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ON NEARLY PARACOMPACT SPACES
N. ERGUN

In this study a new type of weak paracompaciness has been defined and
some of its certain topological properties were established.

0. Introduction. The purpose of this article is to introduce a new type of
paracompa{ctness called nearly paracompactness, weaker than the usual para-
compactness and to determine its basic topological properties, It has been shown
that these two types of paracompactness are equivalent on semi-regular spaces.
By using certain characterizations of Ernest Micheal, which could be found in
[*], some necessary and sufficient conditions for the nearly paracompactness of
almost regular and almost normal spaces have been obtained. Furthermore
some relations between nearly paracompact spaces and new type of some covering
spaces such as nearly Lindeldf, nearly compact and nearly o-compact have also
been investipated. Certain sufficient conditions on the nearly paracompactness
of subspaces and product topologies are obtained. Finally some invariancy
conditions of nearly paracompactness under certain functions are also obtained.
No seperation axioms such as being Fréchet, i.e. 7; or Hausdorff are assumed
unless otherwise stated. o

1. Preliminaries. This section is devoted to some basic topological facts

which have been used frequently. Let X be a topological space and j, A, C A

denote the interior, the closure and the complement of 4 respectively.. Then for
any subset A4 following equalitics hold :

o _

Q <

A=A , A=4 o Q)

P >

From (2) it can be easily deduced that for any A

Cf:@. S Cf:ﬁ;. . . )

Furthermore if 4 is-open, then for any subset B
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ANB< AN B. C))

Consequently if B is disjoint with open A then

jnf:¢. (5)

A subset is called regularly open (regularly closed) if it is the interior of a closed
(the closure of an open) set. By using (1) it can be easily proved that for any subset
A, the necessary and suff1c1ent condition for being regularly open (regularly

closed) is 4 = A (4 = A) The complement of a regularly open (regularly
closed) set is regularly closed (regularly open) since (3} holds. Every regularly
open (regularly closed) set is trivially open (closed). In the topological space on R
with the basic ne1ghb0rh00ds G () —]x —g,e) for x where E > 0, the set

= (— o0,0] is closed but not regularly closed since K — ¢ = K In the same
topologwal space for any real x and positive g, the basic neighborhood G, ()

_ _e
is open but not regularly open since G.(g) = G (g) = R. The necessary and
sufficient condmon for an open set 4 (closed set K} to be regularly open (regu-

larly closed) is 94 = 34 (3K < K) For an open set 4 (closed set X), the mini-
mal regularl y.open set (maximal regularly closed set) contains A4 (contained in K)

o ==

is A (K) A (K) is called the regularly open envelope (regularly closed content) of
A (K). A simple consequence of (5) says that the regularly open envelopes of dis-
joint open sets are also disjoint and by using (3) it can be proved that the union
of the regularly closed contents of two closed sets, whose union is the whole
space, is also equal the whole space. The intersection (union) of a finite number
of regularly open (regularly closed) sets is also regularly open (regularly closed).
In the one dimensional Euclidian topology on R for any real x and positive &,
the intervals G'=]x—eg x[ and G,>=]x,x 4 €[ are regularly open, but
their union is not since :

GluGr:=]1x—e,xTe].
It follows that the union (intersection) of regularly open (regularly closed) sets
is not necessarily regularly open (regularly closed). In the same topological space
for any real x

0 ={]1x—=.x+el (60 4 09,

n=1

i.e. the intersection (union) of a countable number of regularly open (regularly
closed) sets is not necessarily regularly open (regularly closed). A topological
space is called semi-regular if the whole regularly open neighborhoods of any
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point constitute the basic neighborhoods for that point [*]. For any topological
space X, the family of all open sets which can be written as the union of an ar-
bitrary number of regularly open sets of X is a topology on X, weaker then the
initial topology on X and denoted by X,. I i; and ¢, denote the interior and
closure operations in X,, then for any open set 4 of X it is straightforward to
see that

A= ¢, (4) : 6

and consequently by using the first equality of (2) one gets

C/T=CCS(A)?f§(CA>. o

Particularly for open set C A of X, (6) and (7) yield

CF-o(C7)-ei(C4):

Since the second equation of (3) can be written as

CCSDI'S(C A)=i,°cs(A)

in X, , one can easily deduce for any open set 4 of X that

i‘:C[TZf:Ccsog(CA):z;.oc,(A). )

This result and the first equation of (3) give for any closed set K of X

k=CCx=Cice((r)=c-in. ©
Four basic Lemma’s can be deduced from equations (8) and (%) :

Lemma 1. The regularly open envelope (regularly closed content) of any
open {closed) set of X is regularly open (regularly closed) in X, .

Lemma 2. If X is any topological space, X, i.c. the whole family of open
sets of X which can be written as the arbitrary union of regularly open sets of
X, is a semi-regular topology.

Lemma 3. The topologies X and X, are equivalent iff X is semi-regular.

