ON THE SUBCLASSES U_ IN MAHLER’S CLASSIFICATION OF THE
TRANSCENDENTAL NUMBERS *

KAMIL ALNIACIK

In this paper integral and rational combinations with algebraic coefficients

of a strong Liouville number are studied and shown that they belong to

the Mahler subclass U, , where m: is the degree of the algebraic number field

determined by these coefficients. Thus a new proof is obtained for the fact

which was first proved by LEVEQUE in 1953, that no Mahler subclass

Uy,(m =1, 2,...) is empty. In the case of integral combinations an ana-
logous result for Ilenscl’s field of p - adic numbers is given.

CHAPTER I

Mahler’s elassification. We shall be concerned with polynomials
P(x) = a, 5 +a,_4 2t 43y, a, # 0, with rational integer coeffi-
cients. The height H(P) of Pis defined by H(P) = max (|a,/|, |a,_1i,..., | ag|)-

Given an arbitrary complex number £, for any real number H > 1
and a natural number n Mahler puts

w,(H, & = min |P(&)].
deg P<n
HP)<H
PE)F#0

As H > 1, one may take P(x) = 1, and hence we have 0 < w (H, &) < L.
If either n or H increases, w, (H, ¢) will not increase. Next, MATILER puts

*)  This paper is an English translation of the substance of a doctoral dissertation
accepted by the Faculty of Science of the University of Istanbul in September 1978. I am
grateful to Prof. Dr. Orhan 8. I¢EN for his valuable help and encouragement in all stages
of this worl.

[39]
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t0,(¢) = lim sup (— log w (H, &)/log H)
H— o
and

w(¢) = lim sup W,;Efl :

n—>r o

By what we have said above, w,(f) as a function of » is nondecreasing.

One has always 0 € w (£) € - o0 and 0 < w(é) € + oo.

If w (&) = + o for some integer n, let #{&) he the smallest such
integer; if w (&) < + oo for every n, put p(¢) = w.

MAHLER calls the number £ an

A - number if W) = 0, ue) = o,
S -number if 0 < w(&) < w, pf) =
T - number if w(f) = w0, ) =
U - number if w(@) = w, e < o

(See MAULER [*]). A4 - numbers are identical with algebraic numbers,
whereas the transcendental numbers are distributed into the three classes

S, T, U. Let £ be a U- numbel such that u(¢) = m and let U, denote

the set of all such numbers. It is obvmus that for every natural m, the class

U, is a subclass of U and U = U U, Mowovel we have U U, = ¢

m=1

if m # n. (For the subclasses U/, see LEVEQUL [*]).

m

We shall now collect some lemmas which will be used in ehapters T and IT.
Those which are taken from elsewhere will be given without proof, but with

reference to their sources.

Lemma L. Let a be an algebraic number of degree s and let. P(x) be
an arbu‘mry polynomial of degree n with integral coeffwwnts If P(a) # 0,
then ‘the relalion

1
Pla)| >

[(n + DHP (s + DA
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holds, where H is the height of P(x) and h is the height of the minimal
polynomial of the algebraic number «, respectively. (R. GUTING [’], Th. 5).

Lemma 2.. Let z,, 7, be two complex numbers and P(x) be a poly-
nomial with arbitrary complex coefficients. Then there is a complex number
with 0 < || < 1 end o complex number o on the segment 2172 such that
P(z)) — P(z,) = m{z; — 3,) P'(g), where P'(x) denotes the derivative of P(x).
(See BIEBERBACH ['], p. 116).

