ON THE CONJUGACY CLASSES OF $p^{2}:$ GL $_{2}(p)-$ " p ODD PRIME"

M.I.m. Al Ali

The object of this paper is to develop a general method for constructing the conjugacy classes of $p^{3}: G L_{2}(p)$, where p^{2} is an elementary abelian p-group of order p^{2}.

INTRODUCTION

A particular procedure has been followed in [1] to construct the conjugacy classes of the split extension $p^{2}: G L_{2}(p)$. The object of this paper is to develop a general method for constructing the conjugacy classes of $p^{2}: G L_{2}(p)$, where p^{2} is an elementary abelian p-group of order p^{2}. This procedure can be used to construct the conjugacy classes of the split extension $p^{n}: k$ where k is any finite group. A brief description of the character table of $p^{2}: G L_{2}(p)$ is also given, the character table of $p^{2}: G L_{2}(p)$ plays a big role in the construction of the character table of the maximal subgroup $p^{1+2}: G L_{2}(p)$ of the projective symplectic group $P S P_{4}(p) p$-prime $[4]$, where p^{1+2} is the extra special group of order p^{3}, this is because $\left(p^{1+2}: G L_{2}(p)\right) / Z\left(p^{1+2}\right) \simeq p^{2}: G L_{2}(p)$ where $Z\left(p^{1+2}\right)$ is the center of $p^{\mathrm{I}+2}$ in $p^{1+2}: G L_{2}(p)$, the extra special group $p^{1+2}=<a, b \mid a^{p}=b^{p}=(a b)^{p}=[a, b]^{p}=1>$, where $[a, b]=a^{-1} b^{-1} a b$.

1. THE CONJUGACY CEASSES OF GL ${ }_{2}$ (p)

The conjugacy classes of $G L_{2}(p)$ have been taken from Steinberg paper $[5]$, and they are presented below. Let p and σ be a primitive element of $G F(p)^{*}$ and $G F\left(p^{2}\right)^{*}$ respectively such that $\mathrm{p}=\sigma^{p+1}$, where $G F(p)^{*}=G F(p) \backslash\{0\}$.

Family	Element	Number of Classes	Number of Elements in each Class
A_{1}	$\left(\begin{array}{ll}\rho^{a} & \\ & \rho^{a}\end{array}\right)$	$p-1$	1
A_{2}	$\left(\begin{array}{ll}\rho^{a} \\ 1 & \rho^{a}\end{array}\right)$	$p-1$	$p^{2}-1$
A_{3}	$\binom{\rho^{a}}{\rho^{b}} a \neq b$	$\frac{1}{2}(p-1)(p-2)$	$p(p+1)$
B	$\begin{aligned} \left(\begin{array}{cc} \sigma^{a} & \\ \sigma^{b} \end{array}\right) a & \neq \operatorname{mult}(p+1) \\ b & \neq a p \bmod \left(p^{2}-1\right) \end{aligned}$	$\frac{1}{2} p(p-1)$	$p(p-1)$

2. THE CONJUGACY CLASSES OF $\mathrm{p}^{2}: \mathrm{GL}_{2}(\mathrm{p})$

Denote $p^{2}: G L_{2}(p)$ by $H: K$, to find the conjugacy classes of the split extension $H: K$, we need to find the conjugacy classes of a general element (h, k). Two elements (h_{1}, k_{1}) and (h_{2}, k_{2}) cannot be conjugate if ($1, k_{1}$) is not conjugate to $\left(1, k_{2}\right)$. We can assume that $k_{1}=k_{2}$. Then in order to see whether (h_{1}, k_{1}) and (h_{2}, k_{1}) are conjugate, we need only conjugate by elements (x, y) such that :

$$
(x, y)\left(h_{1}, k_{1}\right)(x, y)^{-1}=\left(h_{2}, k_{1}\right) .
$$

This means that $\left(h_{1}, k_{1}\right)$ is conjugate to $\left(h_{2}, k_{1}\right)$ if $(x, y)\left(h_{1}, k_{1}\right)(x, y)^{-1}=\left(h_{2}, k_{1}\right)$, for some (x, y), and also this means that (h_{1}, k_{1}) is conjugate to (h_{2}, k_{1}) if and only if $\left(h_{2}, k_{1}\right)$ lies in the orbit of (h_{1}, k_{1}) under the set of all elements (x, y) such that $(x, y)\left(h, k_{1}\right)(x, y)^{-1}=\left(h^{\prime}, k_{1}\right)$, where $h, h^{\prime} \in H($ i. e. stabilizer of the coset $\left.\left\{\left(h, k_{1}\right) \mid h \in H\right\}\right)$. Clearly $\{(h, 1)\}$ lies in the stabilizer of $\left\{\left(h, k_{1}\right)\right\}$. Since

