SURFACES ON WHICH THE UNION CURVES FORM AN HEXAGONAL
THREE - WEB™®

AraT KuniLay - Ozox

The congruence formmed by the intersection of the osculating planes of the
two lines of curvature of a surface 8, cutting each other in each point, has
been considered and the conditions for any three farnilies of union curves
relative to this congruence to forra an hexagonal three - web have establis-
hed, Exact results have been obtained for those surfaces whose Gaussian
Curvature, when S is refetred to its lines of curvature, takes the form

K = Uyu)) . Uyu?) # 0.

0. Introduction. The problem of studying the families of curves drawn
on a surface and forming an hexagonal web has been considered by various
authours. The first result on this subject was given by THOMSEN [']. Ac-
cording to this result, the Darboux Lines form an hexagonal web if and only
if they are on an Isothermic Asymptotic Surface [*]. The problem considered in
this thesis is that of determining those surfaces on which the union curves form
an hexagonal three - web.

A union curve on a surface, relative to a given congruence, has the pro-
perty that its osculating plane at each point of the curve, contains the line of
the congruence through the point. In general, the differential equation of the
union curves is an hypergeodesic equation and such a differential equation
can be integrated only in very few cases. In this thesis, a congruence, which
depends on the geometrical properties of the surface, has been chosen. In
doing so, care has been taken that only two families of union curves relative
to this congruence coincide with the two families of parametric lines of the

*)  The Author wishes to thank Professor G. SABAN for his guidance and help in the
preparation of this thesis.

[17)
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surface. Because of this specialisation, it is possible to integrate the differen-
tial equation of union curves, All the surfaces taken into consideration are
referred to their lines of curvature and for non- developable surfaces, the con-
gruence formed by the intersection of the osculating planes of the two lines of
curvature cutting each other at that particular point of the surface has been
chosen. It is seen that, the differential equation of union curves with respect
to this congruence, is a speeial hypergeodesic equation and can be integrated
easily for a large class of surfaces, in particular for those surfaces whose
Gaussian curvature is of the form

K — U) - Uyfu®) # 0
when referred to their lines of curvature.

The thesis is divided into two chapters. Chapter one contains the various
preliminary definitions required for subsequent developments, such as those
of union curves and hexagonal three - webs. In chapter two, a necessary and
sufficient condition is found for the surfaces whose Gaussian curvature is of
the form K = Ul(ui) . Uz(uz) # 0 when referred to their lines of eurvature,
for the two families of lines of curvature together with a family of union curves
to form an hexagonal three - web, This condition remains the same for any
three families of union curves, relative to the congruence which is mentioned
above, to form an hexagonal three - web. Besides, in the same chapter a
further sufficient condition is given for any three families of union curves,
which are on a non-developable surface referred to its lines of curvature to
form an hexagonal three- web. Again for non-developable isothermic surfaces
another sufficient condition is given. As a consequence of all these, it is shown
that on quadric surfaces, surfaces of revolution, isothermic surfaces which
a.re‘applicable to a surface of revolution, Duplin’s Cyeclides and surfaces.pa-
rallel to Dupin’s Cyeclides, to surfaces of revolution and to isothermic surfaces
which are applicable to a surface of revolution, the union eurves form hexa-
gonal threc - web and a necessary .and sufficient condition for the union cur-
ves of a pseudo - spherical surface to form an hexagonal three - web also.

CHAPTER 1

I. ¥. Union Curves. A union curve on a surface S, relative to a given
congruence %, has the property that its osculating plane at each point P of
the curve C contains the line of the congruence through this point [3].
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Let the surface S he defined analytically w1th reference to an orthogonal
cartesian system of coordinates by "

any o = (el v , (=123

where the functions 2* and their partial derivatives to the second order are
understood to be continuous at any point P on S. Let the line ! of the
congruence % at P have direction cosines given by

A=l W), sAN=1

where the functions A} are continucus at P. If X' denote the direction
cosines of the normal to S at P, the direction cosines of 1 at P may be
written in the form '