Lemma.74.“ The necessary- ,an-d sufficient épnditions for being regularly
ob(;n (regutarly closed) in X, is being r;:gulquy open (regularly closed) in X.
.- The topological - space X, is called the semi-regularization of X [*]. The
topological space with the basic neighborhoods &\ {g) =] x — ¢, o) on R has an
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indiscrete semi-regularization since all the proper open subsets are dense.
Similarly the topological space on R with topology =, , generated by the whole
subsets of R containing some fixed real number x,, has an indiscrete semire-
gularization for the same reasons.

2. Nearly paracompactness and some characterizations on mearly
paracompactness of certain spaces.

Definition . In a topological space a family of sets % is called’ locally
Sinite if every point has at least one neighborhood which intersects at most a
finite number of ¥ [*]. A family of sets ¥ is called a refinement of % if for every
Ge & there exists a Ue % such that G < U [*]. The family ¥ = {G,:ae I} is
called the precise refinement of % = {U,: peI*} if I = I* and for every ael
there exists a fe I'* such that G, = U, [*]. 4 family of sets is called open (regularly
open) if all its members are_open (regularly open). A topological space is called
paracompact il every open covering admits a locally finite, open refinement, A
refinement of a cover % always means a cover which refines #.

Definition 2. A topological space is called nearly paracompact if every
regularly open covering admits a locally finite open refinement. A subset is called
nearly paracompact if the relative topology defined on it is nearly paracompact.

Theorem 1. A topological space is nearly paracompact iff every regularly
open covering admits a locally finite, regularly open refinement.

Proof. Let % be a locally finite refinement of the open covering % in any

nearly paracompact space. Then #* = %ﬁ: Ue %% , i.e. the family of regularly
open envelopes of members of % is trivially a cover and is locally finite by (4).
It is also a refinement of & since for any Ue % there exists a superset (L) e ¥

which contains U and consequently U < G(U) holds. Sufficiency is straightfor-
ward {(g.e.d.). '

Remark 1. Every paracompact space is evidently nearly paracompact. Let
X be a set with infinite points and let % denote a topology on X such that the
whole proper open subsets are dense, then the topological space determined by «
is nearly paracompact but not paracompact, since the only non empty regularly
open set is X and it is impossible to define a locally finite open refinement of
the covering with basic neighborhoods. The topological space with basic neigh-
borhoods G (¢) = ] x — g, =) on R, the topological space determined by the
topology T, it the topology all of whose open subsets of R contains a fixed
real number x,, cofinite and cocountable topolagies on R fit the above descrip-
tion.
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Theorem 2. A topological space is nearly paracompact iff its semi-regu-
larization is paracompact. :

Proof. Let X be a nearly paracompact space and let ¥ = {G,: a1} be
an open cover for its semi-regularization space X, . Since for every &, there
exists an index set J, such that

'Q;UW@

pedy

where W, is regularly open in X for any BeJ,. Let = {U,:ye I*} be a
regularly open and locally finite refinement of '

{Wa:pel,,ael}.

Since for any ye J* there exists an a, & / such that

UYgWﬂgUWBgGaT

BEJe,

and since the regularly open envelope of any neighborhood disjoint with almost
all U, has also this property, the family % can be accepted as the locally finite
refinement of # in the space X, i.e. X is paracompact. Conversely let X, be a
paracompact and consequently a nearly paracompact space and let %* be a
regularly open cover of X. Since %* is also a regularly open cover for X, by
Lemma 4, it has a regularly open, locally finite refinement %* by Theorem 1.
Consequently %* is a regularly open, locally finite refinement of %* in X by
Lemma 4. So X verify the necessary and sufficient conditions for being nearly
paracompact stated in Theorem 1 (g.e.d.). '

Corollary. Nearly paracompactness and paracompactness are equivalent
on semiregular spaces.

Theorem 3. A nearly paracompact Hausdorff space is paracompact iff it
is semiregular.

Proof. Sufficiency is a direct consequence of Lemma 3 and Theorem 2.
Since in any topological space, for any open set G

G=G=6G=0

i.e. closures of  and its regularly open envelope are the same by (1), necessity
follows from the regularity of paracompact Hausdorft spaces {g.e.d.).
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Definition 3. A topological space is called almost regular if -any point and
regularly closed set not containing it are contained in disjoint open sets [].
A topological space X is called alinost completely regular if for any point x and
regularly closed subset K not cortaining x, there exists a continuous function
f:X~—[01] such that f(x} = 1,/(K) =0 ['"]. A topological space is called
almost normal if any two disjoint closed sets, one of whom' is regularly closed,
are contained in disjoint open sets [**]. A topological space is called mildly
normal if any two disjoint regularly closed sets are contained in disjoint open
sets [°].

Remark 3. (i) Almost normality (Almost regularityl) is strictly weaker than
normality (regularity).

(i) Every almost normal space is not necessarily almost regular.

Proof. ILet the basic neigborhoods of any xe]0,1] be the same as the
basic neighborhoods of x in the relative topology on [0,1] determined by R’,
and let the basic neighborhood system of x =0 be

0,e[ —A4:e>0,4={27":neN}}.

