İstanbul Üniv. Fen Fak. Mat. Der. 50 (1991), 165-172

MAXIMUM TERM FUNCTION OF ENTIRE DIRICHLET SERIES

J.S. GUPTA - D.K. BHOLA *)

Let $f(s) = \sum_{n \in \mathbb{N}} a_n e^{s\lambda_n}$ be an entire function defined by an everywhere

convergent Dirichlet series whose exponents are subjected to the condition that $\limsup_{n \to +\infty} \frac{\log n}{\lambda_n} = D \in \mathbb{R}_+ \cup \{0\} (\mathbb{R}_+ \text{ is the set of positive reals}), and let$ $<math>\mu(\sigma, f) = \sup_{n \in \mathbb{N}} \{ |a_n| e^{\sigma \lambda_n} \}$ be the maximum term, for $\operatorname{Re}(s) = \sigma$, in the Dirichlet series defining f(s). We study a few results involving the function μ .

1. Let E be the set of mappings $f: \mathbb{C} \to \mathbb{C}(\mathbb{C}$ is the complex plane) such that the image under f of an element $s \in \mathbb{C}$ is $f(s) = \sum_{n \in \mathbb{N}} a_n e^{s\lambda_n}$ with $\limsup_{n \to +\infty} \frac{\log n}{\lambda_n} =$ $= D \in \mathbb{R}_+ \cup \{0\}$ (\mathbb{R}_+ is the set of positive reals), and $\sigma_c^f = +\infty$ (σ_c^f is the abscissa of convergence of the Dirichlet series defining f), N is the set of natural numbers $0, 1, 2, \dots, <\lambda_n \mid n \in \mathbb{N} >$ is a strictly increasing unbounded sequence of nonnegative reals, $s = \sigma + it$, σ , $t \in \mathbb{R}(\mathbb{R}$ is the field of reals), and $< a_n \mid n \in \mathbb{N} >$ is a sequence in C. Since the Dirichlet series defining f converges for each $s \in \mathbb{C}$, f is an entire function. Also, since $D \in \mathbb{R}_+ \cup \{0\}$, we have ([1], p. 168), $\sigma_a^f = +\infty$ (σ_a^f is the abscissa of absolute convergence of the Dirichlet series defining f), and that f is bounded on each vertical line $\mathbb{R}e(s) = \sigma_0$.

Let

$$M(\sigma, f) = \sup_{n \in \mathbb{R}} \{ |f(\sigma + it)| \}, \forall \sigma < \sigma_c^f,$$
(1.1)

be the maximum modulus of an entire function $f \in E$ on any vertical line $\operatorname{Re}(s) = \sigma$,

$$\mu(\sigma, f) = \sup_{n \in \mathbb{N}} \left\{ \left| a_n \right| e^{\sigma \lambda_n} \right\}, \ \forall \sigma < \sigma_c^f, \tag{1.2}$$

be the maximum term, for $\operatorname{Re}(s) = \sigma$, in the Dirichlet series defining f, and

$$\mathbf{v}(\sigma, f) = \sup_{n \in \mathbb{N}} \left\{ n \mid \mu(\sigma, f) = \left| a_n \right| e^{\sigma \lambda_n} \right\}, \, \forall \, \sigma < \sigma_c^f, \tag{1.3}$$

*) AMS subject classification number : Primary 30A64, Secondary 30A62.

be the rank of the maximum term.

In this paper, we study a few results involving the function μ .

2. We first define a function A_p , $p \in \mathbb{Z}_+$ (\mathbb{Z}_+ is the set of positive integers), for every entire function $f \in E$, as

$$A_{p}(\sigma, f) = \frac{\mu_{p}(\sigma, f^{(p)})}{\mu(\sigma, f)} , \forall \sigma < \sigma_{c}^{f},$$
(2.1)

and establish a result regarding it. We call A_p the quotient function of p-th order of f.

