MAXIMUM TERM FUNCTION OF ENTIRE DIRICHLET SERIES

J.S. GUPTA - D.K. BHOLA *)

Let $f(s)=\sum_{n \in \mathrm{~N}} a_{n} e^{s \lambda_{n}}$ be an entire function defined by an everywhere convergent Dirichlet series whose exponents are subjected to the condition that $\lim _{n \rightarrow+\infty} \frac{\log n}{\lambda_{n}}=D \in \mathbf{R}_{+} \cup\{0\}\left(\mathbf{R}_{+}\right.$is the set of positive reals), and let $\mu(\sigma, f)=\sup _{n \in \mathbb{N}}\left\{\left|a_{n}\right| e^{\sigma \lambda_{n}}\right\}$ be the maximum term, for $\operatorname{Re}(s)=\sigma$, in the Dirichlet series defining $f(s)$. We study a few results involving the function μ.

1. Let E be the set of mappings $f: \mathbf{C} \rightarrow \mathbf{C}(\mathbf{C}$ is the complex plane) such that the image under f of an element $s \in \mathbf{C}$ is $f(s)=\sum_{n \in \mathbf{N}} a_{n} e^{s \lambda_{n}}$ with $\lim _{n \rightarrow+\infty} \frac{\sup }{} \frac{\log n}{\lambda_{n}}=$ $=D \in \mathbf{R}_{+} \cup\{0\}$ (\mathbf{R}_{+}is the set of positive reals), and $\sigma_{c}^{f}=+\infty$ (σ_{c}^{f} is the abscissa of convergence of the Dirichlet series defining f), \mathbf{N} is the set of natural numbers $0,1,2, \ldots,<\lambda_{n} \mid n \in \mathbf{N}>$ is a strictly increasing unbounded sequence of nonnegative reals, $s=\sigma+i t, \sigma, t \in \mathbf{R}\left(\mathbf{R}\right.$ is the field of reals), and $<a_{n}|n \in \mathbf{N}\rangle$ is a sequence in C. Since the Dirichlet series defining f converges for each $s \in \mathbf{C}, f$ is an entire function. Also, since $D \in \mathbf{R}_{+} \cup\{0\}$, we have ($\left.{ }^{1}\right]$, p. 168), $\sigma_{a}^{f}=+\infty\left(\sigma_{a}^{f}\right.$ is the abscissa of absolute convergence of the Dirichlet series defining f), and that f is bounded on each vertical line $\operatorname{Re}(s)=o_{0}$.

Let

$$
\begin{equation*}
M(\sigma, f)=\sup _{n \in \mathbb{R}}\{|f(\sigma+i t)|\}, \forall \sigma<\sigma_{c}^{f}, \tag{1.1}
\end{equation*}
$$

be the maximum modulus of an entire function $f \in E$ on any vertical line $\operatorname{Re}(s)=\sigma$,

$$
\begin{equation*}
\mu(\sigma, f)=\sup _{n \in \mathbb{N}}\left\{\left|a_{n}\right| e^{\sigma \lambda_{n}}\right\}, \forall \sigma<\sigma_{c}^{f} \tag{1.2}
\end{equation*}
$$

ibe the maximum term, for $\operatorname{Re}(s)=\sigma$, in the Dirichlet series defining f, and

$$
\begin{equation*}
\nu(\sigma, f)=\sup _{n \in \mathbb{N}}\left\{n\left|\mu(\sigma, f)=\left|a_{n}\right| e^{\sigma \lambda_{n}}\right\}, \forall \sigma<\sigma_{c}^{f},\right. \tag{1.3}
\end{equation*}
$$

[^0]be the rank of the maximum term.
In this paper, we study a few results involving the function μ.
2. We first define a function $A_{p}, p \in \mathbf{Z}_{+}\left(\mathbf{Z}_{+}\right.$is the set of positive integers), for every entire function $f \in E$, as
\[

$$
\begin{equation*}
A_{p}(\sigma, f)=\frac{\mu_{p}\left(\sigma, f^{(p)}\right)}{\mu(\sigma, f)}, \forall \sigma<\sigma_{c}^{f}, \tag{2.1}
\end{equation*}
$$

\]

and establish a result regarding it. We call A_{p} the quotient function of p-th order of f.