The topelogy on [0,1] with this set of basic neighborhoods determines an almeost
regular but not regular space. The cofinite and cocountable topologies on R
determine almost normal but not normal spaces. The topology

{qf), Xvs Nl.’ NZ ’ {2}}

on the set of first three positive integers X — N, determines an almost normal
but not almost regular space since there are no disjoint open sets one of whom
containing x = 1 and the other containing N, — N, , see [?] and [*°].

Lemma 5, A topological space is almost regular iff its semi-regularization
is regular.

Proof, Let X be an almost regular space, G be an open set in X, and
x & G. By the definition of semi-regularization spaces, almost regularity of X
and equation (6} yields the existence of two regularly open nelghborhoods U,
and. W, of x in X such that

UY=U,=U,c W, =G

i.e. X, is regular. A similar proof can be given for sufficiency (q.e.d.).

‘Theorem 4. Every nearly paracompact Hausdorff | space is almost regular,
even almost completely regular and mildly normal.
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Proof, Every nearly paracompact Hausdorff space has regular and even
normal Hausdorff semi-reguiarization space by Theorem 2, since every para-
compact HausdorfT space has this property [*] (q.e.d.).

The almost normality of nearly paracompact Hausdorff spaces remams as
an open questlon

Lemma 6. - In any topological space the union of a locally finite, regularly
closed family is regularly closed. :

Proof. - Let ¢ be a locally finite, regularly closed family. Then

]
it

~ YrelJx
Kel Ked
since the union of a locaily finite, closed family is closed The reverse relatlon
is a' consequence of

Fa
KgUK- . (KeX)
since " is a regularly closed family (q.e.d.).

Lemma 7. Let ¥ = {G,:ael} be any family and " = {K, :BeJ} a
locally finite regularly closed covering of a topological space X. H every K,
intersects at most a finite number of G, then for every a e I there exists a regularly
open U(G,) such that G, < U(G,) and the famﬂy U = {U(G,) :ael} is locally
f1n1te

Proof. Since

where J, = {BeJ: K, n G, = ¢} then
CU@—WQ) (ae ).
BES

(G is regularly open by Lemma 6. For every point xec X there exists a
positive integer n(x} and a basic neighborhood G, of x such that

since " is a locally finite covering. The hypothesis and the equivalency of
K, VG, = ¢ with K;nU(G,) = ¢ yields the locally finiteness of % (q.e.d.).
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Lemma 8. In any topological space if a regularly open covering % has a
locally finite, regularly open refinement, then % has a locally finite regularly
open precise refinement.

Proof. Let % = {U, : pe J} be a locally finite, regularly open refinement
of ¥={G,:aecl}. By using the axiom of choice it is possible to choose a
unique @ = a (B)e I for any Ppe J such that U, < G,. Define.a map f:J—>T
as f(B) = a (B). The family of open sets S .

(G.2) W, =_U U, (ael)
flpy=a
is locally finite since a basic neighborhood intersecting only U, , U,,,..., U,,
intersects only Wnpyy, Wregs . s Wiy - The family of regularly open covers
of W,’s is a covering and locally finite by (4) (q.e.d.).

Theorem 5. An almost regular space is nearly péracompact iff every regu-
larly open covering admits a locally finite, regularly closed refinement.

Proof. Let X be a nearly paracompact, almost regular space, % its regu-
larly open covering, G, the member of % which contains x and W, the regularly
open neigborhood of x such that W, < G,, the existence of which is a consequ-
ence of the necessary and sufficient condition for almost regularity of the space
[°). If {U,:xeX} is a locally finite and regularly open precise refinement
of {W,:xe X} then {U,:xe X} is a locally finite, regularly closed refinement
of &. Conversely let %* be a regularly open covering of X, % ‘its locally
finite, regularly closed refinement and W, a basic neighborhood of a point

x disjoint with almost all Ke.#". Since WIHI% = ¢ for any such Ke &, it
follows that W,n K = W,AK = ¢ and there exists a locally finite, regularly

closed refinement of %I/_Vx:xe X % Lemma 7 vields the existence of regularly
open family #* = {U(K): U(K) 2 K & .}f} and since there exists a G*(K)s %*
such that G*(K) 2 K, the regularly open covering

Gt = {GHK)NUK): Ke A}

is locally finite and a refinement of %% i.e. the necessary and sufficient condition
of The_orem 1 is established (q.e.d.).

Theorem 6. An almost regular space is nearly paracompact iff every regu-
larly open covering admits a refinement that can be a union of countable
locally finite, regularly open families.

-Proof. Let X be a topological space satisfying the hypothesis of sufficiency.
Then its semi-regularization space is paracompact, since every open covering of




ON NEARLY PARACOMPACT SPACES 73

X, has a refinement that can be union of a countable locally finite open
families [*]. Necessity is trivial (q.e.d.).

Theorem 7. An almost normal space is nearly paracompact iff every regn-
larly open covering admits a locally finite, regularly closed refinement.