Teorem 1. For every entire function $f \in E$,

$$\lim_{\sigma \to +\infty} \sup_{\sigma \to +\infty} \frac{(A_p(\sigma, f))^{1/p}}{\lambda_{\gamma(\sigma, f)}} \le 1 \le \lim_{\sigma \to +\infty} \inf_{\sigma \to +\infty} \frac{(A_p(\sigma, f))^{1/p}}{\lambda_{\gamma(\sigma, f)}}, \forall p \in \mathbb{Z}_+.$$
(2.2)

Proof. We know ($[^2]$, lemma 2) that, for any $p \in \mathbb{Z}_+$,

$$\lambda_{\gamma(\sigma,f)} \leq \left(\frac{\mu_{\rho}(\sigma,f^{(p)})}{\mu(\sigma,f)}\right)^{1/p} \leq \lambda_{\gamma(\sigma,f}^{(p)}).$$
(2.3)

Dividing both sides of the first inequality in (2.3) by $\lambda_{v(\sigma,f)}$, and proceeding to limits, we get

$$\lim_{\sigma \to +\infty} \inf_{\alpha, \gamma \to +\infty} \frac{(A_p(\sigma, f))^{1/p}}{\lambda_{\gamma(\sigma, f)}} \ge 1, \qquad (2.4)$$

and dividing both sides of the second inequality in (2.3) by $\lambda_{v(\sigma,f}^{(P)})$, and proceeding to hmits, we get

$$\lim_{\sigma \to +\infty} \sup_{\lambda_{\gamma(\sigma, f)}} \frac{(A_{p}(\sigma, f))^{1/p}}{\lambda_{\gamma(\sigma, f)}} \leq 1.$$
(2.5)

Combining (2.4) and (2.5), we get (2.2).

Remark. If f is of Ritt order $p \in \mathbb{R}^*_+ \cup \{0\}$ (\mathbb{R}^*_+ is the set of extended positive reals) and lower order $\lambda \in \mathbb{R}^*_+ \cup \{0\}$, it follows from (2.3) and the following result ([³], Theorem 2.7 and 2.8)

$$\frac{\mathbf{p}}{\lambda} = \lim_{\sigma \to +\infty} \frac{\sup \log \log M(\sigma, f)}{\sigma} = \lim_{\sigma \to +\infty} \frac{\sup \log \lambda_{v(\sigma, f)}}{\sigma}$$
(2.6)

that

$$\lim_{\sigma \to +\infty} \sup_{\alpha \in f} \frac{\log (\mu_{p(\sigma, f^{(p)})}/\mu(\sigma, f)^{1/p})}{\sigma} = \frac{p}{\lambda}; \qquad (2.7)$$

a result stated without proof by Srivastava ([4], p. 89), and proved by Kamthan ([5], Theorem E) adopting a lengthy method.

MAXIMUM TERM FUNCTION OF ENTIRE DIRICHLET SERIES 167

Next we improve upon the following Theorem of Srivastava ([4], Theorem 3):

Theorem A. If $f \in E$ is an entire function of Ritt order $\rho \in \mathbb{R}^*_+ \cup \{0\}$ and lower order $\lambda \in \mathbb{R}^*_+ \cup \{0\}$, then

$$\lim_{\sigma \to +\infty} \inf_{\sigma \to +\infty} \frac{\log \mu(\sigma, f)}{\lambda_{\nu(\sigma, f)}} \leq \frac{1}{\rho} \leq \frac{1}{\lambda} \leq \lim_{\sigma \to +\infty} \sup_{\sigma \to +\infty} \frac{\log \mu(\sigma, f)}{\lambda_{\nu(\sigma, f)}}.$$
(2.8)

Remark. Theorem A has been proved under the condition that D = 0, but it is true in general.