Teorem 1. For every entire function $f \in E$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \sup _{x} \frac{\left(A_{p}(\sigma, f)\right)^{1 / p}}{\lambda_{v\left(\sigma, f^{(p)}\right)}} \leq 1 \leq \lim _{\sigma \rightarrow+\infty} \inf \frac{\left(A_{p}(\sigma, f)\right)^{1 / p}}{\lambda_{v(\sigma, f)}}, \forall p \in \mathbf{Z}_{+} \tag{2.2}
\end{equation*}
$$

Proof. We know ($\left[^{2}\right]$, lemma 2) that, for any $p \in \mathbf{Z}_{+}$,

$$
\begin{equation*}
\lambda_{,(\sigma, f)} \leq\left(\frac{\mu_{p}\left(\sigma_{1} f^{(p)}\right)}{\mu(\sigma, f)}\right)^{1 / p} \leq \lambda_{v\left(\sigma, f^{(p)}\right)} \tag{2.3}
\end{equation*}
$$

Dividing both sides of the first inequality in (2.3) by $\lambda_{\nu(\sigma . f)}$, and proceeding to limits, we get

$$
\begin{equation*}
\liminf _{\sigma \rightarrow+\infty} \frac{\left(A_{p}(\sigma, f)\right)^{1 / p}}{\lambda_{v(\sigma, f)}} \geq 1 \tag{2.4}
\end{equation*}
$$

and dividing both sides of the second inequality in (2.3) by $\lambda_{\nu(a, f}{ }^{(p)}$, and proceeding to hmits, we get

$$
\begin{equation*}
\limsup _{\sigma \rightarrow+\infty} \frac{\left(A_{p}(\sigma, f)\right)^{1 / p}}{\lambda_{x\left(\sigma, f^{(p)}\right)}^{(p)}} \leq 1 \tag{2.5}
\end{equation*}
$$

Combining (2.4) and (2.5), we get (2.2).
Remark. If f is of $\mathbf{R i t t}$ order $\mathrm{p} \in \mathbf{R}_{+}^{*} \cup\{0\}$ (\mathbf{R}_{+}^{*} is the set of extended positive reals) and lower order $\lambda \in \mathbb{R}_{+}^{*} \cup\{0\}$, it follows from (2.3) and the following result ($[3]$, Theorem 2.7 and 2.8)

$$
\begin{equation*}
\frac{\mathrm{p}}{\lambda}=\lim _{\sigma \rightarrow+\infty \text { inf }} \frac{\sup \frac{\log \log M(\sigma, f)}{\sigma}=\lim _{\sigma \rightarrow+\infty} \sup \frac{\log \lambda_{\gamma(\sigma, f)}}{\sigma}, \frac{1}{\sigma}}{\sigma} \tag{2.6}
\end{equation*}
$$

that

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \sup \frac{\log \left(\mu_{p(\alpha, f}{ }^{(p)}\right) / \mu(\sigma, f)^{1 / p}}{\sigma}=\frac{p}{\lambda} ; \tag{2.7}
\end{equation*}
$$

a result stated without proof by Srivastava ($\left.{ }^{4}\right]$, p. 89), and proved by Kamthan ($\left.{ }^{5}\right]$, Theorem E) adopting. a lengthy method.

Next we improve upon the following Theorem of Srivastava ([4], Theorem 3):
Theorem A. If $f \in E$ is an entire function of Ritt order $\rho \in \mathbf{R}_{+}^{*} \cup\{0\}$ and lower order $\lambda \in \mathbb{R}_{\ddagger}^{*} \cup\{0\}$, then

$$
\begin{equation*}
\operatorname{hmimf}_{\sigma \rightarrow+\infty} \frac{\log \mu(\sigma, f)}{\lambda_{v(\sigma, f)}} \leq \frac{1}{\rho} \leq \frac{1}{\lambda} \leq \operatorname{hm}_{\sigma \rightarrow+\infty} \frac{\sup }{} \frac{\log \mu(\sigma, f)}{\lambda_{v(\sigma, f)}} \tag{2.8}
\end{equation*}
$$

Remark. Theorem A has been proved under the condition that $D=0$, but it is true in general.

