ON THE CONJUGACY CLASSES OF p^2 : $GL_2(p) - p$ ODD PRIME"

M.I.M. AL ALI

The object of this paper is to develop a general method for constructing the conjugacy classes of p^3 : $GL_2(p)$, where p^3 is an elementary abelian *p*-group of order p^3 .

INTRODUCTION

A particular procedure has been followed in [¹] to construct the conjugacy classes of the split extension $p^2: GL_2(p)$. The object of this paper is to develop a general method for constructing the conjugacy classes of $p^2: GL_2(p)$, where p^2 is an elementary abelian *p*-group of order p^2 . This procedure can be used to construct the conjugacy classes of the split extension $p^n: k$ where *k* is any finite group. A brief description of the character table of $p^2: GL_2(p)$ is also given, the character table of $p^2: GL_2(p)$ plays a big role in the construction of the character table of the maximal subgroup $p^{1+2}: GL_2(p)$ of the projective symplectic group $PSP_4(p)$ *p*-prime [⁴], where p^{1+2} is the extra special group of order p^3 , this is because $(p^{1+2}: GL_2(p)) / Z(p^{1+2}) \approx p^2: GL_2(p)$ where $Z(p^{1+2})$ is the center of p^{1+2} in $p^{1+2}: GL_2(p)$, the extra special group $p^{1+2} = \langle a, b | a^p = b^p = (a b)^p = [a, b]^p = 1 \rangle$, where $[a, b] = a^{-1} b^{-1} a b$.

1. THE CONJUGACY CLASSES OF $GL_2(p)$

The conjugacy classes of $GL_2(p)$ have been taken from Steinberg paper [⁵], and they are presented below. Let p and σ be a primitive element of $GF(p)^*$ and $GF(p^2)^*$ respectively such that $p = \sigma^{p+1}$, where $GF(p)^* = GF(p) \setminus \{0\}$.

Family	Element	Number of Classes	Number of Elements in each Class
A_1	$\begin{pmatrix} \rho^a \\ \rho^a \end{pmatrix}$	<i>p</i> - 1	1
A ₂	$\begin{pmatrix} \rho^a \\ 1 & \rho^a \end{pmatrix}$	р — 1	$p^{2}-1$
A_3	$\begin{pmatrix} \rho^a \\ \rho^b \end{pmatrix} a \neq b$	$\frac{1}{2}(p-1)(p-2)$	p(p+1)
В	$\begin{pmatrix} \sigma^a \\ \sigma^b \end{pmatrix} a \neq \text{mult}(p+1)$	$\frac{1}{2}p(p-1)$	p(p-1)
	$b \not\equiv ap \mod(p^2 - 1)$		

M.I.M. AL ALI

2. THE CONJUGACY CLASSES OF p^2 : GL, (p)

Denote p^2 : $GL_2(p)$ by H: K, to find the conjugacy classes of the split extension H: K, we need to find the conjugacy classes of a general element (h,k). Two elements (h_1, k_1) and (h_2, k_2) cannot be conjugate if $(1, k_1)$ is not conjugate to $(1, k_2)$. We can assume that $k_1 = k_2$. Then in order to see whether (h_1, k_1) and (h_2, k_1) are conjugate, we need only conjugate by elements (x, y) such that :

$$(x, y) (h_1, k_1) (x, y)^{-1} = (h_2^{\parallel}, k_1).$$

This means that (h_1, k_1) is conjugate to (h_2, k_1) if $(x, y) (h_1, k_1) (x, y)^{-1} = (h_2, k_1)$, for some (x, y), and also this means that (h_1, k_1) is conjugate to (h_2, k_1) if and only if (h_2, k_1) lies in the orbit of (h_1, k_1) under the set of all elements (x, y)such that $(x, y) (h, k_1) (x, y)^{-1} = (h', k_1)$, where $h, h' \in H$ (i. e. stabilizer of the coset $\{(h, k_1) | h \in H\}$). Clearly $\{(h, 1)\}$ lies in the stabilizer of $\{(k, k_1)\}$. Since

$$(h, 1) (h', k_1) (h^{-1}, 1) = (h, 1) (h' h^{-1}, k_1) = (h h' h^{-1}, k_1),$$

where $hh'h^{-1}$ might not be h' (if H is not abelian), H is contained in stabilizer of $\{(h, k_1) \mid h \in H\}$.

