SUBCLASSES OF UNIVALENT MEROMORPHIC FUNCTIONS

A. DERNEK

Let M_n be the classes of regular functions $f(z)=z^{-1}+a_0+a_1 z+...$ defined in the annulus $0 < |z_{z_1}^{q_1} < 1$ and satisfying Re $\frac{f^{n+1}f(z)}{f^n f(z)} > 0$ (n=0, 1, 2, ...), where $If(z)=f(z)*(z^{-1}-z(1-z)^{-2})$, $I^n f(z)=I(I^{n-1}f(z))$ and * is the Hadamard convolution. We denote by $R_n(x, \beta)$ the set of all functions $f(z) = z^{-1} + a_0 + a_1 z + ...$ such that

$$\operatorname{Re}\left\{ (\alpha + \beta) \, \frac{I^{n+1} f(z)}{I^n f(z)} - \alpha \, \frac{I^{n+2} f(z)}{I^{n+1} f(z)} \right\} > 0 \qquad (\, |z| < 1, \, \alpha > 0, \, \beta > 0).$$

It is proved that $M_{n+1} \subset M_n$ and $R_n(z, \beta) \subset M_n$. In particular we obtain the radius of M_{n+1} for the class M_n . Further we consider the integrals of functions in M_n .

1. INTRODUCTION

Let Σ denote the family of functions of the form $f(z) = \frac{1}{z} + a_0 + a_1 z + ...$

regular in the annulus 0 < |z| < 1. The Hadamard product or the convolution of two functions $f, g \in \Sigma$ will be denoted by f^*g . The convolution has algebraic properties of ordinary multiplication.

Let $n \in N_0 = \{0, 1, 2, 3, ...\}$. We define a linear operator I^n on Σ by $I^0 f(z) = f(z)$ $I^1 f(z) = I f(z) = -z f'(z)$ $I^n f(z) = I(I^{n-1} f(z)) = -z (I^{n-1} f(z))'$.

This operator is an iterated convolution [5]. If $h(z) = \frac{1}{z} - \frac{z}{(1-z)^2}$, then

$$I^{n} f(z) = ((h * h * ... * h) * f)(z) = \frac{1}{z} + (-1)^{n} \sum_{k=1}^{\infty} k^{n} a_{k} z^{k}.$$

Now we introduce the following classes: Let E denote the unit disc, $\{z: |z| < 1\}$. We define the classes M_n of functions $f \in \Sigma$ and satisfying the condition

A. DERNEK

Re
$$\frac{I^{n+1}f(z)}{I^n f(z)} > 0$$
 $(z \in E, n \in N_0)$

For every $n \in N_0$, M_n contains many interesting classes of univalent functions: M_0 and M_1 are known classes of univalent functions that are meromorphically starlike and convex respectively. Let

$$r_n(z) = (\alpha + \beta) \frac{I^{n+1} f(z)}{I^n f(z)} - \alpha \frac{I^{n+2} f(z)}{I^{n+1} f(z)}$$
(1.1)

where $n \in N_0$ and α , β are non-negative real numbers. We say that $f \in R_n$ (α , β), if $f \in \Sigma$ and

Re
$$r_n(z) > 0$$
 $(z \in E, \alpha > 0, \beta > 0, n \in N_0)$.

It is clear that $R_n(0,\beta) = M_n$, $R_n(-1,1) = M_{n+1}$.

In Section 2 we shall show that

$$M_{n+1} \subset M_n \quad (n \in N_0). \tag{1.2}$$

Methods used are similar to those in [4]. Since M_0 equals Σ^* (the class of meromorphically starlike functions) the univalence of members in M_n is a consequence of (1.2). In particular we obtain the radius of M_{n+1} for the class M_n .

Note that when n = 0, this number $2 - \sqrt{3}$ is called the radius of convexity for the class of meromorphically starlike functions. Next we shall show that $R_n(\alpha, \beta) \subset M_n$. For n = 0 it follows that $R_0(\alpha, \beta) \subset \Sigma^*$. This result is a generalization of the result obtained by Bajpai-Mehrok in [1]. In Section 3 we study special elements of M_n which have certain integral representations. Our results are thus generalizations of the results obtained by Goel-Sohi in [2].

2. THE CLASSES M_n AND $R_n(\alpha, \beta)$

Theorem 1. $M_{n+1} \subset M_n$ for all $n \in N_0$.