We show that :

Theorem 2. For every entire function $f \in E$ of Ritt order $p \in \mathbb{R}^*_+ \cup \{0\}$, and lower order $\lambda \in \mathbb{R}^*_+ \cup \{0\}$, and for any $p \in \mathbb{N}$,

$$\lim_{\sigma \to +\infty} \inf_{\sigma \to +\infty} \frac{\log \mu_{\rho}(\sigma, f^{(\rho)})}{\lambda_{\nu(\sigma, f)}} \le \frac{1}{\rho} \le \frac{1}{\lambda} \le \lim_{\sigma \to +\infty} \sup_{\sigma \to +\infty} \frac{\log \mu_{\rho}(\sigma, f^{(\rho)})}{\lambda_{\nu(\sigma, f)}} .$$
(2.9)

That Theorem 2 improves upon (2.8) follows from the fact ([⁶], Theorem 3) that

$$\mu(\mathbf{o}, f) \leq \mu_1(\mathbf{\sigma}, f^{(1)}) \leq \dots \leq \mu_p(\mathbf{\sigma}, f^{(p)}) \leq \dots$$

Proof. We have, from (2.3),

$$\begin{cases} \log \lambda_{\gamma}(\sigma, f) \leq \frac{1}{p} (\log \mu_{p}(\sigma, f^{(p)}) - \log \mu(\sigma, f)) \\ \leq \log \lambda_{\gamma}(\sigma, f^{(p)}). \end{cases}$$
(2.10)

From the first inequality in (2.10), we get

$$p\left(\lim_{\sigma \to +\infty} \frac{\log \lambda_{\nu}(\sigma, f)}{\lambda_{\nu}(\sigma, f)}\right) \leq \lim_{\sigma \to +\infty} \frac{\log \mu_{p}(\sigma, f^{(p)})}{\lambda_{\nu}(\sigma, f)} - \lim_{\sigma \to +\infty} \frac{\log \mu(\sigma, f)}{\lambda_{\nu}(\sigma, f)}$$
$$\leq \lim_{\sigma \to +\infty} \frac{\log \mu_{p}(\sigma, f^{(p)})}{\lambda_{\nu}(\sigma, f)} - \frac{1}{\lambda}, \qquad (2.11)$$

in view of (2.8). Since $\lambda_{v(\sigma,f)}$ tends to infinity with σ , it follows, from (2.11), that

$$\lim_{\sigma \to +\infty} \sup_{\sigma \to +\infty} \frac{\log \mu_p(\sigma, f^{(p)})}{\lambda_{\nu(\sigma, f)}} \ge \frac{1}{\lambda} \quad (2.12)$$

Also, from the second inequality in (2.10), we have

$$p\left(\limsup_{\sigma \to +\infty} \frac{\log \mu_{p}(\sigma, f^{(p)})}{\lambda_{v(\sigma, f)}}\right) \ge \lim_{\sigma \to +\infty} \inf_{\sigma \to +\infty} \frac{\log \mu_{p}(\sigma, f^{(p)})}{\lambda_{v(\sigma, f)}} - \lim_{\sigma \to +\infty} \inf_{\sigma \to +\infty} \frac{\log \mu(\sigma, f)}{\lambda_{v(\sigma, f)}}$$
$$\ge \lim_{\sigma \to +\infty} \inf_{\sigma \to +\infty} \frac{\log \mu_{p}(\sigma, f^{(p)})}{\lambda_{v(\sigma, f)}} - \frac{1}{\rho}, \qquad (2.13)$$

in view of (2.8). Since, from (2.6),

$$\lim_{\sigma \to +\infty} \sup_{-\infty} \frac{\log \lambda_{v(\sigma,f}(p))}{\sigma} = p$$

it follows, from (2.13), that

$$\lim_{\sigma \to +\infty} \inf_{\lambda_{\gamma(\sigma,f)}} \frac{\log \mu_{\rho}(\sigma, f^{(p)})}{\lambda_{\gamma(\sigma,f)}} \le \frac{1}{\rho} .$$
(2.14)

Combining (2.12) and (2.14) we get (2.9).