Proof. Let X be a nearly paracompact, almost normal space, ¥={G, :a e}
its locally finite, regularly open covering, Let < denote the well ordering defined
in I and let o, be the first element of I according to < . Without loss of generality

we can assume that there exists a point xe X contained in GuoﬂU CG“
HoK
(Otherwise every point of G, contained in another G, (o + a ) i.e. G, would be
an unnecessary member of covering and could be removed from %). The
necessary and sufficient condition for almost normality ['°] and the inclusion

relation
o+ o= o= 6

wgeF ag<e

yields the existence of a non empty regularly open set W,, such that

C UG“ S Way & Wy, S Ge,

gl o
subsequently )
X:W%UCUGW
wgler
Let ael and assume
G. {6 + ¢ *)

atp
and for all o < a let all sets W, (B =< @) be chosen so that
XEUMUUQ, )
g=a el (B)
G+ W =G (=0,
It is easy to prove that
x=|jw v|]e.. ©)
pla aZy

In fact if G,,, Ga,, ..., Gs, are the only members of the locally finite family ¥

containing the point x, and if

Jartit

T L T TR R

AR AR R e

ST
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supo, =a(x) <o

k=nr{x)
then
X€ U W, < U W,
p<alx) B<la

since the first equation of (B) was true for ¢ = a (x).
Since (A) and (B) give

o400 )0 = n([] 0o ] G

wE@ - B<ln

almost normality of X and (C) yield the existence of a non empty regularly open
W, such that

XmUWBuUGY. (D)
B=u <y
Transfinite induction assures the existence of W, for all a e [ such that condition
(D) is satisfied. {W, :acI} is a locally finite refinement of ¥ since & is
locally finite and (D) is true. Sufficiency is easily achieved along the lines of the
sufficiency proof of Theorem 5 (g.e.d.). )

Lemma 9. In any topological space if a cover % has a refinement such
that the arbitrary union of members of the refinement are regularly closed, then
% has a precise refinement with the same property.

Proof, Similar to that of Lemma & (q.e.d.).

Theorem 8. An almost normal T, space is nearly paracompact iff every
regularly open covering has a refinement such that the arbitrary union of
members of the refinement is regularly closed.

Proof. Necessity is a direct consequence of Theorem 7 and Lemma 6. Con-
versely let X be a space with the sufficiency hypothesis and let ¥ = {G, :ac I}
be its regularly open covering and < denote the well ordering defined in 1.
Subsequently every subset of J contains its first element. Let us prove first for
every positive integer n that there exists a precise refinement of

H,={K,,,: K,,< G, ,0el}
such that

Kont: 0 Koy =¢ @<P) *)
and the arbitrary unions of members of £, are regularly closed. In fact the

n

sufficiency hypothesis and Lemma 9 assure the existence of the family 2.
Now suppose all families 2, (k =< n) have been defined. Then all the sets
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W1 = o ﬂC UKBm (ael)

8<a
are regularly open since

X6 Wolsyns1 = afx) nC UI(‘Z-H
< a(x)

where a(x) = min {uel:xeG,}, the family {W, ,,,:0el} is a covering of -
X. Again the sufficiency hypothesis and Lemma 9 yield the precise refinement
A .y, such that the arbitrary unions of members of 2, ,, are regularly
closed. Furthermore the definition of W, ,,, gives

Kowi1 € Weut1 € CU w = CKan

w<p

when o < B. The induction process is over. Now let us define

[:UKﬁn (w,m)e IXN

Beka
we get
Uy K, , €Gy,\ (a,n)eIxN
UpnNU,, = ¢ nelN

since 2, is a cover. If a,(x) denotes the first element of {ael:xe K, } then
x& U, 4y, where o, = mina,(x), since x ¢ Kpyy, when o <p by (*) and
n

x¢ Ky py, when B < o by the definition of a,. This means that {U,  :(a,n)
e IxN} is a regularly open refinement of %, Let 5™ be the precise refinement
of this cover such that the arbitrary unions of members of #™ are regularly
closed and let

A”:{XEX:EVxEL/Vx,aUxEI;VxﬂUGo::(Ib}

EE
Tx

where A", is the filter of the neighborhoods of x. Then 4, is open and

Uz sl en = 4, (neN)

where %™* = {B, :(a,n)cIxN}. The necessary and sufficient condition for
almost normality [1] yields the existence of a regularly open G, such that

Usa,,,gc;,,* cGFcd (neN).

i

The definition of A4, and the inclusion relation G * < A, assures the local fini-
teness of the regularly open family :
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Gr={G*nU,, ael}.

Since the countable union
U(ﬁn* ={G*nU,, (a,n)exN}
n=1

is a refinement of % and since every almost normal 7, space is almost regular,
sufficiency follows from Theorem 6 (g.e.d.).

Theorem 9. A Hausdorff épace with normal semi-regularization is nearly
paracompact iff every regularly open covering has a refinement such that the
arbitrary unions of members of the refinement are regularly closed.