We show that :
Theorem 2. For every entire function $f \in E$ of $\mathbf{R i t t}$ order $\mathrm{p} \in \mathbf{R}_{+}^{*} \cup\{0\}$, and lower order $\lambda \in \mathbb{R}_{+}^{*} \cup\{0\}$, and for any $p \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}} \leq \frac{1}{\rho} \leq \frac{1}{\lambda} \leq \lim _{\sigma \rightarrow+\infty} \sup \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}} \tag{2.9}
\end{equation*}
$$

That Theorem 2 improves upon (2.8) follows from the fact ([$[$ $]$, Theorem 3) that

$$
\mu(o, f) \leq \mu_{1}\left(\sigma, f^{(1)}\right) \leq \ldots \leq \mu_{p}\left(\sigma, f^{(p)}\right) \leq \ldots
$$

Prosf. We have, from (2.3),

$$
\left\{\begin{align*}
\log \lambda_{v}(\sigma, f) & \leq \frac{1}{p}\left(\log \mu_{p}\left(\sigma, f^{(p)}\right)-\log \mu(\sigma, f)\right) \tag{2.10}\\
& \leq \log \lambda_{v}\left(\sigma, f^{(p)}\right)
\end{align*}\right.
$$

From the first inequality in (2.10), we get

$$
\begin{align*}
p\left(\lim _{\sigma \rightarrow+\infty} \frac{\log \lambda_{v}(\sigma, f)}{\lambda_{v(\sigma, f)}}\right) & \leq \lim _{\sigma \rightarrow+\infty} \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}}-\lim _{\sigma \rightarrow+\infty} \frac{\log \mu(\sigma, f)}{\lambda_{v(\sigma, f)}} \\
& \leq \lim _{\sigma \rightarrow+\infty} \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}}-\frac{1}{\lambda}, \tag{2.11}
\end{align*}
$$

in view of (2.8). Since $\lambda_{v(\sigma, f)}$ tends to infinity with σ, it follows, from (2.11), that

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \frac{\operatorname{sug} \mu_{p}\left(\sigma, f^{(p)}\right)}{\cdot \lambda_{\nu(\sigma, f)}} \geq \frac{1}{\lambda} \tag{2.12}
\end{equation*}
$$

Also, from the second inequality in (2.10), we have

$$
\begin{align*}
p\left(\lim _{\sigma \rightarrow+\infty} \sup \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}}\right) & \geq \liminf _{\sigma \rightarrow+\infty} \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}}-\lim _{\sigma \rightarrow+\infty} \inf \frac{\log \mu(\sigma, f)}{\lambda_{v(\sigma . f)}} \\
& \geq \lim _{\sigma \rightarrow+\infty} \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}}-\frac{1}{\rho}, \tag{2.13}
\end{align*}
$$

in view of (2.8). Since, from (2.6),

$$
\lim _{\sigma \rightarrow+\infty} \frac{\sup }{} \frac{\left.\log \lambda_{v(\sigma, f} f^{(p)}\right)}{\sigma}=\mathrm{p},
$$

it follows, from (2.13), that

$$
\begin{equation*}
\liminf _{\sigma \rightarrow+\infty} \frac{\log \mu_{\rho}\left(\sigma, f^{(p)}\right)}{\lambda_{v(\sigma, f)}} \leq \frac{1}{\rho} . \tag{2.14}
\end{equation*}
$$

Combining (2.12) and (2.14) we get (2.9).
Following corollaries are immediate from (2.9):
Corollary 1. If f is of infinite Ritt order, then

$$
\begin{equation*}
\liminf _{\sigma \rightarrow+\infty} \frac{\log \mu_{p}\left(\sigma, f^{(p)}\right)}{\lambda_{y(\sigma, f)}}=0 . \tag{2.15}
\end{equation*}
$$

Corollary 2. If f is of lower order zero, then

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \sup ^{\operatorname{iog} \mu_{p}\left(\sigma, f^{(p)}\right)} \frac{\lambda_{\nu(\sigma, f)}}{}=+\infty . \tag{2.16}
\end{equation*}
$$