Also (h, x) (h', k_1) $(h, x)^{-1} = (*, x k_1 x^{-1}) = (*, k_1)$ if and only if $(1, x) \in C_K(k_1)$, and so the stabilizer of the coset $\{(h, k_1)\}$ is $H: C_K(k_1)$, where $C_K(k_1)$ is the centralizer of k_1 in K.

The elementary abelian *p*-group *H* can be considered as a 2-dimensional vector space $v_2(p)$ over GF(p). Let $k \in K$ be a representative of the conjugacy class \hat{k} . The classes of H: K which lie below k are of the form hk for some h's $\in H$. The action of K on H,

$$h \xrightarrow{k} h^k = k^{-1} h k$$

can be identified with

$$\underline{u} \xrightarrow{k} \underline{u} k$$

where <u>u</u> is the 2-tuple which corresponds to <u>h</u> with respect to the basis $A = \{(1,0), (0,1)\}$ of $V_2(p)$, and the element hk can be represented by 3×3 matrix

$$\left[\begin{array}{c|c} 1 & \underline{u} \\ \hline 0 & k \\ 0 & k \end{array}\right].$$

Because if $k_1, k_2 \in K = GL_2(p)$ and $\underline{u_1}, \underline{u_2}$ are the two 2-tuples which correspond to $h_1, h_2 \in H$, respectively, we have

$$\begin{bmatrix} 1 & \underline{u_1} \\ 0 & k_1 \end{bmatrix} \begin{bmatrix} 1 & \underline{u_2} \\ 0 & k_2 \end{bmatrix} = \begin{bmatrix} 1 & \underline{u_1 k_2 + \underline{u_2}} \\ 0 & k_1 k_2 \end{bmatrix}$$

ON THE CONJUGACY CLASSES OF p^2 : $GL_2(p) - p^2$ ODD PRIME" 175 which corresponds to (h_1, k_1) $(h_2, k_2) = (h_1^{k_2} + h_2, k_1 k_2)$.

Now we give a general description for the construction of the conjugacy classes of H: K.

Choose an element $(h^*, k) \in H : K$, this element can be identified with $\begin{bmatrix} 1 & u^* \\ 0 & k \end{bmatrix}$, where u^* is the 2-tuple corresponding to h^* with respect to the basis A, then we have

$$\begin{bmatrix} \frac{1}{0} & \frac{u_1}{I} \\ 0 & I \end{bmatrix} \begin{bmatrix} \frac{1}{0} & \frac{u^*}{k} \\ 0 & k \end{bmatrix} \begin{bmatrix} \frac{1}{0} & -\frac{u_1}{I} \\ 0 & I \end{bmatrix} = \begin{bmatrix} \frac{1}{0} & \frac{u_1k + u^*}{k} \\ 0 & k \end{bmatrix} \begin{bmatrix} \frac{1}{0} & -\frac{u_1}{I} \\ 0 & I \end{bmatrix} = \begin{bmatrix} \frac{1}{0} & \frac{u_1k + u^* - u_1}{I} \\ 0 & k \end{bmatrix}$$

This multiplication can be abbreviated to

$$(\underline{u}_1, I) (\underline{u}^*, k) (-\underline{u}_1, I) = (\underline{u}_1 k + \underline{u}^* - \underline{u}_1, k).$$

We first determine the length of the block of imprimitivity containing $(\underline{u^*}, \underline{k})$ by considering expressions of the form

