{n}. Further we consider the integrals of functions in M_{n}.

1. INTRODUCTION

Let Σ denote the family of functions of the form $f(z)=\frac{1}{z}+a_{0}+a_{1} z+\ldots$ regular in the annulus $0<|z|<1$. The Hadamard product or the convolution of two functions $f, g \in \Sigma$ will be denoted by $f^{*} g$. The convolution has algebraic properties of ordinary multiplication.

Let $n \in N_{0}=\{0,1,2,3, \ldots\}$. We define a linear operator I^{n} on Σ by
$r^{0} f(z)=f(z)$
$I^{1} f(z)=I f(z)=-z f^{\prime}(z)$
$I^{n} f(z)=I\left(I^{n-1} f(z)\right)=-z\left(I^{n-1} f(z)\right)^{\prime}$.
This operator is an iterated convolution $\left[{ }^{5}\right]$. If $h(z)=\frac{1}{z}-\frac{z}{(1-z)^{2}}$, then

$$
I^{n} f(z)=\left(\left(h * h^{*} \ldots * h\right)^{*} f\right)(z)=\frac{1}{z}+(-1)^{n} \sum_{k=1}^{\infty} k^{n} a_{k} z^{k}
$$

Now we introduce the following classes: Let E denote the unit disc, $\{z:|z|<1\}$. We define the classes M_{n} of funtions $f \in \Sigma$ and satisfying the condition

$$
\operatorname{Re} \frac{I^{n+1} f(z)}{I^{n} f(z)}>0 \quad\left(z \in E, n \in N_{0}\right)
$$

For every $n \in N_{0}, M_{n}$ contains many interesting classes of univalent functions: M_{0} and M_{1} are known classes of univalent functions that are meromorphicaliy starlike and convex respectively. Let

$$
\begin{equation*}
r_{n}(z)=(\alpha+\beta) \frac{I^{n+1} f(z)}{I^{n} f(z)}-\alpha \frac{I^{n+2} f(z)}{I^{n+1} f(z)} \tag{1.1}
\end{equation*}
$$

where $n \in N_{0}$ and α, β are non-negative real numbers. We say that $f \in R_{n}(\alpha, \beta)$, if $f \in \Sigma$ and

$$
\operatorname{Re} \mathrm{r}_{n}(z)>0 \quad\left(z \in E, \alpha>0, \beta>0, n \in N_{0}\right) .
$$

It is clear that $R_{n}(0, \beta)=M_{n}, R_{n}(-1,1)=M_{n+1}$.
In Section 2 we shall show that

$$
\begin{equation*}
M_{n+1} \subset M_{n} \quad\left(n \in N_{0}\right) . \tag{1.2}
\end{equation*}
$$

Methods used are similar to those in [4]. Since M_{0} equals Σ^{*} (the class of meromorphically starlike functions) the univalence of members in M_{n} is a consequence of (1.2). In particular we obtain the radius of M_{n+1} for the class M_{n}.

Note that when $n=0$, this number $2-\sqrt{3}$ is called the radius of convexity for the class of meromorphicaliy starlike functions. Next we shall show that $R_{n}(\alpha, \beta) \subset M_{n}$. For $n=0$ it follows that $R_{0}(\alpha, \beta) \subset \Sigma^{*}$. This result is a generalization of the result obtained by Bajpai-Mehrok in [1]. In Section 3 we study special elements of M_{n} which have certain integral representations. Our results are thus generalizations of the results obtained by Goel-Sohi in [$\left[^{2}\right]$.
2. THE CLASSES M_{n} AND $R_{n}(\alpha, \beta)$

Theorem 1. $M_{n+1} \subset M_{n}$ for all $n \in N_{0}$.
Proof. Let $f \in M_{n+1}$. We define $w(z)$ in E by

$$
\begin{equation*}
\frac{I^{n+1} f(z)}{I^{n} f(z)}=\frac{1-w(z)}{1+w(z)} \tag{2.1}
\end{equation*}
$$

Here $w(z)$ is a regular function in E with $w(0)=0$ and $w(z) \neq-1$ for $z \in E$. Differentiating (2.1) logarithmically we obtain

$$
\begin{equation*}
\frac{I^{n+2} f(z)}{I^{n+1} f(z)}=\frac{1-w(z)}{1+w(z)}+\frac{2 z w^{\prime}(z)}{(1-w(z))(1+w(z))} \tag{2.2}
\end{equation*}
$$

Equation (2.1) should yield $|w(z)|<1$ for all $z \in E$, otherwise by a lemma of Jack [3] there exists $z_{0} \in E$ such that $z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right), m \geqq 1,\left|w\left(z_{0}\right)\right|=1$. Applying this result to (2.2) we get

$$
\operatorname{Re} \frac{I^{n+2} f\left(z_{0}\right)}{I^{n+1} f\left(z_{0}\right)}=0 .
$$

This is a contradiction to the assumption that $f \in M_{n+1}$. Hence $f \in M_{n}$ when $n \in N_{0}$.