Proof. The pecessary and sufficient condition for paracompactness of a
normal Hausdorff space is the existence of a refinement of a given open covering,
such that the arbitrary unions of members of the refinement are closed. This.
can be shown just as in Theorem 8. This proves the sufficiency. Necessity follows
from Lemma 6 and Theorem 5 since a Hausdorff space with normal semi-regula-
rization is almost regular (g.e.d.).

Definition 4. In any topological space the intersection of arbitrary numbers
of regularly closed sets is called star-closed [].

Theorem 10. A Hausdorff space with disjoint open sets which contains
disjoint star-closed sets is nearly paracompact iff every regularly open covering
has a refinement such that, arbitrary unions of members of the refinement are
regularly closed.

Proof. Direct consequence of Theorem 9 since this space has a normal
semi-regularization (g.e.d.).

3. Nearly paracompaciness of subspaces and product spaces.

Definition 5. In a topological space a subset is called N-closed if every
covering of 4 with the regularly open subsets of the space has a finite sub-co-
vering [3]. A topological space X is called nearly compact if X is N-closed [7].
A topological space X is called locally nearly compact if every point has a
neighborhood with N-closed closure [*].

Remark 4. it is known that a topological space is nearly compact (locally
nearly compact) iff its semi-regularization is compact (locally compact), see
Theorem 4.1 and Thorem 4.5 of [?].
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Remark 5. The product space of two nearly paracompact spaces isn’t
necessarily nearly paracompact. In fact R}! ie. the upper limit topology on R
is paracompact consequently nearly paracompact but the product R! x R} is
not [*]. B! x R,' is not nearly paracompact by Corollary of Theorem 2 since
R,' and consequently R, X R,! is regular and therefore semiregular.

Theorem 11. 'The product of a nearly \paracompact and- a nearly compact
space is nearly paracompact.

Proof. If X is nearly paracompact and Y is nearly compact then X, x ¥ is
paracompact [*]. The equality

Q a o

W, x U, =W, x U,

»

says that -
XSXYS:(XXY)S [

f.e. the semi-regularization space of X X Y is nearly paracompact, where W,
and U, are any basic neighborhoods of x and y in the spaces X and Y res-
pectively (g.e.d.).

Theorem 12. In a nearly paracompact Hausdorff space an open subset
which can be written as a countable union of regularly closed sets is nearly pa-
racompact.

Proof. Let 4 be an open set in a topological space X and let i and ¢
denote the interior and closure operations in the relative topology defined on
A. Then for any B S A

o
o —

iec(B)y=i(BNn A =i(BN AN A=BnA=Bn A

is satisfied. If X is nearly paracompact and Hausdorff and A4 is written as the
union of a countable number of regularly closed K. ’s, then for any regularly
open covering {f°c{G,): ac} of the relative topology on 4 by

AEUG‘;

eef

i
I
I
=
=
izt
i
"
=
i
i

and subsequently for any positive integer #, the regularly open covering

Ubu K,

acl

of X has a locally finite, regularly open refinement {W,, :peJ }. All families
gﬂ* = {Wﬂaﬂn A : Wﬁl?‘in Kfl =l= ¢’ﬁe.]ﬂ}
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are locally finite in the relative topology on A and furthermore they are regularly
open since
ice(Wy, N A=W, NANA=W, NnAd<ijec(W,, ndAd).

Q

For any regularly open set i°c¢(G,} = G, N A of 4 which contains xe 4, the
closure of iec (4 N W,) on A satisfies

c(i°c(AnHﬁ)):c(AnWan):AannAnA

5] =]

CSW,NA=W, NASG NA=ic(G)

Q

where W, is the neighborhood of x in X such that W, < G,

£

Thus the

o]

relative topology on A is almost regular and since U(ﬁu* is the refinement of
n=1

{i°c(G,):ael}, A is nearly paracompact by Theorem 6 (q.e.d.).

Corollary. A clopen set of a nearly paracompact Hausdorfi space is
nearly paracompact.

4. Invariancy of nearly paracompactness under certain functions and parti-
tion of unity.

Definition 6. A function f': X — Y is called almost continuous if the inverse
images of regularly open sets of ¥ are open in X [®]. A function is called almost
open (almost closed) if the images of regularly open (regularly closed) sets are
open (closed) [*]. An almost continuous and almost closed function f: X - ¥
is called almost proper if for all ye ¥, the fiber £~ (y) is N-closed.

Theorem 13. An almost continuous, almost open and almost closed image
of a nearly paracompact HausdorfT space is nearly paracompact,

Proof. Let X be a nearly paracompact and Hausdorff and let f: X —> Y
be an almost continuous, almost open and almost closed surjection. Since the
image of a regularly closed set under almost open and almost closed function is
regularly closed [®], f: X, — ¥, is a closed surjection. Furthermore f: X,— ¥,
is continuous since the inverse image of a regularly open set under almost
continuous, almost open and almost closed function is regularly open [].
Hence Y, = f(X) is paracompact (g.e.d.).