Following corollaries are immediate from (2.9):

Corollary 1. If f is of infinite Ritt order, then

$$\lim_{\sigma \to +\infty} \inf_{\infty} \frac{\log \mu_p(\sigma, f^{(p)})}{\lambda_{\gamma(\sigma, f)}} = 0.$$
(2.15)

Corollary 2. If f is of lower order zero, then

$$\lim_{\sigma \to +\infty} \sup_{\phi \to +\infty} \frac{\log \mu_p(\sigma, f^{(p)})}{\lambda_{\gamma(\sigma, f)}} = +\infty .$$
(2.16)

We now obtain a majorant for the quantity $\lim_{\sigma \to +\infty} \sup_{\lambda_{\nu}(\sigma,f)} \frac{\log \mu(\sigma, f)}{\lambda_{\nu}(\sigma, f)} = \alpha$ (say),

with the help of growth numbers of f The growth number $\gamma \in \mathbb{R}^*_+ \cup \{0\}$ and lower growth number $\delta \in \mathbb{R}^*_+ \cup \{0\}$ of an entire function $f \in E$ of Ritt order $p \in \mathbb{R}_+$ are defined [7] as

$$\frac{\gamma}{\delta} = \lim_{\sigma \to +\infty} \frac{\sup_{\sigma \to +\infty} \frac{\lambda_{\nu}(\sigma, f)}{\inf_{\sigma \to +\infty}}}{e^{\rho \sigma}} .$$
(2.17)

One majorant for α has already been obtained by Srivastava and Gupta who have shown ([7], Theorem 2) that :

Theorem B. If $f \in E$ is an entire function of Ritt order $p \in R_+$, lower order $\lambda \in R_+ \cup \{0\}$, growth number $\gamma \in R_+^* \cup \{0\}$, and lower growth number $\delta \in R_+^* \cup \{0\}$, then

$$\frac{\delta}{\rho \gamma} \leq \liminf_{\sigma \to +\infty} \inf_{\lambda_{\gamma}(\sigma, f)} \frac{\log \mu(\sigma, f)}{\lambda_{\gamma}(\sigma, f)} \leq \frac{1}{\rho} \leq \frac{1}{\lambda} \leq \limsup_{\sigma \to +\infty} \frac{\log \mu(\sigma, f)}{\lambda_{\gamma}(\sigma, f)} \leq \frac{\gamma}{\delta p} .$$
(2.18)

We however show that :

Theorem 3. Under the hypothesis of Theorem B,

$$\alpha \leq \frac{1}{\rho} \left(1 + \log \frac{\gamma}{\delta} \right) . \tag{2.19}$$

MAXIMUM TERM FUNCTION OF ENTIRE DIRICHLET SERIES

Proof. It is known ($[^8]$, p. 67) that

$$\log \mu(\sigma, f) = 0(1) + \int_{\sigma_0}^{\sigma} \lambda_{v(x,f)} \, dx \,. \tag{2.20}$$

We choose a $k \in \mathbf{R}_+$ and get, from (2.20),

$$\log \mu\left(\sigma + \frac{k}{\rho}, f\right) = 0 (1) + \int_{\sigma_0}^{\sigma} \lambda_{\nu(x,f)} dx + \int_{\sigma}^{\sigma} \lambda_{\nu(x,f)} dx.$$

This gives, in view of (2.17), for any $\varepsilon \in \mathbf{R}_+$ and sufficiently large σ ,

$$\log \mu\left(\sigma + \frac{k}{\rho}, f\right) < 0 (1) + \frac{\gamma + \varepsilon}{\rho} (e^{\rho\sigma} - e^{\rho\sigma_0}) + \lambda_{\gamma} (\sigma + \frac{k}{\rho}, f) \frac{k}{\rho}.$$

