ON THE ANALYSIS OF THE COSETS OF T = E: $GL_n(p)$, p PRIME

M. I. ALALI

The main purpose of this paper is to study some properties of the cosets of the semidirect product $E: GL_n(p)$, where E is an elementary abelian normal subgroup of order p^n and Γ/E is isomorphic to the general linear group $GL_n(p)$. These properties are of great importance for the construction of the conjugacy classes of Γ .

1. The matrix form of T

The elementary abelian group E can be regarded as an *n*-dimensional vector space over GF(p). Let $A \in GL_n(p)$ be a representative of the conjugacy class cl(p) of $GL_n(p)$.

The action of $GL_n(p)$ on E

$$A(e) = e^{A} = A^{-1} e A$$
 for $A \in GL_n(p)$ and $e \in E$

can be identified with

$$\nu \xrightarrow{A} \nu A$$

where \underline{v} is an *n*-tuple which corresponds to e w.r.t. the standard basis $B = \{(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 1)\}$. And the element $Ae \in \Gamma$ can represented by the (n + 1) (n + 1) matrix

$$\begin{array}{c|cccc}
1 & \underline{\nu} \\
0 & \\
0 & A \\
\vdots & 0
\end{array}$$

because if A_1 , A_2 are two elements of $GL_n(p)$ and $\underline{\nu}_1$, $\underline{\nu}_2$ are the two *n*-tuples which corresponds to e_1 , $e_2 \in E$ respectively, we have

$$\left[\frac{1}{0} \middle| \frac{\underline{\nu}_1}{A_1}\right] \left[\frac{1}{0} \middle| \frac{\underline{\nu}_2}{A_2}\right] = \left[\frac{1}{0} \middle| \frac{\underline{\nu}_1 A_2 + \underline{\nu}_2}{A_1 A_2}\right]$$

which corresponds to

$$(A_1, e_1)(A_2, e_2) = (A_1 A_2, e^{A_2} + e_2).$$
 (1.1)

2. Analysis of the cosets of Γ

The map $\Phi: \Gamma \longrightarrow GL_n(p)$ defined by $\Phi\left[\frac{1}{0} \middle| \frac{\nu}{A}\right] = A \in GL_n(p)$ is a homomorphism, this is clear from (1.1).

Lemma. Let \mathscr{F} denote the stabilizer in Γ of $\Phi^{-1}(A)$ and ε denote the stabilizer in E of h in $\Phi^{-1}(A)$, then $|\Theta(h)| = \frac{p^n}{|\varepsilon|}$ where $\Theta(h)$ is the orbit of $\Phi^{-1}(A)$ corresponding to h under the action of E on $\Phi^{-1}(A)$.

Proof. It is clear that E is a normal subgroup of \mathscr{F} , let $T = \left[\frac{1}{0} \middle| \frac{v}{B} \right] \in \mathscr{F}$ and $h = \left[\frac{1}{0} \middle| \frac{u}{A} \right]$ then

$$\Phi\left(\left[\frac{1}{0} \middle| \frac{-\nu B^{-1}}{B^{-1}}\right] \left[\frac{1}{0} \middle| \frac{\nu}{A}\right] \left[\frac{1}{0} \middle| \frac{\nu}{B}\right]\right) =$$

$$= \Phi\left(\left[\frac{1}{0} \middle| \frac{-\nu B^{-1} A B + \mu B + \nu}{B^{-1} A B}\right]\right) = \Phi\left(\left[\frac{1}{0} \middle| \frac{-\nu A^{B} + \mu B + \nu}{A^{B}}\right]\right) =$$

$$= \Phi\left(\left[\frac{1}{0} \middle| \frac{-\nu A + \mu B + \nu}{A}\right]\right) = A$$