1.2) F=prd, 4qX' , (>0

where, for convenience, the notation of the covariant derivative 2 2 o &
with respect to the first fundamental tensor (g, g =%, % ﬁ) of S is used
1

instead of — B . Making necessary calculations, one finds the following

differential equation of union curves on S [*]
(1.3) e, w (qp" —xp’) =0

where & =8, =0 , &,=-—6,=1 and p" =u" 4+ I ju uﬁ are
the components of the curvature vector of C at P and x = d,; ut "uf s
the normal curvature of the curve € with direction u® on the surface S.
Equation (1.3) is the differential equation of second order of the union
curves on the surface § through any point P on S, the parametric lines
being arbitrary. Expanding (1.3) one finds [°, 215]

22

e e d2 | ort 4 o
ldul+( dy, — I'ay) +(F —ru—l-‘ d,

(1.4) du

duz 2
— Rk d,,) (71?) 4 @ri,—r +rd,

du?
— 2h*d 12)( h ) +(F%1_hzdi1):0.

1} Greek indices will always take the range 1,2 and Latin indices the range 1,2,3.
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. o
where #* — 2. From the equation (1.4) it is seen that the coordinate

q .
curves du' = 0 , du? = 0 on the surface S are union curves if and only if

h“dﬁﬁmrgﬁ:() , (e 8=12 ;5 a#f).

1. 2. Conditions for the curves om a surface to form an hexagonal
three - web, [%] Let the curves C; be defined by the equations

G+ d L), W) dl =0 (j=123)

J

on the surface S. It is easily seen that, these three families of curves form an
hexagonal three - web [, 164] if

(1.5) 0 73y (Tazsg — Tapo0) — Yoy (Fyzsg — 71102 )

2 ) -
Ou Fi1¥as = T3 yn

d Ti2(Fazor — Tapsg) — P22 (Fyzg — 7yp03)
dut

TypFas = T Ta2
holds, where

(s v?) = fi (s w?) — £, (e, o)
(!, v’ = fi(u', ) {(fi(w', v)) —f(u, v7)}
(F#E#£t#j=123).

In particular, if the curves are of the form

du? =0 , du' =0 , _duz——f,(ul, uz) du! = 0

the condition (1.5) reduces to

&*(lo
16) 2] og f),0 -0

and therefore the function f(u', u?) is of the form

1.7y : f,(ul, u?) = Ulw!) . U(u?).
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CHAPTER 11

IL. 1. Union curves on non - developable surfaces. On a regular surface
S, we can always choose the lines of curvature as parametric lines. For such
a choice on a non - developable surface (g, = d;,, =0, d;; % 0, d,, # 0)
the differential equition of union curves relative to the congruence

(2.1) s A=A (e d, + X

is
2.2

d d’ du?
"‘"%;1"4‘("1‘122 Féz)( “ ) —|—(F ——-ZF _hdzz)( u)

@2 —

du? » '
L @ery, ——I”n+hdu)( )+(r —Kd,) = 0.

Equation (2.2) is an hypergeodesic equation of the form

2

du? \3 du? }?
=t (o) + At (G

d? u?

R e R )

and such a differential equation can be integrated only in very few special
cases [°, 217].

Let the congruence formed by the intersection of the osculating planes
of the two lines of curvature cutting each other at that particular point of the
surface he chosen. In this case, the coordinate curves on the surface are also
union curves and equation (2.2) has the form

dz u2 d duz 2
2. _— rﬁ—zluﬁiz)(—u)
(2.3) Gl dul -+ ( 29 Iy, a, ry ™

du?
+(.2r§2 Tht - A r; )(Tul) = 0,
dyy
where
. “ , r« . .

2.4) LA z‘:x‘—|—t(m&£x',¢+X‘) »  {a 5= B

BE
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If we write

d
oA (', u?) = I —2rs, — dﬁﬁ r‘. ., (@«#p

and

ey =28;=0 , ¢;=—¢g =1
equation (2.3) takes the form -

d? u? du* \#
(2.5) W + 80!;&’ Am(ul, uz) (W) -= 0 7, (OI #= ﬁ).