Thorem 14. If X is almost regular, ¥ is'nearly paracompact and f: X — ¥
is an almost proper and almost open surjection, then X is nearly paracompact.
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Proof. Let % = {G, :ae I} be any regularly open covering of X. For
arbitrary ye Y, N-closedness yields the existence of a positive integer n(y)
such that

e UGmk = G(y) .
k=a(y)
Since X is almost regular, for any xejf(y) there exists a regularly open
neighborhood W, = W () such that
W i) € Wiloge) S Guy ) (0) = GO)

subsequently for a suitable positive integer m(y)

o
TN

o=l =7, = o0

1< miy) I=<m{y)

Let 7" = {¥,:ye Y} be the locally finite regularly open, precise refinement of

6 Cos{C e

Since

o

7wy |, < o)

i=m(»
the regularly open cover
G = (V)N Gy, (0) 1k < n(y), ye Y}

is a refinement of G. Since ¥~ is locally finite in ¥ it is easy to see that %* is
locally finite in X (g.e.d.).

Theorem :5. An almost proper and almost open injection into a nearly
paracompact Hausdorff space can only be defined from a nearly paracompact
Hausdorff space.

Proof. Since the range of an almost open an almost closed function is an
open-closed and subsequently nearly paracompact by the Corollary of Theorem
12, the claim follows from Theorem 14 (g.e.d.).

Theorem 16. Every reguraly open covering % of a nearly paracompact
Hausdotff space has a partition of unity subordinated to %.

Proof. By Theorem 4, Theorem 5 and Lemma 9 the regularly open cove-
ring % = {G, :ae I} of the nearly paracompact Hausdorff space X has a locally
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finite, tegularly open refinement % = {U, :ae I} such that U, < G, for all
acl and similarly % has a refinement M = {W, :aec !} with the same

property so W, < U, for all acl Since W, and CU"‘ are regularly closed

m X and since X, is normal and Hausdorff and a continuous function on the
semi-regularization space X, is also continuous on X, there exists a continuous

g1 X—>[0,1] such that g, (W) — 1 and gm([: U,,): 0 (Take g,=0 if U,—g).

{xeX:g0) =0} =g, (101D <G, (acl)

since g1 (]0,1]Dn CU"‘ = ¢ for all ae I, so the support of g, is contained in
G, for each a. Local finiteness of 9 guaranties that for any xe X at least one

and at most a finite number of g, are not zero. Therefore Zgu is a well defined
o

continuous real valued function and the family

f“x:u_g,

=

is the reguired partition of unity (g.e.d.).

Za (el
' 8a

5. Nearly paracompaciness and some relations with certain weak covering
spaces. '

Pefinition 7. A topological space is called rearly Lindeldf if every regularly
open covering admits a countable subcovering. A topological space is called
nearly countably compact if every countable regularly open covering admits a
finite subcovering.

Remark 6. The topology <, on R defined in Remark 1 is nearly Lindelof

but not Lindelsf. Similarly for a fixed integer %, the topology Tx, O0 Z, the set
of all integers is nearly countably compact but not countably compact.

Theorem 17. A topological space is nearly Lindelof (nearly countably
compact) iff its semi-regularization is Lindeldf (countably compact).

Proof, Similar to proof of Theorem 2 (g.e.d.).

Theorem 18. Almost regularity and nearly paracompactness are equivalent
on nearly Lindeléf Hausdorff spaces.

Proof. SufTiciency follows from Theorem 4, necessity obtained from Theorem
6 and Definition 7 (g.e.d.).
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Theorem 19. A seperable nearly paracompact space is nearly Lindelsf.

Proof. Any locally finite open family & in a seperable space has at most
a countable number of members, otherwise at least one point of the countable
dense set of the space would be contained in an infinite number of members of
% (q.ed.).

Lemma 10. A locally nearly compact Hausdorff space is almost regular.

Proof. The semi-regularization of a locally nearly compact Hausdorff
space is locally compact and Hausdorff so regular (q.e.d.),

Theorem 21. A nearly Lindeldf, locally nearly compact Hausdorff space
is nearly paracompact,

Proof, A simple consequence of Theorem 18 and Lemma 10 (g.e.d.).

Definition 8. A topological space is called lightly compact if every locally
finite open family has at most a finite number of members [*]. A topological
space is called Micheal if every open covering has a refinement which can
be written as the union of a countable number of locally finite open families ['].
A topological space is called nearly Micheal if every regularly open covering has
a refinement which can be written as the union of a countable number of
locally finite open families.

Remark 7. The topological space determined by Ty, O R defined in Re-
mark 1 is nearly Micheal but not Micheal.

Theorem 22. In a topological space every locally finite regularly open
family has at most a finite number of members iff every countable regularly
open covering has a finite, dense subfamily.