Therefore,

$$\frac{\log \mu \left(\sigma + \frac{k}{\rho}, f\right)}{\lambda_{\nu} \left(\sigma + \frac{k}{\rho}, f\right)} < 0(1) + \frac{\gamma + \varepsilon}{\rho} \frac{e^{\rho \left(\sigma + \frac{k}{\rho}\right)}}{e^{k} \lambda_{\nu} \left(\sigma + \frac{k}{\rho}, f\right)} (1 - o(1)) + \frac{k}{\rho},$$

or

$$\lim_{\sigma \to +\infty} \frac{\log \mu \left(\sigma + \frac{\kappa}{\rho}, f\right)}{\lambda_{\nu} \left(\sigma + \frac{k}{\rho}, f\right)} \leq \frac{k}{\rho} + \frac{\gamma}{\rho e^{k}} \limsup_{\sigma \to +\infty} \frac{e^{\rho \left(\sigma + \frac{k}{\rho}\right)}}{\lambda_{\nu} \left(\sigma + \frac{k}{\rho}, f\right)}$$

which gives $\alpha \ge \frac{k}{p} + \frac{\gamma}{p e^k} \cdot \frac{1}{\delta}$. Taking $k = \log \frac{\gamma}{\delta}$, we get

$$\alpha \leq \frac{1}{\rho} \left(1 + \log \frac{\gamma}{\delta} \right),$$

proving (2.19).

Remarks. (i) Since $1 + \log x \le x$ for $x \ge 1$, it follows that

$$\frac{1}{\rho} \left(1 + \log \frac{\gamma}{\delta} \right) \leq \frac{\gamma}{p \, \delta} \, .$$

Thus the majorant for α given by (2.19) is better than the one given by (2.18).

(ii) Since, for $x \ge 1$, $x - (1 + \log x)$ is nonnegative nondecreasing function and has the maximum at x = 1, it follows that if $\gamma \neq \delta$ then $\alpha < \frac{\gamma}{p \delta}$.

(iii) The minorant for the quantity $\lim_{\sigma \to +\infty} \inf \frac{\log \mu(\sigma, f)}{\lambda_{v(\sigma, f)}}$ given by (2.18) could not be improved by our method of investigation.

3. Srivastava and Gupta ([²], p. 241) have defined a difference function χ_p for every entire function $f \in E$, as

$$\chi_{p}(\sigma, f) = \chi(\sigma, p) = \lambda_{\gamma(\sigma, f)}(\rho) - \lambda_{\gamma(\sigma, f)}, \forall \sigma < \sigma_{c}^{f}, \qquad (3.1)$$

and have proved (⁷], Theorem 1) that :

 $\delta, \delta' \in \mathbb{R}^*_+ \cup \{0\}$, and let

Theorem C. If $f \in E$ is an entire function of Ritt order $\rho \in \mathbf{R}_+$, growth number $\gamma \in \mathbf{R}_+^* \cup \{0\}$, lower growth number $\delta \in \mathbf{R}_+^* \cup \{0\}$, and $\limsup_{\sigma \to +\infty} \chi_p(\sigma, f)$ is finite, then

$$\lim_{\sigma \to +\infty} \frac{\sup_{\sigma \to +\infty} \frac{(A_p(\sigma, f))^{1/p}}{e^{\rho\sigma}} = \frac{\gamma}{\delta}.$$
(3.2)
We, however, prove

Theorem 4. Let $f_1, f_2 \in E$ be two entire functions, respectively, of Ritt orders ρ , $\rho' \in \mathbb{R}_+$, growth numbers $\gamma, \gamma' \in \mathbb{R}_+^* \cup \{0\}$ and lower growth numbers

$$\lim_{\sigma^{*} + \infty} \frac{\sup_{i \neq 0}}{\inf} (\lambda_{\nu(\sigma, f_{i})} - \lambda_{\nu(\sigma, f_{i})} = \frac{\alpha}{\beta} .$$