this means that \mathscr{F}/ε is isomorphic to the centralizer of A in $GL_n(p)$ i. e. $\mathscr{F}=E.\ C_{GL_n(p)}(A)$ where $E.\ C_{GL_n(p)}(A)$ is the nonsplit extension of E by the centralizer of A in $GL_n(p)$. Also the orbits of E on $\Phi^{-1}(A)$ all have the same length, for let $\underline{w}\in\varepsilon$ then

$$- \underline{w} \left(\underline{u}^* \left[\frac{1}{0} \middle| \frac{-\underline{u}}{A} \right] \right) (\underline{w}) = \left[\frac{1}{0} \middle| \frac{(-\underline{w} + \underline{u}^* + \underline{w}) A + \underline{u}}{A} \right] =$$

$$= \left[\frac{1}{0} \middle| \frac{(-\underline{w} + \underline{u}^* + \underline{w}) A + (-\underline{w} + \underline{w}) A + \underline{u}}{A} \right] =$$

$$= \left(-\underline{w} \left[\frac{1}{0} \middle| \frac{\underline{u}^*}{A} \right] \underline{w} \right) \left(-\underline{w} \left[\frac{1}{0} \middle| \frac{\underline{u}}{A} \right] \underline{w} \right) = \underline{u}^* \left[\frac{1}{0} \middle| \frac{\underline{u}}{A} \right]$$

so ε is the stabilizer in E of $\underline{u}^* \left[\frac{1}{0} \middle| \underline{u} \middle| A \right] \in \Phi^{-1}(A)$ and hence $|\theta(h)| = \frac{p^n}{|\varepsilon|}$.

Remark 1. Assume that $|\varepsilon| = p^r$ where r divides n. Let θ_1 , θ_2 , ..., θ_{p^r} be the orbits of E on $\Phi^{-1}(A)$ and Σ_1 , Σ_2 , ..., Σ_q be the orbits of \mathscr{F} on $\Phi^{-1}(A)$. Then

each Σ_i is an orbit of E or is a union of some orbits of E. Also the orbits $\theta_i \subseteq \Sigma_i$ are blocks of primitivity of \mathscr{F} , see [3].

If $\sigma \in \Sigma_i$ then $|C_{\Gamma}(\sigma)| = \frac{|\mathscr{F}|}{|\Sigma_i|}$ and since $\Gamma \setminus E \approx \mathscr{F}$, the extension of E by Γ , then $|C_{\Gamma}(\sigma)| = \frac{p^n}{d_i p^{n-r}} \begin{vmatrix} C(A) \\ GL_n(p) \end{vmatrix} = \frac{p^r}{d_i} \begin{vmatrix} C(A) \\ GL_n(p) \end{vmatrix}$ where d_i is the number of distinct orbits of E contained in Σ_i .

Lemma. Let $A \in GL_n(p)$ then

(i) A determines a homomorphism $A: E \longrightarrow E$ defined by

$$A(\underline{e}) = \underline{e}^{\left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \middle]} = \underline{e}^{\left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \middle]} (\underline{e}) =$$
$$= \underline{e}^{\left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \middle]} \underline{e}^{\left[\frac{1}{0} \middle| \frac{-\underline{v}}{A^{-1}} \middle]}$$

where $\left[\frac{1}{0} \middle| \frac{v}{A} \right]$ is a coset representative in Γ .

(ii) If $\beta \in \mathcal{F}$, then the action of β on E commutes with this homomorphism.

Proof. (i) The above map is well defined i. e. it is independent of the choice of the coset representative $\left[\frac{1}{0} \middle| \frac{\nu}{A}\right]$ for let $e^* \left[\frac{1}{0} \middle| \frac{\nu}{A}\right] = \left[\frac{1}{0} \middle| \frac{e^*A + \nu}{A}\right]$ be another representative of the same coset, then

$$A(\underline{e}) = \underline{e}^{\left[\frac{1}{0} \left| \frac{\underline{e}^* A + \underline{v}}{A} \right| \right]} =$$