 $((ru_{11} + u_1^* - u_{11} + tu_{21}, su_{11} + u_2^* - u_{21} + vu_{21}), k)$ where $\underline{u}_1 = (u_{11}, u_{21})k = \begin{pmatrix} r & s \\ t & v \end{pmatrix}$ and $\underline{u}^* = (u_1^*, u_2^*)$. Suppose that r = 1 and t = 0, this means that we get $\begin{pmatrix} (0, ^*), \begin{pmatrix} 1 \\ \rho^a \end{pmatrix} \end{pmatrix}$ which is the same orbit. Now if $\underline{u}^* = (u_1^*, u_2^*) \neq \underline{0}$ and if we conjugate $\begin{pmatrix} (u_1^*, u_{21} p^a + u_2^* - u_{21}), \begin{pmatrix} 1 \\ \rho^a \end{pmatrix} \end{pmatrix}$ by $\begin{pmatrix} l \\ m \end{pmatrix}$ we get an orbit of form $\begin{pmatrix} (l^{-1} u_1^*, ^*), \begin{pmatrix} 1 \\ \rho^a \end{pmatrix} \end{pmatrix}$ of length p(p-1), this means that we have two conjugacy classes of H: K lie below $\begin{pmatrix} 1 \\ \rho^a \end{pmatrix}$; their representatives are $\begin{pmatrix} \underline{0}, \begin{pmatrix} 1 \\ \rho^a \end{pmatrix} \end{pmatrix}$ and $\begin{pmatrix} \underline{u}^*, \begin{pmatrix} 1 \\ \rho^a \end{pmatrix} \end{pmatrix}$, $\underline{u}^* \neq \underline{0}$ and the order of these classes are p, p(p-1) respectively. The other conjugacy classes of K were treated in a similar manner. The complete results are given in the following table :