On the other hand, since d’mﬁ = { for the surface S, the Codazzi
equations ‘
od ad 4

ag

Juf du®

= dczy Fzﬁ - d‘yﬁ FZa v (CC # ﬂ)

take the form

d, . log d,)
88 r8 . pa i)
- e —. -2 W
d,'za az aff auﬂ (d 7 ﬁ)
and therefore we have
i y o a a(log daa)
Aa(ul‘ u?) = I“gﬁ — 3y, + B R

— (log Vg, — 30og Vz,.)., + (log d,),,

dee Veys

log = 822 (2 # f).
Buw VEur) 1

Setting the above values for 4 in (2.5) we find that

4 d o\ [ ady
du! du! + B log \/ﬁ . (—-—u—“) =0 (tf=12;0az [3)
Eua VEanf s g .

and hence
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dZ u2
d | ant Ve (duz ),H Y
oY g2 T S {108 = R =
du du g, \/gm g du
du!
thus
du? _0
dut
and
d 2 ’ —_—
d (log —31_) ' d_, V55, du? \A
du log ——— drma = 0
TEE T T\ 8 VEw) o,
or, since § = 1,2,
du?\ 4, ey,
(2.6) d (‘og %) + ¢, ( log =272\ g — 0
. ‘ “ \ Ban \/gcw. )

are the differential equations of the union curves on the surface S through
any point P on S.

If the integrability condition

dum \/gﬁ'ﬁ _ log dﬁﬂ \/gom

@7 - | log ———— —
Box VBaa  po pp ‘/gﬁﬁ *ap

of the differential equation (2.6) is satisfied, we can write

duf = dijp(u!, u?)
gaa \/gma *p

and the equation (2.6) takes the form

2

dut
(2.8) d (log hd—ul_

)+ dw‘(u‘:, ) = o

which can be integrated easily.
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Since the surface S referred to its lines of curvature, the Gaussian cur-
vature K of S is of the form

d_.d,
K — _a= fild , (06?518)
Boe " Bpp

On the other hand, the condition (2.7) is

d,, v, d .
+Iogm =(long'i”) =0, («#5).

0.5 :
Bos Ve Emp VEpa) +as Bac " Bpp ! > up :

log

So, for the surfaces S, which satisfy the condition

d _.d
(k,g M) = (log K),,, =0
Baa " EBpp’ 2 ap

that is to say for those surfaces for which the Gaussian curvature is of the form

(2.9) K = U@ Uyud),

the differential equation (2.6) of the union curves on S reduces to (2.8).
In this ease, since :

oy 8as Vs
10) o =y, =o,llg T ), (@B =125 a k)
dﬁﬁ \/gaw ‘a
then
800 V855
Ylu', u?) = 2, log ﬂijf + n(w#)
dﬂﬂ \/gaa
and
(o Ja_
g \g r gaa gaa
Vop = o1 88 \/mﬂ_ﬂ +W(“ﬁ):8pw log —_—\/__
Qg N8ua) s bea VEas) 2 5

, d_-d
ﬂ (uﬂ) — Bdﬂ (Iog _ﬂ‘_..ﬂ—ﬂﬁ) .
Ban" Bpp! 2 p
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On the other hand we have

d _.d
CaallH _ K = Uy!) - Ued) . (@ # B
Eua " Bpp
then
g e ) o8 )
Eac " Bpplog du
and hence
dn(w) _  d(log Uy
duf du’
or
n(uf) = s,,log U,
Therefore
J
wiu!, uz) =, log Bss gﬂi
19 Vb

Finally the differential equation (2.8) reduces to

du? Ve U
d(log%) Jos,d|log LAV 25 ) g
du “f d.
pp N Ban
or
duf e, U
by d (Iog ) b, d|log B2 Y8 T )

o \/gaa

and since &,, # 0 we get

duf Ve
d(log gl )-{—d log 8 X80 1y { _ ¢

— f
dﬂﬁ \/g oo

so, by the first integration of this differential equation we obtain

Eps v Ep .
s V8o

(2.11) du® —¢ U, dvy =0 , (x#p8) , (c=cons).