If α , $\beta \in \mathbf{R}$, and $\limsup_{\sigma \to +\infty} \chi_p(\sigma, f_1)$ and $\limsup_{\sigma \to +\infty} \chi_p(\sigma, f_2)$ are finite, then

$$\frac{\delta}{\gamma} \leq \liminf_{\sigma \to +\infty} \frac{(A_p(\sigma, f_1))^{1/p}}{(A_q(o, f_2))^{1/q}} \leq \limsup_{\sigma \to +\infty} \frac{(A_p(\sigma, f_1))^{1/p}}{(A_q(\sigma, f_2))^{1/q}} \leq \frac{\gamma}{\delta} .$$
(3.3)

Proof. It is known (([²], Theorem 4) and ([⁹], Theorem 3)) that under the hypothesis of the theorem $p = \rho'$, $\gamma = \gamma'$ and $\delta = \delta'$. Making use of (3.2) for f_1 and f_2 , respectively, we get, for any $\varepsilon \in \mathbf{R}_+$ and sufficiently large σ ,

$$(\delta - \mathbf{\epsilon}) e^{\mathbf{\rho} \mathbf{\sigma}} < (A_p(\mathbf{\sigma}, f_1))^{1/p} < (\gamma + \mathbf{\epsilon}) e^{\mathbf{\rho} \mathbf{\sigma}},$$

and

$$(\delta-\epsilon) \, e^{
ho\sigma} < (A_q(\sigma,f_2))^{1/q} < (\gamma+\epsilon) \, e^{
ho\sigma} \, .$$

Therefore, for any $\varepsilon \in \mathbf{R}_+$ and sufficiently large σ ,

$$\frac{\delta-\varepsilon}{\gamma+\varepsilon} < \frac{(A_p(\sigma,f_1))^{1/p}}{(A_q(\sigma,f_2))^{1/q}} < \frac{\gamma+\varepsilon}{\delta-\varepsilon} \ .$$

Now proceeding to limits, we get (3.3).

The following corollary is immediate from Theorem 4.

Corollary 3. Under the hypothesis of Theorem 4, if either of the functions f_1 and f_2 , say f_1 , is of strictly regular growth (i. e. $\gamma = \delta$), then the other is also of strictly regular growth and, as $\sigma \rightarrow +\infty$,

MAXIMUM TERM FUNCTION OF ENTIRE DIRICHLET SERIES 171

$$\left(\frac{\mu_p(\sigma, f_1^{(p)})}{\mu(\sigma, f)}\right)^{1/p} \sim \left(\frac{\mu_q(\sigma, f_2^{(q)})}{\mu(\sigma, f_2)}\right)^{1/q}; \tag{3.4}$$

in particular

$$\frac{\mu(\sigma, f_2)}{\mu(\sigma, f_1)} \sim \frac{\mu_1(\sigma, f_2^{(1)})}{\mu_1(\sigma, f_1^{(1)})} \sim \frac{\mu_2(\sigma, f_2^{(2)})}{\mu_2(\sigma, f_1^{(2)})} \sim \dots.$$
(3.5)

Finaly, we rectify a result of S. N. Srivastava. He has shown ([¹⁰], p. 251) that

Theorem D. If $f \in E$ is an entire function of Ritt order $p \in \mathbb{R}^*_+ \cup \{0\}$ and lower order $\lambda \in \mathbb{R}^*_+ \cup \{0\}$, and

$$\lim_{\sigma \to +\infty} \frac{\log \lambda_{\nu(\sigma, f}^{(p)}) - \log \lambda_{\nu(\sigma, f)}}{\sigma} = 0, \qquad (3.6)$$

then

$$\lim_{\sigma \to +\infty} \frac{\sup_{\sigma \to +\infty} \frac{\log \left(u_p'(\sigma, f^{(p)}) / \mu'(\sigma, f) \right)}{\sigma} = \frac{p p}{p \lambda}, \qquad (3.7)$$

where μ' is the derivative of μ with respect to σ , and $p \in \mathbb{Z}_+$.