We now obtain a majorant for the quantity $\lim _{\sigma \rightarrow+\infty} \sup \frac{\log \mu(\sigma, f)}{\lambda_{\nu(\sigma, f)}}=\alpha$ (say), with the help of growth numbers of f The growth number $\gamma \in \mathbf{R}_{+}^{*} \cup\{0\}$ and lower growth number $\delta \in \mathbf{R}_{+}^{*} \cup\{0\}$ of an entire function $f \in E$ of $\mathbf{R i t t}$ order $\mathrm{p} \in \mathbf{R}_{+}$are defined $\left[{ }^{7}\right]$ as

$$
\begin{align*}
& \gamma \tag{2.17}\\
& \delta
\end{align*}=\lim _{\sigma \rightarrow+\infty} \sup \frac{\lambda_{\nu(\sigma, f)}}{e^{\rho \sigma}} .
$$

One majorant for α has already been obtained by Srivastava and Gupta who have shown ([$\left.{ }^{7}\right]$, Theorem 2) that :

Theorem B. If $f \in E$ is an entire function of $\mathbf{R i t t}$ order $\mathbf{p} \in \mathbf{R}_{+}$, lower order $\lambda \in \mathbf{R}_{+} \cup\{0\}$, growth number $\gamma \in \mathbf{R}_{+}^{*} \cup\{0\}$, and lower growth number $\delta \in \mathbf{R}_{+}^{*} \cup\{0\}$, then

$$
\begin{equation*}
\frac{\delta}{\rho \gamma} \leq \operatorname{iiminf}_{\sigma \rightarrow+\infty} \frac{\log \mu(\sigma, f)}{\lambda_{\nu(\sigma, f)}} \leq \frac{1}{\rho} \leq \frac{1}{\lambda} \leq \lim _{\sigma \rightarrow+\infty} \sup \frac{\log \mu(\sigma, f)}{\lambda_{\nu(\sigma, f)}} \leq \frac{\gamma}{\delta \mathrm{p}} . \tag{2.18}
\end{equation*}
$$

We however show that :
Theorem 3. Under the hypothesis of Theorem B,

$$
\begin{equation*}
\alpha \leq \frac{1}{\rho}\left(1+\log \frac{\gamma}{\delta}\right) . \tag{2.19}
\end{equation*}
$$

Proof. It is known ($\left[^{8}\right]$, p. 67) that

$$
\begin{equation*}
\log \mu(\sigma, f)=0(1)+\int_{\sigma_{0}}^{\sigma} \lambda_{v(x, f)} d x . \tag{2.20}
\end{equation*}
$$

We choose a $k \in \mathbf{R}_{+}$and get, from (2.20),

$$
\log \mu\left(\sigma+\frac{k}{\rho}, f\right)=0(1)+\int_{\sigma_{1}}^{\sigma} \lambda_{v(x, f)} d x+\int_{\sigma}^{\sigma+\frac{k}{\rho}} \lambda_{v(x, f)} d x
$$

This gives, in view of (2.17), for any $\varepsilon \in \mathbf{R}_{+}$and sufficiently large σ,

$$
\log \mu\left(\sigma+\frac{k}{\rho}, f\right)<0(1)+\underset{\rho}{\gamma+\varepsilon}\left(e^{\rho \sigma}-e^{\rho \sigma_{0}}\right)+\lambda_{\nu}\left(a+\frac{k}{\rho}, f\right) \frac{k}{\rho} .
$$

Therefore,

$$
\frac{\log \mu\left(\sigma+\frac{k}{\rho}, f\right)}{\lambda_{\nu}\left(\sigma+\frac{k}{b}, f\right)}<0(1)+\frac{\gamma+\varepsilon}{\rho} \frac{e^{\rho\left(\sigma+\frac{k}{\rho}\right)}}{e^{k} \lambda_{\nu}\left(o+\frac{k}{\rho}, f\right)}(1-o(1))+\frac{k}{\rho}
$$