T T T T T T T e
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IL 1.1, Conditions for the two families of lines of curvature together with
a family of union curves to form an hexagonal three - web on a surface S,

Theorem IL. 1. On a surface S whose Gaussian curvature is of the form
K = U,(u") - Uyw)-

when referred to its lines of curvature, the necessary and sufficient condition
for the twe families of lines of curvature together with a certain family of union
curves relative to the congruence (2.4) to form an hexagonal three - web is

log Bus NEs \/%Tf —0 or SeaVfuw \/%‘_ =10 W, (@#p).
Dsp VEus ap o ‘/gﬁﬂ

Proof. For the surface in comsideration, since the lines of curvature
are parametric and the Gaussian curvature is of the form K = U,(u) - Uy (u?),
the union curves relative to the congruence (2.4) are defined by the equation
(2.11). Let us take the two families of lines of curvature

du* =0 (x=12)

together with a family of union curves
Ly =0 (@ # f)

which corresponds to a certain value of ¢. According to the equations (1.6)
and (1.7) the necessary and sufficient condition for these three families of
curves to form an hexagonal three - web'is

(2.12) |1 gﬂﬁ‘/ﬁ‘i{’ —0 or gﬂgﬁ_ﬂ( ) AfHw@?) , (a# B).
s V8ua > ap d, Ve -

On the other hand, since the above condition' does not contain speci-
fically the elements of the family of union curves that has been chosen, one
obtains the following theorem also :
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Theorem I 2. Ifithe two families of lines of curvoture together with o
cerioin family of union curves relative to the congruence (2.4) to form an hexegonal
three - web on a surface S on which the lines.af curvature ere parameiric and
the Gaussian curvature is of the form K = U (u") - U,(u?), then the two families
of lines of curvature and any one of the families of union curves relative to the
seme congruence will form an hexagonal .three - web.

IL 1.2, Conditions for any three families of union curves to form an hexa-
gonal three - web on a surface S.: Since the two families of lines of curvature
mentioned in II. 1.1. are also union curves relative to the congruence (2.4},
the equation (2.12) is the condition for three special families of union curves
to form an hexagonal three - web on S. The following theorem gives a neces-
sary and sufficient condition for any three families of union curves to form an
hexagonal three - web on a surface S.

Theorem IL 3. The necessary and sufficient condition for any three famikies
of union curves relative to the congruence (2 4) to form an hexagonal three -
web on a surface S on which the lines of curvature are parametric and the
Gaussian curvature is of the form K = Uy (') - Uy(u?) is '

Ve, Je..
tog B V) oo BBy ) ),
b N ap Do ey - .

Proof. Take any three families of union curvués satisfying the equation
(2 11) relative to thé congruence (2.4), which correspond to the values

¢; (j == 1,2,3) of the constant ¢ :

3;1/7 Vgﬁ.s U

du* — ¢ S df =0, (j=128) , (@#B)
A,y V8. |
if we put
O(u', u?) 811 \/gn Ul(u!) ’
dy \/gzz

from I.2. we have




28 AFET KUBILAY - OZOK

and condition (1,5) takes to form

2 (2 2n) 2 (2 02
ou? @ du' i)

or
[log &(u', u")],;, = 0.
Thus ’
o, B11 Ve dy, Va1,
og = =0 or |log — =0
dyy ‘/322 s 12 832 ‘/Szz s 42

are the necessary and sufficient condition for these three families of union
curves to form an hexagonal three - web on S.

We now prove the following theorem :

Theorem IL 4. If for a surface S which is referred to its lines of curva-
ture, the coefficients g,; and g,, of the first fundamental form are both functions
of u' alone or u® alone, then any three families of union curves relative to the
congruence (2.4) form an hexagonal three - web on S.

Proof., If g,, = g,;(¢') and g,, = g,,(u') then from the following
equation of Gauss
1 d 1 ovg,

Rl K WY
Baa * Bpp Epp

s (a:ﬁ=192;a?&ﬁ)

it is seen that K = K(u). Thus, the hyphoteses of theorem II. 3. are satis-
fied. On the other hand, from the Codazzi equation

ad,,
Bu?