Proof. Let $f \in M_{n+1}$. We define w(z) in E by

$$\frac{I^{n+1}f(z)}{I^n f(z)} = \frac{1-w(z)}{1+w(z)}.$$
(2.1)

Here w(z) is a regular function in E with w(0) = 0 and $w(z) \neq -1$ for $z \in E$. Differentiating (2.1) logarithmically we obtain

$$\frac{I^{n+2}f(z)}{I^{n+1}f(z)} = \frac{1-w(z)}{1+w(z)} + \frac{2\,z\,w'(z)}{(1-w(z))\,(1+w(z))} \,. \tag{2.2}$$

Equation (2.1) should yield |w(z)| < 1 for all $z \in E$, otherwise by a lemma of Jack [³] there exists $z_0 \in E$ such that $z_0 w'(z_0) = m w(z_0)$, $m \ge 1$, $|w(z_0)| = 1$. Applying this result to (2.2) we get

SUBCLASSES OF UNIVALENT MEROMORPHIC FUNCTIONS

$$\operatorname{Re}\frac{I^{n+2}f(z_0)}{I^{n+1}f(z_0)} = 0.$$

This is a contradiction to the assumption that $f \in M_{n+1}$. Hence $f \in M_n$ when $n \in N_0$.

Remark. Since M_0 equals Σ^* (the class of starlike functions), it follows from the above theorem that all functions in M_n are univalent.

Theorem 2. Let $f \in M_n$. Then Re $\frac{I^{n+2}f(z)}{I^{n+1}f(z)} > 0$ holds for $|z| < 2 - \sqrt{3}$.

Proof. Let p(z) be the regular function defined in E by

$$\frac{I^{n+1}f(z)}{I^n f(z)} = p(z).$$
(2.3)

Here p(0) = 1 and Re p(z) > 0 in E. Logarithmic differentiation of (2.3) yields

$$\frac{I^{n+2}f(z)}{I^{n+1}f(z)} = p(z) - \frac{z\,p'(z)}{p(z)}\,.$$
(2.4)

Using the well-known estimates $\left|\frac{z p'(z)}{p(z)}\right| \leq \frac{2|z|}{1-|z|}$ and $\operatorname{Re} p(z) \geq \frac{1-|z|}{1+|z|}$, we see from (2.4) that

Re
$$\frac{I^{n+2}f(z)}{I^{n+1}f(z)} \ge \operatorname{Re} p(z) \cdot \frac{|z|^2 - 4|z| + 1}{1 - |z|^2}$$
 (2.5)

Now the right hand side of (2.5) is positive provided $|z| < 2 - \sqrt{3}$.

Theorem 3. $R_n(\alpha, \beta) \subset M_n$ for all $n \in N$, $\alpha > 0$ and $\beta > 0$.

Proof. Suppose $f \in R_n(\alpha, \beta)$ and

$$\frac{I^{n+1}f(z)}{I^n f(z)} = \frac{1 - w(z)}{1 + w(z)} \qquad (z \in E).$$
(2.6)

Then w(z) is regular in E with w(0)=0, $w(z) \neq -1$. To complete the proof we need to show that Re $\frac{1-w(z)}{1+w(z)} > 0$, $z \in E$. Taking the logarithmic derivative of both sides of (2.6) we get

$$\frac{I^{n+2}f(z)}{I^{n+1}f(z)} = \frac{1-w(z)}{1+w(z)} + \frac{2\,z\,w'(z)}{(1-w(z))\,(1+w(z))}\,.$$
(2.7)

Substituting from (2.6) and (2.7) in (1.1) we obtain

A. DERNEK

$$r_{n}(z) = \beta \frac{1 - w(z)}{1 + w(z)} - \alpha \frac{2 z w'(z)}{(1 - w(z))(1 + w(z))}.$$
 (2.8)

The conclusion of the theorem from (2.8) follows as in Theorem 1.

3. SPECIAL ELEMENTS OF M_n

Theorem 4. Let $n \in N_0$ and c > 0. If $f \in M_n$, then

ς.,

$$F(z) = \frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) dt$$
(3.1)

also belongs to M_n for $F(z) \neq 0$ in 0 < |z| < 1.

Proof. Since

$$F'(z) = cf(z) - (c+1)F(z)$$

it can be easily verified that

$$I^{n+1} F(z) = (c+1) I^n F(z) - c I^n f(z).$$
(3.2)

Let w(z) be the regular function in E defined by

 \mathbf{Z}

$$\frac{I^{n+1}F(z)}{I^n F(z)} = \frac{1 - w(z)}{1 + w(z)} \quad (z \in E).$$
(3.3)

Obviously w(0) = 0, $w(z) \neq -1$ for $z \in E$. Logarithmic derivative (3.3) and using (3.2) we obtain

$$\frac{I^{n+1}f(z)}{I^n f(z)} = \frac{1 - w(z)}{1 + w(z)} - \frac{2 z w'(z)}{(1 + w(z)) (c + (c + 2) w(z))}.$$
 (3.4)

We claim that |w(z)| < 1 in *E*, otherwise by a lemma of Jack [³] there exists $z_0 \in E$ such that $z_0 w'(z_0) = m w(z_0)$, $m \ge 1$, $|w(z_0)| = 1$. Thus at $z = z_0$, from (3.4) we see that

$$\operatorname{Re} \frac{I^{n+1}f(z_0)}{I^n f(z_0)} < 0.$$

This completes the proof of the theorem by contradiction.