$$
(h, 1)\left(h^{\prime}, k_{1}\right)\left(h^{-1}, 1\right)=(h, 1)\left(h^{\prime} h^{-1}, k_{1}\right)=\left(h h^{\prime} h^{-1}, k_{1}\right)
$$

where $h h^{\prime} h^{-1}$ might not be h^{\prime} (if H is not abelian), H is contained in stabilizer of $\left\{\left(h, k_{\mathrm{f}}\right) \mid h \in H\right\}$.

Also $(h, x)\left(h^{\prime}, k_{1}\right)(h, x)^{-1}=\left({ }^{*}, x k_{1} x^{-1}\right)=\left({ }^{*}, k_{1}\right)$ if and only if $(1, x) \in C_{K}\left(k_{1}\right)$, and so the stabilizer of the coset $\left\{\left(h, k_{1}\right)\right\}$ is $H: C_{K^{\prime}}\left(k_{1}\right)$, where $C_{K}\left(k_{1}\right)$ is the centralizer of k_{1} in K.

The elementary abelian p-group H can be considered as a 2 -dimensional vector space $v_{2}(p)$ over $G F(p)$. Let $k \in K$ be a representative of the conjugacy class \widehat{k}. The classes of $H: K$ which lie below k are of the form $h k$ for some h 's $\in H$. The action of K on H,

$$
h \xrightarrow{k} h^{k}=k^{-1} h k
$$

can be identified with

$$
\underline{u} \xrightarrow{k} \underline{u} k
$$

where u is the 2 -tuple which corresponds to h with respect to the basis $A=$ $\{(1,0),(0,1)\}$ of $V_{2}(p)$, and the element $h k$ can be represented by 3×3 matrix

$$
\left[\begin{array}{c|c}
1 & \frac{u}{-} \\
\hline 0 & k
\end{array}\right]
$$

Because if $k_{1}, k_{2} \in K=G L_{2}(p)$ and $\underline{u}_{1}, \underline{u}_{2}$ are the two 2-tuples which correspond to $h_{1}, h_{2} \in H$, respectively, we have

$$
\left[\begin{array}{l|l}
1 & \underline{u_{1}} \\
\hline 0 & k_{1}
\end{array}\right]\left[\begin{array}{c|c}
1 & \underline{u_{2}} \\
\hline 0 & \underline{k_{2}}
\end{array}\right]=\left[\begin{array}{c|c}
1 & \underline{u_{1} k_{2}+\underline{u}_{2}} \\
\hline 0 & k_{1} k_{2}
\end{array}\right]
$$

which corresponds to $\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\left(h_{1}^{k_{2}}+h_{2}, k_{1} k_{2}\right)$.
Now we give a general description for the construction of the conjugacy classes of $H: K$.

Choose an element $\left(h^{*}, k\right) \in \boldsymbol{H}: K$, this element can be identified with $\left[\begin{array}{l|l}1 & \underline{u}^{*} \\ \hline 0 & k\end{array}\right]$, where \underline{u}^{*} is the 2 -tuple corresponding to h^{*} with respect to the basis A, then we have

$$
\begin{aligned}
& {\left[\begin{array}{c|c|}
1 & \underline{u}_{1} \\
\hline 0 & I
\end{array}\right]\left[\begin{array}{c|c}
1 & \underline{u^{*}} \\
\hline 0 & k \\
0 & k
\end{array}\right]\left[\begin{array}{c|c}
1 & -\underline{u_{1}} \\
\hline 0 & -\underline{-} \\
0 & I
\end{array}\right]=\left[\begin{array}{c|c}
1 & \underline{u_{1} k+\underline{u}^{*}} \\
\hline 0 & k \\
0 &
\end{array}\right]\left[\begin{array}{c|c}
1 & -\underline{u}_{1} \\
\hline 0 & I
\end{array}\right]=} \\
& =\left[\begin{array}{c|c}
1 & \underline{u}_{1} k+\underline{u}^{*}-\underline{u}_{1} \\
\hline 0 & k \\
0 &
\end{array}\right]
\end{aligned}
$$