Proof. In any topological space X satisfying the necessity conditions, at
least one of the members of any regularly open ‘covering contains an infinite
number of points of any subset with infinite points. In fact if G,nA were finite
for all positive integers, where & = {G, : ne N} is any regularly open covering

and 4 any infinite set, then by choosing-a point x,, € 4 N {351 and a covering
member G,, which contains x,,, U,=G, N Ca would be a non empty regularly
open set. Having chosen the positive integers n, < n, < ... < n, and the points

X, € Gy O A and constructed U=Gy, 0 CE, (i< _lc), there would be a point
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x,,k“EAr‘\CU(?,, (< Mpy)
iink

and if G"k+! is the member of # which contains Xy then

Uerr = G"fc+1 n n CEf *¢

=
i'_"l:

is regularly open and this procedure never stops in any finite steps. Sinse & is a
covering, there exists a positive integer n(x) for any xe X such that xe G, e ¥
so for n, > n(x) G, N Uy, = ¢ holds ie. {U,:neN} is locally finite and
bas a infinite number of members since for £ < p, m, < 1, , and so

U nU,c G,,kmn [:'(?,-:q&.
tn,—

That would be a contradiction to the necessity conditions. Consequently if, in
any topological space X which sat'sfying the necessity conditions, countable
regularly open cover'ng has no finite dense sub-family then by choosing. an

infinite number of
xe C UE" {(ne N)

k=n

one reaches easily the following contradiction to the above conclusion : for any
positive integer n, X ¢ G, if i > n. Conversely let 9* ={G*:neN} be a
locally finite, countable regularly open family. Then the family of

w, =C Uf;;f* (neN)

is regularly open by Lemma 6 and furthermore is a covering since %* is locally
finite. Since W, = W, and G*NW, = ¢ (n < k) consequently G*NW, = ¢

n - "

(n < k) for any positive integer 5, the family #,’s has no finite dense sub-family

(g.c.d).

Theorem 23. In a topological space X every locally finite regularly open
family has at most a finite number of members$ iff X is lightly compact.

Proof. Sufficiency is clear. Let X be a topological space with the necessity
hypothesis and let {G,:neN} be any countable open covering of X. Then

the regularly open covering %E’; :neN% has a finite dense sub-family as
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by Theorem 22. But this means that
x=|Ja,
k=N
since all G,,’,c (k = N) are open. This is the necessary and sufficient condition

for being lightly compact for X ['} {g.e.d.).

Theorem 24, A topological space is nearly compact iff it is lightly compact
and nearly paracompact.

Proof. A nearly compact space is lightly compact by Theorem 22 and
Theorem 23 and clearly is nearly paracompact. Sufficiency is straightforward

(g.e.d.).

Theorem ¢°. Nearly paracompactness and nearly Michealness are equi-
valent on almost regular spaces.

Proof. See Theorem 6 and Definition 8 (q.e.d.).

Theorem 25, Nearly Lindeldfness and nearly Michealness are equivalent
on lightly compact spaces.

Proof, Sufficiency is a direct consequence of the definition of nearly
Michealness and Theorem 23. The converse is clear since every nearly Lindelsf
space is nearly Micheal (q.e.d.).

Theorem 26. A topological space is nearly compact iff it is nearly coun-
tably compact and nearly Lindelsf (nearly Micheal).

Proof. Every nearly countably compact space is lightly compact by Theorem
22 and Theorem 23. The remainder statements are clear (q.e.d.).

Theorem 27. An almost regular space is nearly compact iff it is lightly
compact and nearly_ Lindeldf (nearly Micheal).

Proof. Sufficiency follows from Theorem 25, Theorem 6" and Theorem 24.
The necessity is clear (q.e.d.).

Theorem 28. Nearly paracompactness and nearly Lindeldfness are equi-
valent on locally nearly compact, lightly compact Hausdorff spaces.
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Proof. Necessity follows from Lemma 10, Theorem 6 and Theorem 25.
Sufficiency is a consequence of Theorem 21 {(g.e.d.).

Lemma 11, A nearly countabley compact and 1° countable Hausdorff
space is almost regular.

Proof. Let X be a nearly countably compact, 1° countable Hausdorff
space, x any point of X, G, a regularly open neighborhood of x and
H,={Wn):neM} be the local base at x with monotonically decreasing

members. Since {x} = ﬂ Wn) and X is nearly countably compact

=1

x=¢,ul] Cw.o

k&nm

or equivalently

6.2 Y Cw o =" =wer = W,

k=nmn - k=n

satisfied by a suitable positive integer n, i.e. X is almost regular (g.e.d.).

Theorem 29, Nearly paracompaciness and nearly Lindeléfness are equi-
valent on nearly countably compact, 1° countable Hausdorff spaces.

Proof. Since every nearly countably space is lightly compact by Theorem
22 and Theorem 23 and since any topological space with the necessary condition
is almost regular by Lemma 11, necessity follows from Theorem 6" and
Theorem 25. Sufficiency can be proved similarly {g.e.d.).