Remark. Since M_{0} equals Σ^{*} (the class of starlike functions), it follows from the above theorem that all functions in M_{n} are univalent.

Theorem 2. Let $f \in M_{n}$. Then $\operatorname{Re} \frac{I^{n+2} f(z)}{I^{n+1} f(z)}>0$ holds for $|z|<2-\sqrt{3}$.
Proof. Let $p(z)$ be the regular function defined in E by

$$
\begin{equation*}
\frac{I^{n+1} f(z)}{I^{n} f(z)}=p(z) \tag{2.3}
\end{equation*}
$$

Here $p(0)=1$ and $\operatorname{Re} p(z)>0$ in E. Logarithmic differentiation of (2.3) yields

$$
\begin{equation*}
\frac{I^{n+2} f(z)}{I^{n+1} f(z)}=p(z)-\frac{z p^{\prime}(z)}{p(z)} . \tag{2.4}
\end{equation*}
$$

Using the well-known estimates $\left|\frac{z p^{\prime}(z)}{p(z)}\right| \leqq \frac{2|z|}{1-|z|}$ and $\operatorname{Re} p(z) \geqq \frac{1-|z|}{1+|z|}$, we see from (2.4) that

$$
\begin{equation*}
\operatorname{Re} \frac{I^{n+2} f(z)}{I^{n+1} f(z)} \geqq \operatorname{Re} p(z) \cdot \frac{|z|^{2}-4|z|+1}{1-|z|^{2}} \tag{2.5}
\end{equation*}
$$

Now the right hand side of (2.5) is positive provided $|z|<2-\sqrt{3}$.
Theorem 3. $R_{n}(\alpha, \beta) \subset M_{n}$ for all $n \in N, \alpha>0$ and $\beta>0$.
Proof. Suppose $f \in R_{n}(\alpha, \beta)$ and

$$
\begin{equation*}
\frac{I^{n+1} f(z)}{I^{n} f(z)}=\frac{1-w(z)}{1+w(z)} \quad(z \in E) \tag{2.6}
\end{equation*}
$$

Then $w(z)$ is regular in E with $w(0)=0, w(z) \neq-1$. To complete the proof we need to show that $\operatorname{Re} \frac{1-w(z)}{1+w(z)}>0, z \in E$. Taking the logarithmic derivative of both sides of (2.6) we get

$$
\begin{equation*}
\frac{I^{n+2} f(z)}{I^{n+1} f(z)}=\frac{1-w(z)}{1+w(z)}+\frac{2 z w^{\prime}(z)}{(1-w(z))(1+w(z))} \tag{2.7}
\end{equation*}
$$

Substituting from (2.6) and (2.7) in (1.1) we obtain

$$
\begin{equation*}
r_{n}(z)=\beta \frac{1-w(z)}{1+w(z)}-\alpha \frac{2 z w^{\prime}(z)}{(1-w(z))(1+w(z))} \tag{2.8}
\end{equation*}
$$

The conclusion of the theorem from (2.8) follows as in Theorem 1.

3. SPECIAL ELEMENTS OF M_{n}

Theorem 4. Let $n \in N_{0}$ and $c>0$. If $f \in M_{n}$, then

$$
\begin{equation*}
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t \tag{3.1}
\end{equation*}
$$

also belongs to M_{n} for $F(z) \neq 0$ in $0<|z|<1$.
Proof. Since

$$
z F^{\prime}(z)=c f(z)-(c+1) F(z)
$$

it can be easily verified that

$$
\begin{equation*}
I^{n+1} F(z)=(c+1) I^{n} F(z)-c I^{n} f(z) . \tag{3.2}
\end{equation*}
$$

Let $w(z)$ be the regular function in E defined by

$$
\begin{equation*}
\frac{I^{n+1} F(z)}{I^{n} F(z)}=\frac{1-w(z)}{1+w(z)} \quad(z \in E) . \tag{3.3}
\end{equation*}
$$

Obviously $w(0)=0, w(z) \neq-1$ for $z \in E$. Logarithmic derivative (3.3) and using (3.2) we obtain

$$
\begin{equation*}
\frac{I^{n+1} f(z)}{I^{n} f(z)}=\frac{1-w(z)}{1+w(z)}-\frac{2 z w^{\prime}(z)}{(1+w(z))(c+(c+2) w(z))} \tag{3.4}
\end{equation*}
$$