Number111of classes1 $p^2(p^2-1)(p^2-p)$ $p^2(p^2-1)$ Orbit length $p^2(p^2-1)(p^2-p)$ $p^2(p^2-p)$ p Centralizer $p^2(p^2-1)(p^2-p)$ $p^2(p^2-p)$ p $(u, (1 - 1))$ $p((1 - 1))$ $(u, (1 - 1))$ $p((p-1))$ $p(p-1)$ $p(p-1)$ $p(p-1)$ $p(p-1)$ $p(p-1)$ $p(p^2-1)(p^2-p)$ $p(p-1)$ $p(p^2-1)(p^2-p)$ Number $p-2$ $(p, (p^a))$ $a \neq b$ Number $p-2$ $(p^2-1)(p^2-p)$ $(p, (p^a))$ Number $p-2$ $(p^2-1)(p^2-p)$ $(p^2-1)(p^2-p)$ Orbit length p^2 p^2 $(p^2-1)(p^2-p)$ Orbit length p^2 $(p^2-1)(p^2-p)$ $(p^2-1)(p^2-p)$	Class Representative	$\left(\underline{0}, \begin{pmatrix}1\\&1\end{pmatrix}\right)$	$\left(\underline{u}, \begin{pmatrix} 1 & \\ & 1 \end{pmatrix} \right)$	$0 \qquad \left(\begin{array}{c} 0 \\ p^{a} \end{array} \right) a \neq p-1$
length 1 $p^2 (p^2 - 1) (p^2 - p)$ $p^2 (p^2 - p)$ lizer $p^2 (p^2 - 1) (p^2 - p)$ $p^2 (p^2 - p)$ 1 $p^2 (p^2 - 1) (p^2 - p)$ $p^2 (p^2 - p)$ $p^a)$ $a \neq p - 1, u \neq 0$ $\left(\begin{pmatrix} 0 & 1 \\ - & 1 \end{pmatrix} \\ p + 1 \end{pmatrix} \begin{pmatrix} u & (1 - 1) \\ - & p \end{pmatrix} \\ p + 1 \end{pmatrix} \begin{pmatrix} u & (p^2 - 1) (p^2 - p) \\ - & (p^2 - 1) (p^2 - p) \end{pmatrix} \begin{pmatrix} u & (p^2 - 1) (p^2 - p) \\ - & (p^2 - 1) (p^2 - p) \end{pmatrix} \begin{pmatrix} u & (p^2 - 1) (p^2 - p) \\ - & (p^2 - 1) (p^2 - p) \end{pmatrix}$	Number of classes	1,		<i>p</i> – 2
dizer $p^{2}(p^{2}-1)(p^{2}-p)$ $p^{2}(p^{2}-p)$ 1 p^{a}) $a \neq p-1, u \neq 0$ $(-1, 1)$ p^{a}) $a \neq p-1, u \neq 0$ $(-1, 1)$ p^{a}) $p^{a} p-1, u \neq 0$ $(-1, 1)$ p^{a}) $p^{a} p-1$ p^{a}) $p^{a} p-1$ p^{a}) $p^{a} p^{a}$ $p^{a} p^{a}$ $p^{a} p^{a}$ $p^{a} p^{a}$ sentative $(-1, 1)$ $p^{a} p^{a}$ $p^{a} p^{a} p^{a} p^{a}$ $p^{a} p^{a} p^{a} p^{a}$ $p^{a} p^{a} p^{a} p^{a} p^{a}$ $p^{a} p^{a} p^{a} p^{a} p^{a} p^{a}$ $p^{a} p^{a} p^{a}$	Orbit length	1	$p^{2}-1$	đ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Centralizer	$p^{2} \left(p^{2} - 1 \right) \left(p^{2} - p \right)$	$p^{2}(p^{2}-p)$	$p(p^2-1)(p^2-p)$
$ \begin{array}{c c} 1\\ \rho^{a}\\ \rho^{a} \end{pmatrix} a \neq p-1, u \neq 0 \\ p-2\\ p-2\\ p-2\\ p-1 \end{pmatrix} \left((0, \binom{1}{1} \\ 1) \right) \frac{1}{p} \\ p-2\\ p+1) (p^{2}-p) \\ p+1)$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\left(\frac{u}{\rho^a}, \begin{pmatrix} 1 & \\ \rho^a \end{pmatrix} a \neq p-1, t$		$\left(\frac{u}{1}, \begin{pmatrix} 1 & \ldots \\ 1 & 1 \end{pmatrix}\right)$	$\neq 0 \left(\begin{array}{c} 0 \\ 0 \end{array}, \begin{pmatrix} \rho^a \\ \rho^a \end{pmatrix} \right) a \neq p-1$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- <i>p</i> – 2	1	1	p-2
$ p + 1) (p^{2} - p) \qquad p (p^{2} - 1) (p^{2} - p) \qquad p (p^{2} - 1) (p^{2} - p) $ $ p + p + p + p + p + p + p^{2} + p + p^{2} + p + p^{2} + $	p(p-1)	d	· <i>p</i> (<i>p</i> - 1)	p^2
sentative $\left \begin{array}{c} \left(0, \left(p^{a} \\ p^{a} \right) \right) a \neq p-1 \\ er \\ p-2 \\ er \\ p-2 \\ er \\ p-2 \\ er \\ p-2 \\ er \\ p^{2} \\ er \\ p^{2} \\ p^{2}$	$(p+1)(p^2-p)$	$p(p^2-1)(p^2-1)$	[$(p^2 - p) = (p^2 - 1) (p^2 - p)$
$\begin{array}{c c} \text{sentative} & \left(\begin{array}{c} 0\\ -\\ -\\ \end{array}, \begin{pmatrix} \rho^{a}\\ \rho^{a} \end{pmatrix} \right) a \neq p-1 \\ \text{er} \\ p-2 \\ \text{sess} \\ \text{length} \\ \text{length} \\ p^{2} \\ \text{lizer} \\ \end{array} \right) \left(\begin{array}{c} 0\\ -\\ -\\ 0\\ p^{2} \\ $				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Class Representative	$\left(\frac{0}{2}, \begin{pmatrix} P^{a} \\ p^{a} \end{pmatrix}\right) a \neq p-1$		$\left(\underline{0}, \begin{pmatrix} \sigma^a \\ \sigma^b \end{pmatrix} \right)_{b \neq ap \text{ molt } (p+1)} \mu \neq ap \text{ mod } (p^2-1).$
$ \begin{array}{ c c c c c } \hline h & p^2 & p^2 \\ \hline & (p^2-1) \ (p^2-p) & (p^2-1) \ (p^2-p) \end{array} \end{array} $	Number of classes	p-2	•	$\frac{1}{2}p\ (p-1)$
$(p^2-1)(p^2-p)$ $(p^2-1)(p^2-p)$	Orbit length	p^2	p^2	p^2
	Centralizer	$(p^2 - 1) (p^2 - p)$	$(p^2 - 1) (p^2 - p)$	$(p^2 - 1) (p^2 - p)$