$$= \underline{e} \left[\frac{1}{0} \left| \frac{\underline{e}^* A + \underline{v}}{A} \right| (\underline{e}) - \underline{e} \left[\frac{1}{0} \left| \frac{\underline{e}^* A + \underline{v}}{A} \right| \right] \underline{e} \left[\frac{\mathbf{i}}{0} \left| \frac{-\underline{v} A^{-1}}{A^{-1}} \right| (-\underline{e}^*) =$$

$$= \underline{e} \left[\frac{1}{0} \left| \frac{\underline{v}}{A} \right| \underline{e} \left[\frac{1}{0} \left| \frac{-\underline{e}^* A^{-1}}{A} \right| \right] [-\underline{e}^*] =$$

$$= \underline{e} \left[\frac{1}{0} \left| \frac{\underline{v}}{A} \right| \underline{e} \left[\frac{1}{0} \left| \frac{\underline{e}^* A^{-1} - \underline{v} A^{-1} - \underline{e}^* A^{-1}}{A^{-1}} \right] =$$

$$= \underline{e} \left[\frac{1}{0} \left| \frac{\underline{v}}{A} \right| \underline{e} \left[\frac{1}{0} \left| \frac{-\underline{v} A^{-1}}{A^{-1}} \right| \underline{e} \left[\frac{1}{0} \left| \frac{\underline{v}}{A} \right| \right] \right]$$

To prove that $A: E \longrightarrow E$ is a homomorphism, let \underline{e}_1 , \underline{e}_2 be two elements in E, then

$$A(\underline{e}_{1}\underline{e}_{2}) = (\underline{e}_{1}\underline{e}_{2})^{\left[\frac{1}{0}\left|\frac{y}{A}\right|\right]} =$$

$$= (\underline{e}_{1}\underline{e}_{2}) \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] (\underline{e}_{1}\underline{e}_{2}) =$$

$$= \underline{e}_{1}\underline{e}_{2} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1}\underline{e}_{2} \left[\frac{1}{0}\left|\frac{-yA^{-1}}{A^{-1}}\right|\right] =$$

$$= \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{-yA^{-1}}{A^{-1}}\right|\right] =$$

$$= \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{-yA^{-1}}{A^{-1}}\right|\right] \underline{e}_{2} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{2} \left[\frac{1}{0}\left|\frac{-yA^{-1}}{A^{-1}}\right|\right] =$$

$$= \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] (\underline{e}_{1}) \cdot \underline{e}_{2} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] (\underline{e}_{2}) =$$

$$= \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] (\underline{e}_{1}) \cdot \underline{e}_{2} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] (\underline{e}_{2}) =$$

$$= \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{B}\right|\right] \underline{e}_{2} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1} (\underline{e}_{1}) A(\underline{e}_{2}).$$
(ii) Let $\beta = \left[\frac{1}{0}\left|\frac{y}{B}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{-yA^{-1}}{B^{-1}}\right|\right] \frac{1}{0} \left|\frac{-yB^{-1}}{B^{-1}}\right] =$

$$= \left(\frac{1}{0}\left|\frac{y}{B}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{-yA^{-1}}{A^{-1}}\right|\right] \left[\frac{1}{0}\left|\frac{-yB^{-1}}{B^{-1}}\right|\right] -$$

$$= \left[\frac{1}{0}\left|\frac{y}{B}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \underline{e}_{1} \left[\frac{1}{0}\left|\frac{-yB^{-1}}{B^{-1}}\right|\right] \underline{e}_{1}^{*}.$$

$$\left[\frac{1}{0}\left|\frac{y}{A}\right|\right] \left[\frac{1}{0}\left|\frac{y}{B}\right|\underline{e}_{1} \left[\frac{1}{0}\left|\frac{-yB^{-1}}{B^{-1}}\right|\right] \left[\frac{1}{0}\left|\frac{-yA^{-1}}{A^{-1}}\right|\right] [-\underline{e}_{1}^{*}] =$$