We claim that $|w(z)|<1$ in E, otherwise by a lemma of Jack [${ }^{3}$] there exists $z_{0} \in E$ such that $z_{0} w^{\prime}\left(z_{0}\right)=m w\left(z_{0}\right), m \geqq 1,\left|w\left(z_{0}\right)\right|=1$. Thus at $z=z_{0}$, from (3.4) we see that

$$
\operatorname{Re} \frac{I^{n+1} f\left(z_{0}\right)}{I^{n} f\left(z_{0}\right)}<0
$$

This completes the proof of the theorem by contradiction.
We shall use the following lemma due to Goel-Sohi ([$\left.{ }^{2}\right]$, Theorem 4):
Lemma. If $w(z)$ is regular in E and satisfies the conditions $w(0)=0$, $|w(z)|<1$ for $z \in E$, then

$$
\operatorname{Re}\left\{\frac{1-w(z)}{1+w(z)}-\frac{2 z w^{\prime}(z)}{(1+w(z))(c+(c+2) w(z))}\right\}>0
$$

for $|z|<\sqrt{\frac{c}{c+2}}$. The result is sharp.
'Theorem 5. Let $F \in M_{n}, c>0$, and $f(z)=\frac{1}{c z^{c}}\left(z^{c+1} F(z)\right)^{\prime}$, then $f \in M_{n}^{\prime}$ for $0<|z|<\sqrt{\frac{c}{c+2}}$. The result is sharp.

Proof $_{f}$ Since, $F \in M_{n}$, there exists a function $w(z)$ regular in E with $w(0)=0,|w(z)|<1$ such that

$$
\frac{I^{n+1} F(z)}{I^{n} F(z)}=\frac{1-w(z)}{1+w(z)}
$$

We find (3.4) from the Theorem 4. It follows that from lemma

$$
\operatorname{Re} \frac{I^{n+1} f(z)}{I^{n} f(z)}>0
$$

for $0<|z|<\sqrt{\frac{c}{c+2}}$.
Let $F(z)=\frac{1}{z}+2+z$ and $z_{0}=\sqrt{\frac{c}{c+2}}$. Then $I^{n} F(z)=\frac{1}{z}+(-1)^{n} . z$ and

$$
\operatorname{Re} \frac{I^{n+1} F(z)}{I^{n} F(z)}=\operatorname{Re} \frac{1-\varepsilon b z}{1+\varepsilon b z^{2}}>0\left(\varepsilon=(-1)^{n}, b=\frac{c+2}{c}\right)
$$

Thus, $F \in M_{n}$. From (3.5) we obtain $f(z)=\frac{1}{z}+2 \frac{c+1}{c}+\frac{c+2}{c} z$, $I^{n} f(z)=\frac{1}{z}+\varepsilon b z\left(\varepsilon=(-1)^{n}, b=\frac{c+2}{c}\right)$ and

$$
\operatorname{Re} \frac{I^{n+1} f(z)}{I^{n} f(z)}=\operatorname{Re} \frac{1-\varepsilon b z^{2}}{1+\varepsilon b z^{2}}>0 \quad(z \in E)
$$

Thus, $f \in M_{n}$. Here $f^{\prime}\left(z_{0}\right)=0$ and $\operatorname{Re} \frac{I^{n+1} f\left(z_{0}\right)}{I^{n} f\left(z_{0}\right)}=0$. Also, the result is sharp for the function $F(z)=\frac{1}{z}+2+z$.

REFERENCES

[1] BAJPAI, S.K. and : A note on the class of meromorphic functions 1, Ann. Pol. Math.,
MEHROK, I.J.S. $\mathbf{3 1}$ (1975), 43-46.
$\left.{ }^{2}\right]$ GOEL, R.M. and : On a class of meromorphic functions, Glasnik Matematicki, 17 SOHI, N.S. (37) (1981), 19-28.
$\left[{ }^{3}\right]$ JACK, I.S. : Functions starlike and convex of order α, J. London Math. Soc. (2), 3 (1971), 469-474.
[4] RUSCHEWEYH, St. : New criteria for univalent functions, Proc. A.M.S., 49 (1975), 109-125.
[${ }^{5}$] SALAGEAN, G.S. : Subciasses of univalent functions, Lecture Notes in Math. 1013 (1983), 362-372.

DEPARTMENT OF MATHEMATICS

MARMARA UNIVERSITY
ZIVERBEY-ISTANBUL
TURKEY

\ddot{O} Z E T

Bu makalede üstelenmiş Hadamard çarpımı yardımıyla tanımlanan sınıfların yalmkatığı gösterilmektedir. Ayrıca fonksiyonların integral dönüşümleri incelenmektedir.