or

$$
\operatorname{lnmsup}_{\sigma \rightarrow+\infty} \frac{\log \mathrm{u}\left(\sigma+\frac{k}{\rho}, f\right)}{\lambda_{\nu}\left(\sigma+\frac{k}{\rho} \cdot f\right)} \leq \frac{k}{\rho}+\frac{\gamma}{\rho e^{k}} \lim _{\sigma \rightarrow+\infty} \sup \frac{e^{\rho\left(\sigma+\frac{k}{\rho}\right)}}{\lambda_{v}\left(\sigma+\frac{k}{\rho}, f\right)},
$$

which gives $\alpha \geq \frac{k}{\mathrm{p}}+\frac{\gamma}{\mathrm{p} e^{k}} \cdot \frac{1}{\delta}$. Taking $k=\log \frac{\gamma}{\delta}$, we get

$$
\alpha \leq \frac{1}{\rho}\left(1+\log \frac{\gamma}{\delta}\right),
$$

proving (2.19).
Remarks. (i) Since $1+\log x \leq x$ for $x \geq 1$, it follows that

$$
\frac{1}{\rho}\left(1+\log \frac{\gamma}{\delta}\right) \leq \frac{\gamma}{\mathrm{p} \delta}
$$

Thus the majorant for α given by (2.19) is better than the one given by (2.18).
(ii) Since, for $x \geq 1, x-(1+\log x)$ is nonnegative nondecreasing function and has the maximum at $x=1$, it follows that if $\gamma \neq \delta$ then $\alpha<\frac{\gamma}{\mathrm{p} \delta}$.
(iii) The minorant for the quantity $\lim _{\sigma \rightarrow+\infty} \inf \frac{\log \mu(\sigma, f)}{\lambda_{\nu(\sigma, f)}}$ given by could not be improved by our method of investigation.
3. Srivastava and Gupta ($\left[^{2}\right]$, p. 241) have defined a difference function χ_{p} for every entire function $f \in E$, as

$$
\begin{equation*}
\left.\chi_{p}(\sigma, f)=\chi(\sigma, p)=\lambda_{\nu(\sigma, f}^{(p)}\right)-\lambda_{v(\sigma, f)}, \forall \sigma<\sigma_{c}^{f}, \tag{3.1}
\end{equation*}
$$

and have proved ($[7]$, Theorem 1) that:
Theorem C. If $f \in E$ is an entire function of Ritt order $\rho \in \mathbf{R}_{+}$, growth number $\gamma \in \mathbb{R}_{+}^{*} \cup\{0\}$, lower growth number $\delta \in \mathbf{R}_{+}^{*} \cup\{0\}$, and $\limsup _{\sigma \rightarrow+\infty} \chi_{p}(\sigma, f)$ is finite, then

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \sup \frac{\left(A_{p}(\sigma, f)\right)^{1 / p}}{e^{\rho \sigma}}=\frac{\gamma}{\delta} . \tag{3.2}
\end{equation*}
$$

We, however, prove
Theorem 4. Let $f_{1}, f_{2} \in E$ be two entire functions, respectively, of Ritt orders $\rho, \rho^{\prime} \in \mathbb{R}_{++}$, growih numbers $\gamma, \gamma^{\prime} \in \mathbb{R}_{+}^{*} \cup\{0\}$ and lower growth numbers $\delta, \delta^{\prime} \in \mathbb{R}_{+}^{*} \cup\{0\}$, and let

$$
\lim _{\sigma \rightarrow+\infty} \sup _{\inf }\left(\lambda_{v\left(\sigma, f_{2}\right)}-\lambda_{v\left(\sigma, f_{1}\right)}=\begin{array}{l}
\alpha \\
\beta
\end{array} .\right.
$$

If $\alpha, \beta \in \mathbf{R}$, and $\lim \sup \chi_{p}\left(\sigma, f_{1}\right)$ and $\lim \sup \chi_{p}\left(\sigma, f_{2}\right)$ are finite, then

$$
\begin{equation*}
\frac{\delta}{\gamma} \leq \liminf _{\sigma \rightarrow+\infty} \frac{\left(A_{p}\left(\sigma, f_{1}\right)\right)^{1 / p}}{\left(A_{q}\left(\sigma, f_{2}\right)\right)^{1 / q}} \leq \limsup _{\sigma \rightarrow+\infty} \frac{\left(A_{p}\left(\sigma, f_{1}\right)\right)^{1 / p}}{\left(A_{q}\left(\sigma, f_{2}\right)\right)^{1 / q}} \leq \frac{\gamma}{\delta} . \tag{3.3}
\end{equation*}
$$