After Lemma 10 and Lemma 11, Theorem 28 and Theorem 29 are the
special cases of the following Theorem :

Theorem 38. Nearly compactness, nearly paracompaciness, nearly Lin-
deldfness and nearly Michealness are equivalent on almost regular, lightly
compact spaces.

Proof. If X is almost regular, lightly compact and nearly paracompact
then it is nearly compact by Theorem 24, consequently it is nearly Lindelsf by
Theorem 26, so it is nearly Micheal by Theorem 25 and finally it is nearly
paracompact by Theorem 6" (q.e.d.).

Definition 9. A topological space X is called g-compact if X is the union
of countable number of its compact subsets [*]. X is called nearly o-compact
if X is the union of countable number of its N-closed subsets.

8
5
i
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Remark 8. The topological space on R determined by =, defined in
Remark 1 clearly is nearly o-compact but it is not o-compact since a subset is
compact in T,, iff it is finite.

Theorem 31. Nearly c~compactﬁess and nearly Lindeldfness are equivalent
on locally nearly compact spaces.

Proof. Since the necessary and sufficient condition for N-closedness of
A< X in X is the compactness of the relative topology on 4 determined by the
X, , a topological space is nearly o-compact iff its semi-regularization space is
o-compact. So the Theorem follows from Theorem 17 since c-compactness and
Lindeléfness are equivalent on locally compact spaces (g.e.d.).

Theorem 32. WNearly paracompaciness and nearly c-compactness are eqﬁi-
valent on locally compact, 2° countable Hausdorff spaces.

Proof. Lemma 10, Theorem 31 and Theorem 18 prove the sufficiency,
Theorem 19 and Theorem 31 prove the necessity since 2° countable spaces are
seperable (g.e.d.).

Defimition 10. Let the topological spaces X, (we ) be pairwise disjoint
(Otherwise take the topological equivalent X,” = {a} xX, of X,). The weak

topology on X,:UXu determined by the canonical mappings i, : X, > X is
called the free union of the family X, (we ) and denoted by X:ZX., ‘] A

subset A < X, is open iff 4 N X, is open in X, for all aef [].

Lemma 12, In a free union space X:E:Xoc a subset A < X is regularly
open iff 4 N X, is regularly open in X, for all el

Proof. Since any X, satisfies the necessary and sufficient condition for
being open in X, all of the X,’s are open-closed subsequently regularly open
and regularly closed. If i, and ¢, denote the interior and closure operations

respectively on X, i.e. on the relative topology at X, determined by X :2&,
then for any 4 ¢ X )
hee(ANX)=i(ANX,NX)=ANX,NX,=ANX,.

So if 4 € X is regularly open then for any ae 7

o cANX)=ANX, = AN X,,
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ie all 4 N X, are regularly open in X, . Conversely if for any aef, AN X,

is regularly open in X, then 4 is open in X and 4 — A. Furthermore for any

xe A there exists a pef with xe X;, so by using (4) in Section 1 one gets
xedNX,CANXy=iocdnX)y=ANX,,

and this means xe 4 24, ie. A4 is regularly open in X (q.e.d.).

Theorem 33. A locally nearly compact Hausdorff space is nearly para-
compact iff it is the free union of nearly c-compact spaces.

Preef. Since every locally compact, nearly o-compact space is nearly Lin-
delsf any locally nearly compact Hausdorff space will be nearly paracompact
if it is nearly o-compact by Lemma 10 and Theorem 18. Now let ¥={G,:Be J}
be any regularly open covering of the free union of the nearly paracompact
spaces X, (ae I}, and let %* be the regularly open refinement of {X,NG,:peJ}

in X, . Since Ufﬁ* constitute a regularly open refinement for %, the free
- .

union space ZX,x of nearly paracompact spaces X, is nearly paracompact,
o

So a locally nearly compact Hausdorff space X is nearly paracompact if X is
the free unton of nearly o-compact spaces X, (anel), because any X, is locally
nearly compact and Hausdorff since it is regularly closed in locally nearly compact

X = EX"‘ . Conversely let X be a locally nearly compact and nearly paracompact

space and let % ={U, : xe X} be the precise, locally finite open refinement of
the covering determined by the regularly open neighborhoods with A-closed
closures. Clearly every U, has a non empty intersection with at at most a finite
number U, (ye X). Let xZy iff xe U,,,ye U, and U, 0 U, + ¢ for all
positive integers & < n— 1. 2 is an equivalence relation on X, If Z[x] denotes

the equivalence class which contains x then
X = U R [x]
e X
is a separation and Z[x] is open for any x. By taking any & [x] define
K =U, <% [x] and K, = U {U,:U, 0 K,_ ==¢}. Every K, is N-closed since

K, contains at most a finite number of U,. The definition of £ yields

ria—{Jx

and consequently
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%m:ﬂﬁ

n=1I

since % is an open covering, so every 2 [x] Is nearly o-compact {(q.e.d.).
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OZET

Bu gahsmada yeni bir tilr zayf parakompakthk tanrmianmakta ve bu tilriin
bazi belirli topolojik ozellikleri belirlenmektedir,