=an}2——d22F§'1

and from the relations
r %2 =T %1 =0
we find that

oy,

ou?

50
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d, = dn(ul)

and

\/w
log 811 VEii ~ 0.

dy \/gzz s 12
The same is also valid for u? and hence the proof of the theorem is complete.

Application IL 1.1. Quadrics.

1. Central Quadrics. From the parametric equations of the central
quadrics [°, 228]

g4l .—2‘ .
e K s R Y A B

(g — o) (a;— @)

we find
L u(ut — uf) —0
Buo, ™ f(u“) ’ guﬁ -
and (@, f=12; a# P
a, a, a a® — uf
d — v 1723 . d — 0
OLD.(. ul uZ f(uoc) ? af .
where .
fx) = 4{a; — %) (2, — %) (8; — ).
Since
d, +d a, a,a
K = i1 22: 1723 :U(ul)-U(uz)-,éO
811" 822 (a')? - (u?) : 2
and

£11 Jg; . @' Nf ()

— b i —
dyy \/gzz "/&1 a, ay \/f(ul)

=o@) 0@ , F=-—1)

these surfaces satisfy all the conditions of theorem II. 3.

2. Paraboloids. From the paramstric equations of the paraboloids [*,131]

—u! , — 2
xj: \/aj(ﬂg u)(a] u’) , (j?l—'k::l,z) , x3:u1__}__u2_al_a2

(o, — a‘j)
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we find that

- u(u® — u/ﬂ) 0
SR R
and - @ B=12 5 a%p
_ a4 2y u®— uf N
: dnccc — \/ul w? Zf(ua’) ' docﬁ =0
where
flx) = (u; — %) (v, —%).
Since
= Vi) Vi) £ 0
and ' |

gu Ve _ 2P VWD
diVen Voo Vi@

51(”1) ' ﬁz(uz)

these surfaces also satisly all the conditions of theorem II. 3. Thus the follo-
wing theorem is obtained :

Theorem IL 5. Any three families of union curves relative to the congruence
(2.4) on quadrics form an hexaganal three - web,

Application IL 1.2, Pseudo - Spherical surfaces. Let a pseudo-spherical

S :
surface of curvature — - be defined in terms of isothermal conjugate para-
u .
meters, Then the fundamental quantities can be chosen as
gy =dPcosfo  , g,=0 gzi = a? sin’w

and

d,=—d,y,=—asinw-cos , d,=0
where ® = (u!, u?) is a function which must satisfy the equation

&’ w & w

(2.13) —sinw-cosw  [C286].

ol dut du? ou?
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For the surface S, since g,, = d,, = 0 and K = const., according to
theorem II. 3., the necessary and sufficient condition for any three families
of union curves relative to the congruence (2.4) to form an hexagonal three -
web on 8 is

Ei1 ‘/;n

(2.14) log —
d \/822 ’ 12

= {log| —a-cotg?w|}, , =0

and hence

(log tg ), =0 or tg2w:2M1_
@514

On the other hand, using equation (2.13) and making the necessary calcu-
lation, equation (2.14) takes the form

(2.15) (0,4 — @,,5,0 (@% 1y + 407 - @) — 0% - 0%, =0,
Thus the following theorem is obtained :

Theorem IL 6, The necessary and sufficient condition for any three families
of union curves relative to the congruence (2.4) to form an hexagonal three -
web on a :pseudo - spherical surface is that @ be a function of u', u® satisfying
the differential equation

(@54 _‘0’22)2 (‘02912 + 4“’291 .mzw) _9291 . ‘02’2 = 0.

Application IIL 1.3. Surfaces of revolution. TI'rom the parametric equa-
tions of the surfaces of revolution

! = A@u') cos 2, = A@W!)sinv? , & = B(u!)
we find that 7
g = AP -+ [B'EHYF g1z = o, B — [A@hH ]
and - :

A'@l) - B'wl) — A"() - B'(u)

‘ Aut) -‘B'(ul)l
dyy = s d,=0,d, = —"7T—"-.