This multiplication can be abbreviated to

$$
\left(\underline{u}_{1}, I\right)\left(\underline{u}^{*}, k\right)\left(-\underline{u}_{1}, I\right)=\left(\underline{u}_{1} k+\underline{u}^{*}-\underline{u}_{1}, k\right) .
$$

We first determine the length of the block of imprimitivity containing ($\underline{u}^{*}, \underline{k}$) by considering expressions of the form
$\left(\left(r u_{11}+u_{1}^{*}-u_{11}+t u_{21}, s u_{11}+u_{2}^{*}-u_{21}+v u_{21}\right), k\right)$ where $\underline{u}_{1}=\left(u_{11}, u_{21}\right) k=\left(\begin{array}{ll}r & s \\ t & v\end{array}\right)$ and $u^{*}=\left(u_{1}^{*}, u_{2}^{*}\right)$. Suppose that $r=1$ and $t=0$, this means that we get $\left(\left(0,{ }^{*}\right),\left(\begin{array}{cc}1 & \\ \rho^{a}\end{array}\right)\right)$ which is the same orbit. Now if $\underline{u}^{*}=\left(u_{1}^{*}, u_{2}^{*}\right) \neq \underline{0}$ and if we conjugate $\left(\left(u_{1}^{*}, u_{21} \mathrm{p}^{a}+u_{2}^{*}-u_{21}\right),\left(\begin{array}{cc}1 & \\ & \rho^{a}\end{array}\right)\right)$ by $\left(\begin{array}{ll}l & \\ & m\end{array}\right)$ we get an orbit of form $\left(\left(l^{-1} u_{1}^{*},{ }^{*}\right),\left(\begin{array}{cc}1 & \\ \rho^{a}\end{array}\right)\right)$ of length $p(p-1)$, this means that we have two conjugacy classes of $I I: K$ lie below $\left(\begin{array}{cc}1 & \\ \rho^{a}\end{array}\right)$; their representatives are $\left(\underline{0},\left(\begin{array}{ll}1 & \\ \rho^{a}\end{array}\right)\right)$ and $\left(\underline{u}^{*},\left(\begin{array}{ll}1 & \\ \rho^{a}\end{array}\right)\right), \underline{u}^{*} \neq \underline{0}$ and the order of these classes are p, $p(p-1)$ respectively. The other conjugacy classes of K were treated in a similar manner. The complete results are given in the following table :

Class Representative	$\cdots\left(\underline{0},\left(\begin{array}{ll}1 & \\ & \\ & 1\end{array}\right)\right)$	$\left(\begin{array}{ll}\underline{u} \\ ,\end{array}\left(\begin{array}{ll}1 & \\ & 1\end{array}\right)\right)_{\underline{u} \neq 0}$	$\left(\underline{0},\left(\begin{array}{ll}1 & \\ & \rho^{a}\end{array}\right)\right)^{a \neq p-1}$
Number of classes	$\therefore \quad 1$	1	- \quad - -2
Orbit length	: 1	$p^{2}-1$	p
Centralizer	$p^{2}\left(p^{2}-1\right)\left(p^{2}-p\right)$	$p^{2}\left(p^{2}-p\right)$	$p\left(p^{2}-1\right)\left(p^{2}-p\right)$

$\left(\underline{u},\left(\begin{array}{cc}1 & \rho^{a}!\end{array}\right) \begin{array}{c}a \neq p-1, u \neq 0\end{array}\right.$	$\left(\left(\underline{0},\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)\right)\right.$	$\left(\begin{array}{c}\left.u,\left(\begin{array}{ll}1 & \cdots \\ 1 & 1\end{array}\right)\right) \underline{u} \neq 0\end{array}\right.$	$\left(\underline{0},\binom{\rho^{a}}{\rho^{a}}\right) a \neq p-1$
$p-2$	1	$p-2$	
$p(p-1)$	p	$p(p-1)$	p^{2}
$(p+1)\left(p^{2}-p\right)$	$p\left(p^{2}-1\right)\left(p^{2}-p\right)$	$p\left(p^{2}-1\right)\left(p^{2}-p\right)$	$\left(p^{2}-1\right)\left(p^{2}-p\right)$