We find that the conditions in the hypothesis of Theorem D are contradictory as is evident from

Lemma 1. An entire function
$$f \in E$$
 is of regular growth iff

$$\lim_{\sigma \to +\infty} \frac{\log \lambda_{\nu(\sigma, f}^{(p)}) - \log \lambda_{\nu(\sigma, f)}}{\sigma} = 0.$$
(3.8)

The proof follows from (2.6) and the fact that the Ritt order and the lower order of f are the same as that of its *p*-th derivative $f^{(p)}, \forall p \in \mathbb{Z}_+$.

It would thus appear that Theorem D is true only for entire functions $f \in E$ of regular growth, in which case the condition (3.6) is superfluous. We mention this observation formally as

Theorem 5. For every entire function $f \in E$ of regular growth and Ritt order $p \in \mathbb{K}^+_+ \cup \{0\}$, and $p \in \mathbb{Z}_+$,

$$\lim_{\sigma \to +\infty} \frac{\log \left(\mu_p'(\sigma, f^{(p)}) / \mu'(\sigma, f)\right)}{\sigma} = p p.$$
(3.9)

The proof is the same as that of Theorem D with obvious modifications.

J.S. GUPTA - D.K. BHOLA

REFERENCES

[¹]	MANDELBROJT, S.	:	The Rice Institute Pamphlet (Dirichlet Series), Vol. 31, No. 4, Houston, 1944.
[²]	SRIVASTAVA, R.S.L. and GUPTA, J.S.	:	On the maximum term of an integral function defined by Dirichlet series, Math. Ann., 174 (1967), 240-246.
[°]	RAHMAN, Q.I.	:	On the maximum modulus and the coefficients of an entire Dirichlet series, Tôhoku Math. J., 8 (1956), 108-113.
[4]	SRIVASTAVA, R.P.	:	On the entire functions and their derivatives represented by Dirichlet series, Ganita, 9 (1958), 83-93.
[*]	KAMTHAN, P.K.	:	On entire functions represented by Dirichlet series (IV), Annales de J Thst. Fourier, 16 (1966), 209-223.
[°]	SRIVASTAVA, R.S.L.	;	On the maximum term of an integral function defined by Dirichlet series, Ganita, 13 (1963), 75-86.
[²]	SRIVASTAVA, R.S.L. and GUPTA, J.S.	:	On the growth of integral functions and their derivatives defined by Dirichlet series, Rev. Mat. Hisp Amer., 4 (38) (1978), 50-60.
[*]	YU, C .Y.	:	Sur les droites de Borel de certaines fonctions entières, Ann. Sci. l'Ecole Norm. Sup., 68 (1951), 65-104.
["]	GUPTA, J.S. and BALA, SHAKTI	:	Growth numbers of entire functions defined by Dirichlet series, Bull. Soc. Math. Grèce, 14 (1973), 19-24.
[¹⁰]	SRIVASTAVA, S.N.	:	A note on the derivatives of an integral function represented by Dirichlet series, Rev. Mat. Hisp Amer., 22 (1962), 246-259.

UNIVERSITY OF JAMMU JAMMU-180001, J & K, INDIA

ÖZET

 $f(s) = \sum_{n \in \mathbb{N}} a_n e^{s\lambda_n} \text{ eksponentleri } \limsup_{n \to +\infty} \frac{\log n}{\lambda_n} = D \in \mathbb{R}_+ \cup \{0\} \text{ ko-}$

suluna uyan, her yerde yakınsak bir Dirichlet serisi ile tanımlanan bir tam fonksiyon ve $\mu(\sigma, f) = \sup_{n \in \mathbb{N}} \{ |a_n| e^{\sigma \lambda_n} \}, f(s)$ i tanımlayan Dirichlet serisinde Re $(s) = \sigma$ koşuluna uyan maksimum terim olsun. Bu çalışmada μ fonksiyonu ile ilgili bazı sonuçlar elde edilmektedir.