M.I.M. AL ALI

The total number of the conjugacy classes of p^2 : $GL_2(p)$ is $p^2 + p - 1$. The character table of p^2 : $GL_2(p)$ can be constructed as follows: We extend the whole character table of $GL_2(p)$ to p^2 : $GL_2(p)$. The character table of $GL_2(p)$ has been taken from [5] and presented below. Next we induce the

176

ON THE CONJUGACY CLASSES OF p^4 : $GL_2(p)$ —"p ODD PRIME" 177

1-representations of $GL_2(p)$ to p^2 : $GL_2(p)$. The extension gives $p^2 - 1$ irreducible characters of p^2 : $GL_2(p)$ and the induction gives p - 1 irreducible characters. The tensor product of one of these p-1 irreducible characters with an irreducible character of p^2 : $GL_2(p)$ of degree p - 1 completes the character table of p^2 : $GL_2(p)$.

Note : The extension, induction and tensor product of characters can be easily handled using Clifford Programme $[^2]$.

CHARACTERS OF GL₂ (p)

In this table, χ_p^r for example, will denote a character of degree p. The superscript being used to distinguish between two characters of the same degree.

	χ'n	$\chi_p^{(n)}$	$\chi_{p+1}^{(m,n)}$	$\chi_{p-1}^{(n)}$
Element	n=1, 2,, p-1	n=1, 2,, p-1	m, n=1, 2,, p-1 $m \neq n; (m,n) \equiv (n,m)$	
	ε ^{<i>p</i>-1} =1	$\varepsilon^{p-1}=1$	$\varepsilon^{p-1} = 1$	$p^{s-1} = 1$
11		<i>p</i> ε ^{2na}	$(p+1) \epsilon^{(m+n)a}$	$(p-1) \varepsilon^{na} (p+1)$
A_2		0	$\epsilon^{(m+n)a}$	$-\varepsilon^{na(p+1)}$
A_3	$\epsilon^{n(a+b)}$	$\varepsilon^{n(a+b)}$	\mathbf{E}^{ma+nb} + \mathbf{E}^{na+mb}	0.
B_{1}	٤ ^{<i>na</i>}	— ε ^{nα}	0	$-(\varepsilon^{na}+\varepsilon^{np})$

REFERENCES

[']	AL ALI, M.I.M.	:	On the character tables of the maximal subgroups of the projective symplectic group $PSP_4(q) - q$ odd prime, Ph.D. Thesis, University of Birmingham (1987).
[*]	AL ALI, M.I.M.	:	Clifford Programme, A computational programme using the Cayley
			Package to handle characters, Birmingham University, UK.
[³]	MITCHELL, H.H.	:	Determination of the ordinary and modular linear groups, Trans. Amer.
			Math. Soc., 12 (1911).
[*]	STEINBERG, R.	:	The representations of $GL_3(q)$, $GL_4(q)$, $PGL(3, q)$ and $PGL(4, q)$,
			Canad. J. Math., 3 (1951), 225-235.

ÖZET

Bu çalışmada, p^{2} mertebesi p^{3} olan bir elemanter abelyen *p*-grubu göstermek üzere, p^{2} : $GL_{2}(p)$ nin eşlenik eleman sınıflarını inşa etmek için genel bir yöntem verilmektedir.