Nl N
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Since
&1 — gu(“l) » Bp = gzz(ul) s dy = du(ul) s dyy = dzz(ul)
g2 =4d,, =0

these surfaces satisfy all the conditions of theorem II. 4. Thus the foﬁowfng
theorem is obtained : '

Theorem IL.7. Any three fomilies of union curves relative to the congruence
(2.4) on the non - developable surfaces of revolution form an hexagonal three-web.

Since g,, = d;, = 0 for these surfaces, the Christoffel symbols
ng(ot, B, y = 1,2) take the form :

1 Al . A” + B’ . B” 2 A’ 1 N A . A’
Iy = 3 5 s Thh=— » I'p=—5——5
A" 4 B A A"+ B

Th=Tp=1%=0

and therefore, the congruence (2.4), which is formed by the intersections
of the osculating planes of the two lines of curvature cutting each other at
that particulsr point of the surface is

, N A , ,
z'=x‘+t§— — &', + X'
BI \/ArZ + B12
and the differential equation of the union curves relative to this congruence is
dZ u2 (2 A! Bﬂ' ) du2 0 (B’ 0)
du! du! + A B ] dut ? # 0.

By the first integration of this differential equation we obtain

B'(n')
u,z = ¢ '{7%;;1')—']-2- ul 9 (Cl = GOIlSt.).
Application IL 1.4. Isothermic surfaces which are applicable to surfaces
of revolution. It is well known that, when the linear element of a surface
reducible to the form

ds* = v(u®) [(du')? 4 (du?)?]
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where v = v(u®) , (a = 1,2), the surface is applicable to a surface of
revolution. At the same time, if the lines of curvature of this surface are
parametric and the surface is isothermic (this kind of surfaces truly exist,
for example the limit surfaces of a group of applicable surfaces are isothermic

[8, 389]) so we find that

g =En =) . gn= di, = 0.

Thus, these surfaces satisfy all the conditions of theorem II. 4. and the
following theorem is obtained :

Theorem IL 8. Any three families of union curves relative to the congruence
(2.4) on a non developable isothermic surface which is applicable to a surface
of revolution, form an hexagonal three - web. :

If for these surfaces we have g,, = g,, = v(u”), then the Christoffel
Symbols take the form

e — e — % __
wa  Coaf ﬂ’ﬂm-o
(a,ﬁfl,Z;ar,é,B)

Fgcx = rgﬁ = rj—';/” = (log \/guo&)°oc
From the Codazzi and Gauss equations, we find that
d,, = d,(u*) and dﬂﬂ = dﬁﬁ(u"‘) .

Thus, the congruence (2.4) takes the form

1 \/— ] 2 9 J
QoeNsde g 4 xil' . 2P
dyy

P - RN S

and the differential equation (2.11) of the union curves relative to this cong;

ruence is
(2.16) du® —c¢ 55’1’—(5“—) duf =0 , (a#§).
dﬁﬂ(u )
d
By using the normal curvatures r# — —# (B =1,2) of the parametric
Eps

lines du® == 0, the equation (2.16) takes the form

du/ —c, P (u®) du* = 0.
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Thus, the equation of union curves relative to the congruence (2.4) on
isothermic surfaces which are applicable to surfaces of revelution, is

u? = ¢ f rf (W du* , (o f=L2; a#p)

where gy, = g5, = v(u%).

II,2, Union curves on non - developable isothermic surfaces. Let S be an
isothermic surface and let it be referred to its lines of curvature. Since the
lines of eurvature form an isothermal system on an isothermiec surface, the
coefficients of the first and second fundamental forms are of the form

gy (u'y ¥%) = goo(u!, w?) . g, =d, =0,
According to the theorem IL 3., since the Gaussian curvature is of the form
K = U,(u') - Uy(u?} # 0, the necessary and sufficient condition for any
three families of union eurves relative to the congruence (2.4) to form an
hexagonal three - web on 8 is

Baw _ fule'y - fife® . (for a certain o).