Proof. It is known (([$\left[^{2}\right]$, Theorem 4) and ([$\left.{ }^{[}\right]$, Theorem 3)) that under the hypothesis of the theorem $\mathrm{p}=\rho^{\prime}, \gamma=\gamma^{\prime}$ and $\delta=\delta^{\prime}$. Making use of (3.2) for f_{1} and f_{2}, respectively, we get, for any $\varepsilon \in \mathbf{R}_{+}$and sufficiently large σ,

$$
(\delta-\varepsilon) e^{\rho \sigma}<\left(A_{p}\left(\sigma, f_{1}\right)\right)^{1 / p}<(\gamma+\varepsilon) e^{\rho \sigma}
$$

and

$$
(\delta-\varepsilon) e^{\rho \sigma}<\left(A_{q}\left(\sigma, f_{2}\right)\right)^{1 / q}<(\gamma+\varepsilon) e^{\rho \sigma}
$$

Therefore, for any $\varepsilon \in \mathbf{R}_{+}$and sufficiently large σ,

$$
\frac{\delta-\varepsilon}{\gamma+\varepsilon}<\frac{\left(A_{p}\left(\sigma, f_{p}\right)\right)^{1 p}}{\left(A_{q}\left(\sigma, f_{2}\right)\right)^{1 / q}}<\frac{\gamma+\varepsilon}{\delta-\varepsilon} .
$$

Now proceeding to limits, we get (3.3).
The following corollary is immediate from Theorem 4.
Corollary 3. Under the hypothesis of Theorem 4, if either of the functions f_{1} and f_{2}, say f_{1}, is of strictly regular growth (i. e. $\gamma=\delta$), then the other is also of strictly regular growth and, as $\sigma \rightarrow+\infty$,

$$
\begin{equation*}
\left(\frac{\mu_{p}\left(\sigma, f_{1}^{(p)}\right)}{\mu(\sigma, f)}\right)^{1 / p} \sim\left(\frac{\mu_{q}\left(\sigma, f_{2}^{q)}\right)}{\mu\left(\sigma, f_{2}\right)}\right)^{1 / q} \tag{3.4}
\end{equation*}
$$

in particular

$$
\begin{equation*}
\frac{\mu\left(\sigma, f_{2}\right)}{\mu\left(\sigma, f_{1}\right)} \sim \frac{\mu_{1}\left(\sigma, f_{2}^{(1)}\right)}{\mu_{1}\left(\sigma, f_{1}^{(1)}\right)} \sim \frac{\mu_{2}\left(\sigma, f_{2}^{(2)}\right)}{\mu_{2}\left(\sigma, f_{1}^{(2)}\right)} \sim \ldots \tag{3.5}
\end{equation*}
$$

Finaly, we rectify a result of S. N. Srivastava. He has shown ([$\left.{ }^{10}\right]$, p. 251) that
Theorem \mathbb{D}. If $f \in E$ is an entire function of Ritt order $p \in \mathbb{R}_{+}^{*} \cup\{0\}$ and lower order $\lambda \in \mathbf{R}_{+}^{*} \cup\{0\}$, and

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \frac{\left.\log \lambda_{\nu(\sigma, f}^{(P)}\right)-\log \lambda_{\nu(\sigma, f)}}{\sigma}=0 \tag{3.6}
\end{equation*}
$$

then

$$
\lim _{\sigma \rightarrow+\infty} \sup _{\inf } \frac{\log \left(\mathrm{u}_{p}^{\prime}\left(\sigma, f^{(p)}\right) / \mu^{\prime}(\sigma, f)\right)}{\sigma}=\begin{gather*}
p \mathrm{p} \tag{3.7}\\
p \lambda
\end{gather*}
$$

where μ^{\prime} is the derivative of μ with respect to σ, and $p \in \mathbf{Z}_{+}$.
We find that the conditions in the hypothesis of Theorem D are contradictory as is evident from

Lemma 1. An entire function $f \in E$ is of regular growth iff

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \frac{\left.\log \lambda_{v(\sigma, f}{ }^{(P)}\right)-\log \lambda_{v(\sigma, f)}}{\sigma}=0 \tag{3.8}
\end{equation*}
$$

The proof follows from (2.6) and the fact that the Ritt order and the lower order of f are the same as that of its p-th derivative $f^{(p)}, \forall p \in \mathbf{Z}_{+}$.

