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AN EXTREMAL PROBLEM FOR UNIVALENT FUNCTIONS #
Y. AVCI-E. ZLOTKIEWICZ

In this paper, we determine the variability region of R (F') in terms of
. the elliptic modular function. Here, R(F') denotes the cross ratio of the
images of four distinct points given in | z| > 1 and the function F varies in Z.

1. Preliminary remarks. Let D be a simply connected domain in the closed
(extended) complex plane C. For given distinct points z,(k =1, 2, 3, 4) in D,
let (z,, 2,, 2, z,) denote their cross ratio. It is well known that if w = h(z) is a
homography and w, = h(z,), then (z,, z,, z;, z,) = (W, w,, w,, w,), but it may
not be so if the homography h has been replaced by an arbitrary
univalent function f in D. If w = f(z) is univalent in D then the guotient
(W, Wy, Wy, W) [ (2, 2,, 25, z,) denoted by @ determines a “measure of
deviation” of f(z) from the homography.

Tt is also interesting to observe that in some specific cases the quantity
O reduces to some well-known functionals (for example, f(z), f(z,) [ f(z,),
zf (2) [ F(2)) over some classes of univalent functions in or outside of the
unit disc.

Motivated by these, we address ourselves to determination of the variability
region of the cross ratio (f(z,), f(z,), f(z,). f(z,)) over the class of meromorphic
and univalent functions in the complement of the unit disc. Our solution is based
on the method of the Schiffer Boundary Variations and is defined in terms of
elliptic modular function and hyperelliptic integrals.

2. The cross ratio problem. We shall give here some necessary definitions,

notations and we shall state the problem,

Let A= {zeC:|z] > 1} and let ¥ denote the class of all functions
F(oy=z 4+ g, + 4 + ..., meromorphic and univalent in A", Let £ be the
z

subclass of I consisting of all functions F(z) subject to the condition a, =0,
zeA'. If z (k=1,2,3,4) are given distinct points in A" and w, = F(z,)
with Fe X, then the quantity

*) This work has been catried out in Istanbul University while the second author was
visiting Marmara University in Turkey. '
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W, — W w, — W
-R(F) - (WI, W, Wy, w4) S I * 2

Wy — W, ) W, — W,
is said to be the cross ratio of the four points. We define _
E={p:p=R(F) and FeX}. (0

Since R(F) is not altered by translations, there is no loss.of generality in
assuming that Fe X', WNow, the class £’ is compact and connected, and the
transformation F-—> R(F) is continuous - on X’. Hence, the set ' is compact
and connected.

Let 3F denote the boundary of E. We recall that a point P,e E is said
to be the regular boundary point of E if there exists a point a, ae C\_E
such that for a certain disc K(a, ), ¢ > 0 there holds

K@ ondE—{P}. | B

It is known [%] that regular boundary points form a dense subset of gE. Hence,
in order to find the set £ it suffices to determine all its regular boundary points.
We shall now be concerned with the following problem :

For given distinct points z, (k= 1, 2, 3, 4) in A" and for F running over
the whole class X7, find the set E, the variability region of R ().

3. The necessary cendition. We shall derive here a differential equation
satisfied by functions that contribute regular boundary points of the variability
region. We shall call such functions extremal.

Let P, be a regular boundary point of E, then there exists a function Fj in
%" such that P, = R(F,). The extremal function maps A" outside the complement
of a continuum, say, K. Let w, be a point in K. By Schiffer’s Theorem (?, p. 297)
there exist functions in %” whose linear parts are given by

w¥ = w -+ A +o((r)), w=F(2).
— W,
Now
wE =, + =20 oa),
W — W,
and we find
AN ()

R(w*) = R(w) + +o((n),

(W, — W) (W — w,) (wy — wy) (wy — w,)

where A depends upon w (k = 1, 2, 3, 4), but the explicit dependence is of no
importance. Setting P, — a = | P, — a|e" and making use of (2) we find
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| R(w*) — aff =| R(w) — al* +

+2|R(w)—ame3e-ﬂ AL 0). { 40 ()

(Wo_w[) (Wo_wz) (wo—wj) (WO—W4) 5

which implies the condition
A1
(Wo—w) (wy—w,) (wy—w,) (wy—w,)

By Schiffer’s Theorem cited above it follows that the set C™\ _F,(A") is a
finite system of ‘analytic arcs each of which satisfies the condition

(dwy
(w—w,) (w-—w,) (w—wy) (w—w,)
The set F,(]|z|=1) lies on a trajectory of the quadratic differential (3). This
differential has four simple poles and no zeros. It follows that F,(|z|=1) isa
single analytic arc and that F, is analytic on the unit circumference. Applyirg

the reflection principle to the function in (3), we conclude that w=F, (z) must
satisfy the following equation

Re?e‘“ Tol (=0,

et A

(3)

e 4 (dw)? - B(z—eP) (z—et)? (dz)?

(w—w)) (Ww—w,) (w—w,) (w—w)  (z—z,) (—z, 2)..(z—z)) (1~z,2)

G

where B is a constant while ¢, ¢'# are the points on | z | = I which are carried
by F, onto the end-points of the analytic arc. We have necessarily Fg(¢™) =
= Fp (e®) = 0.