We shall use the following lemma due to Goel-Sohi ([2], Theorem 4):

Lemma. If w(z) is regular in E and satisfies the conditions w(0) = 0, |w(z)| < 1 for $z \in E$, then

$$\operatorname{Re}\left\{\frac{1-w(z)}{1+w(z)}-\frac{2\,z\,w'(z)}{(1+w(z))\,(c+(c+2)\,w(z))}\right\}>0$$

for $|z| < \sqrt{\frac{c}{c+2}}$. The result is sharp.

Theorem 5. Let $F \in M_n$, c > 0, and $f(z) = \frac{1}{c z^c} (z^{c+1} F(z))'$, then $f \in M_n$ for $0 < |z| < \sqrt{\frac{c}{c+2}}$. The result is sharp.

Proof. Since $F \in M_n$, there exists a function w(z) regular in E with w(0) = 0, |w(z)| < 1 such that

$$\frac{I^{n+1}F(z)}{I^n F(z)} = \frac{1 - w(z)}{1 + w(z)} \,.$$

We find (3.4) from the Theorem 4. It follows that from lemma

$$\operatorname{Re} \frac{I^{n+1}f(z)}{I^n f(z)} > 0$$

for $0 < |z| < \sqrt{\frac{c}{c+2}}$.

Let
$$F(z) = \frac{1}{z} + 2 + z$$
 and $z_0 = \sqrt{\frac{c}{c+2}}$. Then $I^n F(z) = \frac{1}{z} + (-1)^n$. z

and

$$\operatorname{Re} \frac{I^{n+1}F(z)}{I^{n}F(z)} = \operatorname{Re} \frac{1-\varepsilon b z}{1+\varepsilon b z^{2}} > 0 \left(\varepsilon = (-1)^{n}, \ b = \frac{c+2}{c}\right).$$

Thus, $F \in M_n$. From (3.5) we obtain $f(z) = \frac{1}{z} + 2 \frac{c+1}{c} + \frac{c+2}{c} z$,

$$I^{n} f(z) = \frac{1}{z} + \varepsilon \ b \ z \ \left(\varepsilon = (-1)^{n}, \ b = \frac{c+2}{c}\right) \text{ and}$$

Re $\frac{I^{n+1} f(z)}{I^{n} f(z)} = \text{Re} \ \frac{1 - \varepsilon \ b \ z^{2}}{1 + \varepsilon \ b \ z^{2}} > 0 \quad (z \in E).$

Thus, $f \in M_n$. Here $f'(z_0) = 0$ and Re $\frac{I^{n+1}f(z_0)}{I^n f(z_0)} = 0$. Also, the result is sharp for the function $F(z) = \frac{1}{z} + 2 + z$.

A. DERNEK

REFERENCES

[1]	BAJPAI, S.K. and	:	A note on the class of meromorphic functions 1, Ann. Pol. Math.,
	MEHROK, I.J.S.		31 (1975), 43-46.
[²]	GOEL, R.M. and SOHI, N.S.	:	On a class of meromorphic functions, Glasnik Matematicki, 17 (37) (1981), 19-28.
[³]	JACK, I.S.	:	Functions starlike and convex of order α , J. London Math. Soc. (2), 3 (1971), 469-474.
[1]	RUSCHEWEYH, St	. :	New criteria for univalent functions, Proc. A.M.S., 49 (1975),

[] RUSCHEWEYH, St. : New criteria for univalent functions, Proc. A.M.S., 49 (1975), 109-125. [⁶] SALAGEAN, G.S. : Subclasses of univalent functions, Lecture Notes in Math. 1013 (1983), 362-372.

DEPARTMENT OF MATHEMATICS MARMARA UNIVERSITY ZIVERBEY-ISTANBUL TURKEY

ÖZET

Bu makalede üstelenmiş Hadamard çarpımı yardımıyla tanımlanan sınıfların yalmkatiığı gösterilmektedir. Ayrıca fonksiyonların integral dönüşümleri incelenmektedir.