It would thus appear that Theorem D is true only for entire functions $f \in E$ of regular growth, in which case the condition (3.6) is superfluous.. We mention this observation formally as

Theorem 5. For every entire function $f \in E$ of regular growth and Ritt order $\mathrm{p} \in \mathbb{K}_{+}^{*} \cup\{0\}$, and $p \in \mathbf{Z}_{+}$,

$$
\begin{equation*}
\lim _{\sigma \rightarrow+\infty} \frac{\log \left(\mu_{p}^{\prime}\left(\sigma, f^{(p)}\right) / \mu^{\prime}(\sigma, f)\right)}{\sigma}=p \mathrm{p} \tag{3.9}
\end{equation*}
$$

The proof is the same as that of Theorem D with obvious modifications.

REFERENCES

[1] MANDELBROJT, S. : The Rice Institute Pamphlet (Dirichlet Series), Vol. 31, No. 4, Houston, 1944.
[²] SRIVASTAVA, R.S.L. : On the maximum term of an integral function defined by and GUPTA, J.S. Dirichlet series, Math. Ann., 174 (1967), 240-246.
[${ }^{3}$] RAHMAN, Q.I. : On the maximum modulus and the coefficients of an entire Dirichlet series, Tôhoku Math. J., 8 (1956), 108-113.
$\left.{ }^{4}\right]$ SRIVASTAVA, R.P. : On the entire functions and their derivatives represented by Dirichlet series, Ganita, 9 (1958), 83-93.
[] KAMTHAN, P.K. : On entire functions represented by Dirichlet series (IV), Annales de JTnst. Fourier, 16 (1966), 209-223.
[${ }^{6}$] SRIVASTAVA, R.S.L. : On the maximum term of an integral finction defined by Dirichlet series, Ganita, 13 (1963), 75-86.
[7] SRIVASTAVA, R.S.L. : On the growth of integral functions and their derivatives and GUPTA, J.S. defined by Dirichlet series, Rev. Mat. Hisp. - Amer., 4 (38) (1978), 50-60.
[8] YU, C.Y. : Sur les droites de Borel de certaines fonctions entières, Ann. Sci. l'Ecole Norm. Sup., 68 (1951), 65-104.
[1] GUPTA, J.S. and
: Growth numbers of entire functions defined by Dirichlet series, Bull. Soc. Math. Grèce, 14 (1973), 19-24.
$\left[{ }^{20}\right]$ SRIVASTAVA, S.N. : A note on the derivatives of an integral function represented by Dirichlet series, Rev. Mat. Hisp.-Amer., 22 (1962), 246-259.

UNIVERSITY OF JAMMU
JAMMU-180001, J \& K, INDIA

Ö Z E T

$$
f(s)=\sum_{n \in \mathbb{N}} a_{n} e^{s \lambda_{n}} \text { eksponentleri } \limsup _{n \rightarrow+\infty} \frac{\log n}{\lambda_{n}}=D \in \mathrm{R}_{+} \mathrm{U}\{0\} \text { ko }
$$ şuluna uyan, her yerde yakınsak bir Dirichlet serisi ile tanımlanan bir tam fonksiyon ve $\mu(\sigma, f)=\sup _{n \in \mathbf{N}}\left\{\left|a_{n}\right| e^{\sigma \lambda_{n}}\right\}, f(s)$ i tanımlayan Dirichlet serisinde $\operatorname{Re}(s)=\sigma$ koşuluna uyan maksimum terim olsun. Bu çalışmada μ fonksiyonu ile ilgili bazı sonuçlar elde edilmektedir.

[^0]: *) AMS subject classification number: Primary 30A64, Secondary 30A62.