4. Relation between parameters. We shall show here that there is exactly

one essential parameter in (4).
By multiplying both sides of (4) by z* and then letting z—> e, we obtain
Aet(z,2,2,2) = B. (5

Secondly, the right hand side of (4) is non-positive on | z | == [. With B =| B| &',
it gives (on|z| = 1)

‘T gle eld i . 2
ez ("t e ] 20,
z

or equivalently

el +p) — 7V, (6)
Let — Q-(z) stand for the right hand side of {4). We have noticed that
F,(|z|=1) is an analytic arc. Hence, there are two arcs on |z|=1 with

common end poinis e*, ¢'® which are carried over by F, onto opposite edges
of the slit. Hence, we have [*], [7]
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«+2 7w

fﬂ\/ Q@ do— [ Voeydo.
« B

After some calculus this gives
e+2 T

[P(e) sin 2" %5in =P 400,
2 2

where P (0) = | (e — z,) (¢! — z,) (¢! — z,) (¢"®* — 2z,)| 712, Since the integrand
is a 2m - periodic function we obtain
f P(9) sin 9——}-‘3 sinB;BdE):O,

o

or ultimately
(z — e*) (z — ¢iP)

[ Ve—z2)(1 —22) ...(z—z)(1 —z,2)

1z]=1

dZZO. (7)

Given ¢, one can find now a unique ¢®. The relations (5), (6) and (7)
allow us to take & as the only parameter related to regular boundary points
and the equation (4) takes ultimately the form

(d wy? _ Z, 2,2, ;4 (z— &) (z—&'#) (d z)?

= = = . (8
w—w)) (w—w,) (w—w,) (w—w,) z—z,)(l—z,2)...(z—z,) (1—z, 2)
For further properties let us write (8) in the form
Pw)dw?= @ (z)dz2. ’ )]

5. The variability region. Here we give a parametric equation satisfied by
all regular boundary points of E. The form of the solution implies that they are
the only regular boundary points.

We know that (9 has a single valued univalent solution w = w(z) in the
domain A". If 1t is a path situated in A" that starts from z = e, and if
T = w (1), then we have

[VPGdw=[VEGd:z. (10)
T <

The condition (7) implies that the integral of \/ 0 (z) along any loop homotopic
to|z| =1 with respect to the domain A" — {z,, z,, z,, z, } equals zero. Hence,

the integral f O (z) dz is a hyperelliptic integral which has two primitive periods

defined by loops in A’ that surround two critical points of @ (z) and that leave
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two remaining critical points outside. Similarly, the integral f P(w)dw is an

r
elliptic integral and from its form it follows that the integrals

g

JVEeian, [Vronan

L

are the primitive periods. The condition of single valuedness implies that we have

Wa

[VF@an  [VE@a

W

[vreiav  Jve@a

wy

(1D

We can now perform the change of variables along the formula

w—a W, — W, .
X = . (a = w,, w, respectively),
w—w, W —4a

which brings the left hand side of (11) to the form K (p)/ K (1 — p) where
/2
dx

p={ (wy—w)) (w,—w,) } / { (w;—w,) (w,—w)) } and K (p)= f T It
I—p sin®x
: )
is known, however (see [%], chapter 6), that the function

z=f(W)=K({ —w)]KW),

{ f(w) being positive if 0 <2 w <2 1) is the inverse of the elliptic modular function
which is commonly denoted by A(z). So ultimately, we arrive at the formula

fvawas
pP= R (F) = (Wl, W, W, w4) =i e 3 (12)

fza»@”@dz

since the quotient may be formed in such a way that it has positive imaginary
part.

In view of (6) and (7) we have
Q(z)dz '

zlf\/y() KA Le™

M+ N

(13)

f\/“é(_zidz
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where K=A, C,—A,C,, L=A, C,—A,C,, M—=A, B,—A4, B, N—=4, B,— A, B,
and 4, , B, and C, are defined by
’ : s ra
Ay, = f ZD(z)dz, B, = f D) dz, C, = fz"‘D(z) dz,
fz|=1 7 z
for k=0, 1, 2. Here 1/D?(z) denotes (z—z) (I —z,2)...(z—z) (1 —z,2).
Ultimately, we state our result as

Theorem. The variability region F of the cross ratio R{F) of four points
over the class ¥ is a closed and connected set whose boundary is the image of
an arc of the circumference ¢(v) = (M e + N) /(K& + E) under the elliptic
modular function.

We conclude our paper with the following remarks :

Remark 1. The above theorem contains several well-known results cocerning
variability regions of such quantities as f{z), zf" {z) /f(z) and f(z)/f(z,) in
the class § and related classes. Unfortunately, the form of our solution does
not provide a simple way of showing these results.

Remark 2. One can carry out considerations comcerning elliptic and
hyperelliptic integrals that occur in (10) along the lines presenied in [*]. This
will give the form of the extremal functions and the formula (12).
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GZET

F fonksiyonu % simfindan olmak fizere | z| >> 1 bélgesinde verilen
dért farkh noktanm F altmdaki resimlerinin cifte oramt R (F) olsun, Bu
makalede, R (F) cifte oranlarmin X {izerinde depisim bélgesi eliptik modii-
ler fonksiyon einsinden bulunmaktadir, ‘