$$= \left[\frac{1}{0} \middle| \frac{\underline{u}}{B} \right] e \left[\frac{1}{0} \middle| \frac{-\underline{u}}{B^{-1}} \right] \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] \left[\frac{1}{0} \middle| \frac{\underline{u}}{B} \right].$$

$$= e \left[\frac{1}{0} \middle| \frac{-\underline{u}}{B^{-1}} \right] \left[\frac{1}{0} \middle| \frac{-\underline{u}}{A^{-1}} \right] =$$

$$= e^{\beta} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] (e^{\beta})$$

where $\underline{e}^{\beta} = \beta \underline{e} \beta^{-1} \dots (1)$, and

$$\underline{e}^* \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] = \left[\frac{1}{0} \middle| \frac{\underline{u}}{B} \right] \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] \left[\frac{1}{0} \middle| \frac{-\underline{u} B^{-1}}{B^{-1}} \right].$$

Remark 2. From (1) we can see that \mathscr{F} normalizes ε^* and I where $\varepsilon^* = \left\{ \underline{e} \in E : \left[\frac{1}{0} \middle| \frac{\underline{v} + \underline{e} A}{A} \right] \right\} = \underline{e}$ which is the stabilizer in E of $\left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right]$ and $I = \{A(\underline{e}) : \underline{e} \in E\}$. Also

$$\underline{e}_{1} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] (\underline{e}_{1}) \cdot \underline{e}_{1} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] = \\
= \underline{e}_{1} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] \underline{e}_{1} \left[\frac{1}{0} \middle| \frac{-\underline{v} A^{-1}}{A^{-1}} \right] \underline{e} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] = \\
= \underline{e}_{1} \underline{e}_{2} \underline{e} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] = \underline{e}' \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right].$$

So the orbits of I under multiplication are the blocks of the cosets.

Remark 3. Let $r_1 \leq r_2 \leq ... \leq r_q$, where r_i is the number of blocks in Σ_i . If $r_i = 1$ then Γ has a class with centralizer ε^* . $C_{GL_n(p)}(A)$, where ε^* . $C_{GL_n(p)}(A)$ is the extension of $C_{GL_n(p)}(A)$ by ε^* . The action of $\mathscr F$ on the blocks is isomorphic to the group action ε^* : $C_{GL_n(p)}(A)$.

Proof. Let
$$\left[\frac{1}{0} \middle| \frac{\underline{u}}{B} \right] \in \varepsilon^*$$
. $C_{GL_B(p)}(A)$ then
$$\left[\frac{1}{0} \middle| \frac{\underline{u}}{B} \right] \left(\underline{e} \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right] \right) = \left[\frac{1}{0} \middle| \frac{\underline{u}}{B} \right] (\underline{e}) \left[\frac{1}{0} \middle| \frac{\underline{v}}{A} \right],$$

the block-orbits correspond to the action of ε^* . $C_{GL_n(p)}$ (A) on E/I of order p^r with $\{0\}$ corresponding to Σ_i .

Hence each class of Γ in the coset of A corresponds to an orbit of $C_{GL_n(p)}$ (A) on the group E/I.

N. B. The conjugacy classes of Γ where studied in detail in [2], and the above results can abbriviate a lot of computations carried out in [1] and in [2].

REFERENCES

[1] AL ALI, M.I.M. : On the character tables of the maximal subgroups of the projective

symplectic group PSP, (q), q-odd prime, Ph.D. thesis, University of

Birmingham (1987).

[2] SALLEH, R.B. : On Fischer's Matrices and their calculations, Ph.D. thesis, Univer-

sity of Birmingham (1989).

[3] WIELANDT, H. : Finite Permutation Groups, Academic Press, 1964.

ÖZET

Bu çalışmada, E mertebesi \mathbf{P}^n olan bir elemanter abelyen normal alt grup ve \mathbf{T}/E genel lineer grup $GL_n(p)$ ye izomorf olmak üzere, $E:GL_n(p)$ yarı direkt çarpımının kalan sınıflarının bazı özelikleri incelenmektedir.