Class Representative	$\left(\underline{0},\binom{\rho^{a}}{\rho^{a}}\right){ }_{a} \neq p-1$	$\left.\left(\underline{0},\left(\begin{array}{ll}\rho^{a} \\ & \rho^{b}\end{array}\right)\right)\right)_{a \neq b}$	
Number of classes	$p-2$	$\frac{(p-2)(p-3)}{2}$	$\frac{1}{2} p(p-1)$
Orbit length	p^{2}	p^{2}	, p^{2}
Centralizer	$\left(p^{2}-1\right)\left(p^{2}-p\right)$	$\left(p^{2}-1\right)\left(p^{2}-p\right)$	$\left(p^{2}-1\right)\left(p^{2}-p\right)$

The total number of the conjugacy classes of $p^{2}: G L_{2}(p)$ is $p^{2}+p-1$. The character table of $p^{2}: G L_{2}(p)$ can be constructed as follows: We extend the whole character table of $G L_{2}(p)$ to $p^{2}: G L_{2}(p)$. The character table of $G L_{2}(p)$ has been taken from [5] and presented below. Next we induce the

1-representations of $G L_{2}(p)$ to $p^{2}: G L_{2}(p)$. The extension gives $p^{2}-1$ irreducible characters of $p^{2}: G L_{2}(p)$ and the induction gives $p-1$ irreducible characters. The tensor product of one of these $p-1$ irreducible characters with an irreducible character of $p^{2}: G L_{2}(p)$ of degree $p-1$ completes the character table of $p^{2}: G L_{2}(p)$.

Note : The extension, induction and tensor product of characters can be easily handled using Clifford Programme [${ }^{2}$].

CHARACTERS OF GL ${ }_{2}(\mathrm{p})$

In this table, χ_{p}^{r} for example, will denote a character of degree p. The superscript being used to distinguish between two characters of the same degree.

	χ_{1}^{n}	$\chi_{p}^{(n)}$	$\chi_{p+1}^{(m, n)}$	$\chi_{p-1}^{(n)}$
$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{9} \\ \frac{\overrightarrow{\rightharpoonup I}}{\vec{I}} \end{array}\right\|$	$n=1,2, \ldots, p-1$ $\varepsilon^{p-1}=1$	$n=1,2, \ldots, p-1$ $\varepsilon^{p-1}=1$	$\begin{aligned} & m, n=1,2, \ldots, p-1 \\ & m \neq n ;(m, n)=(n, m) \\ & \varepsilon^{p-1}=1 \end{aligned}$	$\begin{aligned} & n=1,2, \ldots, p^{2}-1 \\ & n \neq \text { mult }(p+1) \\ & \varepsilon p^{8}-\mathbf{1}=1 \end{aligned}$
A_{1}	$\varepsilon^{2 n a}$	$p \varepsilon^{2 n a}$	$(p+1) \varepsilon^{(m+n) a}$	$(p-1) \varepsilon^{n a}(p+1)$
A_{2}	$\varepsilon^{2 n a}$	0	$\varepsilon^{(m+n) a}$	$-\varepsilon^{n a(p+1)}$
A_{3}	$\varepsilon^{n(a+b)}$	$\varepsilon^{n(a+b)}$	$\varepsilon^{m a+n b}+\varepsilon^{n a+m b}$	0
B_{1}	$\varepsilon^{1 a}$	$-\varepsilon^{n a}$.	0	$-\left(\varepsilon^{n a}+\varepsilon^{n p}\right)$

RETERENCES

['] AL ALI, M.I.M. : On the character tables of the maximal subgroups of the projective symplectic group $P S P_{4}(q)-q$ odd prime, Ph.D. Thesis, University of Birmingham (1987).
[] AL ALI, M.I.M. : Clifford Programme, A computational programme using the Cayley Package to handle characters, Birmingham University, UK.
[3] MITCHELL, H.H. : Determination of the ordinary and modular linear groups, Trans. Amer. Math. Soc., 12 (1911).
['] STEINBERG, R. : The representations of $G L_{3}(q), G L_{4}(q), P G L(3, q)$ and $P G L(4, q)$, Canad. J. Math., 3 (1951), 225-235.

Ö Z ET

Bu çalışmada, p^{2} mertebesi p^{2} olan bir elemanter abelyen p-grubu göstermek üzere, $p^{2}: G L_{2}(p)$ nin eşlenik eleman sınıflarını inşa etmek için genel bir yöntem verilmektedir.