d

[474

Bv using the normal curvatures r* of the parametric lines duf — 0, we
Y g P s

obtain
= fi) - f )
and so the following theorem is obtained :
Theorem ILI 9. . A sufficient condition for any three families of union

curves relative to the congruence (2.4) to form an hexagonal three - web on the
tsothermic surfaces is

o= fi(u) ff) £0, (a=12)

5
£

where r* are the normal curvatures of the parameiric lines duf =

Application IIL 2.1, Dupin’s Cyclides. Since the lines of curvature on
a Dupin Cyelide form an isothermally orthogonal net, by referring it to its
lines of eurvature, we obtain

Bi1=8n + Bu=4d,=0.
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On the other hand, since Dupin’s Cyclides are characterized by the condi-
tions [", 141] .
=0 , («xa=12)

where r¢ and r§ are the invariant derivatives of r®, calculated along the
du? = 0 and du' = 0 respectively, 1)7

we obtain

> M =r'(u?) and = (ul).

So, these surfaces satisfy all the conditions of the theorem II. 1. and the
following theorem is obtained :

Theorem IL10. Any three families of union curves relative to the congruence
(2.4) on Dupin’s Cyclides, form an hexagonal three - web.

According to (2.11), the differential equation of the union curves rela-
tive to the congruence (2.4) on Dupin’s Cyclides is

(W) du? —e () du! =0 , (¢ = const.).

II. 3. Union curves on parallel smrfaces. Let
S: & =43 4h
be a surface and let
S 2N, w?) = A, W) e X!, WD)

where X? denote the direction cosines of the normal to S and a is a constant,
be a surface parallel to S. The magnitudes of the first and second order for
the parallel surface are (relative to those of §)

8, = la*— 1Y, g;ﬂ_ =0

and ! (¢, =12 ;0% f)
d,=—~—(@*—1)d, , d;ﬁ,=0.
1y} o*
duf “,
o u’ sp , (OC, ﬂ _ 1’2)
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Thus

&%
- r

T% == —“m . (OC == 1,2)

and

TI-I'Z

K= (ar' — 1) (ar?—1)

Application 11.3,1. Parallel surfaces to Prupin’s (yclides. For the parallel
surfaces to Dupin’s Cyclides, we have

r'(u?)

= — (arl _ 1) = TI*(MZ)
o () LT
r = — —(m =T (u )
and
B VB _ (@ —1P  few@)—I1F 1
d \/gi,; (arf — 1) r* r“{uf) [arf(u®) — 1]

therefore these surfaces satisfy ail the conditions of the theorem I1. 3.

Application IL. 3.2, Parallel surfaces to surfaces of revolution and to iso-
thermic surfaces which are applicable to surfaces of revolution. Both surfaces,
the surfaces of revolution and isothermic surfaces which are applicable to
the surfaces of revolution, have the following fundamental magnitudes of
the first and second order

81— gn(“l) s B = E0(0) g, =10
and ’

dy) = du(”’l) s dyy = dzz(”!) s di;=0.

Thus, for the parallel surfaces to these surfaces, g;, and gzz are the functions
of u' alone, so we see that these parallel surfaces satisfy all the conditions
of the theorem II.4. and finally the following theorem is obtained ;

Theorem 1L 11. Any three fumilies of union curves, relative io the cong-
ruence (2.4), on surfuces ;parallel to Dupin’s Cyclides, to surfaces of revolution
and to isothermic surfaces which are apphcable to surfaces of revolution form
an hexagonal three - web.
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OZET

Bu ¢alismada, hir § yiizeyinin her noktasmdan gegen iki egrilik ¢izgisinin
osliilatiir diizlemlerinin ara kesit dogrulannin elugturdugu kongritansa bagh
birlesim egrilerinden herhangi ¢ ailenin altigen doku tegkil etme gartlam
aragtmlmakta ve dzellikle, egrilik cizgilerine nishet edildiginde Gauss Egriligi
K = U (u!y. Uyu?) # 0 seklinde garpanlarmna aymlabilen yiizeyler igin

MATEMATIK BOLUMU
IsTANBUL - TURKIYE

kesin sonuglar verilmektedir,
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