Lemma 3. Let «,,..., (k> 1) be algebraic numbers which belong to
an algebraic number ficld K of degree g, and let F(y, x,,..., x,) be a polynomial
with rational integral coefficients and with degree at least one in y. If n is an

algebraic number such that F(y, o ,..., o) = 0, then the degree of 1 < dg, and

2dg + (I, + .. + 4, i 1
o< 3Rt h LI - I AT BN A
4 . al ak

7

where h?: is the height of 5, H is the maximum of the absoluie values of the

coefficients of F, L(i = 1,..., k) is the degree of F in x,(i = 1,..., k), d is the

degree of F in y, and b, is the height of «(i = 1,..., k). (See O, 5. fcEN [*]).
¥

Lemma 4. Let o, o, be two algebraic numbers with different minimal

polynomials. Then we have

1
gmax {ry, n7)—1 [("1 + 1) hl]ﬂz [(nz + ].) hz]m

la;, — ;| =

where n,, n, are the degrees and h , h, the heights of «,, «, respectively.

2
(See GUTING ['], Th. 7).

_ Lemma 5. Let oy,...,0.5 Sy Bk 2 0, 120, max (k, ) > 0,
o, # 0, ;= 1) be algebraic nymbers with [Q(otﬂ,.‘.;'afc, Booees B) : Q] = m. i?

‘1) Here @ denotes as usual the field of ratipnal numbers. .
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If the polynomials C(x) = ay + ... + o, %, D(x) = By + ... 4 B« are
Clx)
D(x)
tive element of the field Q(oy,.... o, By,.... ;) except for only finitely many

relatively prime, then for x e () the algebraic number 8, = is a primi-

values of x.

Proof. Let o, [)’}"’ (v =I,...,m) be the field conjugates of «,, f; res-
pectively. Take as usu_al ag") =, ﬁ}l) = ﬁj Et=0,..5k;7=0.,1I) and
put K = Qo .05 o 5 fyse.s B;). From the outset we exclude the values of x
which satisfy C(x) = 0 or D(x) = 0, if any, which constitute a finite set.

Now we have two cases according as m =1 or m > 1:

a) Let m =1. Then the algcbraic numbers «,(i =0,..., k), §,(j =0,..., )

are raticnal numbers and the lemma is obvious.

by Letm >1.If 6. is not a primitive element of the field X, then there
2]
is a ficld conjugate 6% with v, # 1, for which the relation

(1) 6, =40.°
holds.

From (1) we obtain
) )
(2) Clxy) D " (x,) = C " (x;) D(x;), where we have put
COx) = o) + ... + o 2*, DO=) = g + ... + V) &l

~ If (1) and consequently (2) were true for infinitely many values x; of x,

we would have identically
) N
(3) C(x) D °(») = C "(x) D(x).
As C(x) is relatively prime to D(x), it must divide cto {(x). But as ¢t (%)

is of the same degree as C(x), there must exist a complex constant 1 # 0
such that C%'(x) = 1 C(x). This with (3) would give D" (x) = 1 D(x).
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But we have for the leading coefficients of D(x) and pt (x), f; =1 and

5"") = 1 respectively, so the comparison of the leading coefficients on both

sides of DY (x) = 4 D(x) would give 1 =1, and consequently C(x) = ¢t (x),

D(x) = pt’ (x), whenee we would obtain

(4)

But this would lead us to a contradietion as follows :

As m > 1, Qg seees %5 Byseens B,) is @ proper extension of @, so there exists

a primitive element { of this extension of degree m > 1 over . We have

(5) = R(ogseer %5 Bpsees )

and

% = S{0) (= 0,0y B},
(6)
B=T) (=01

where R, S, T denote rational funetions of their arguments with coefficients
from (. If the conjugates of { are denoted by (¥ (v = 1,..., m), with { =,

which are all different, then the field conjugates of a,, f, are

of) = SV G =0 )
()
B =T, (=0,..10)

respectively, which satisfy

(8 (9 = R@,.... o, p0,..., B (v = 1,2....:m).
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Now (4), (3), (8) would give us

©) (=,

which would contradict that { is a primitive element.

I
Definition. Let £ be a Liouville number with convergents Zn, (n=0,1,...)

]

in its regular continued fraction expansion and Ié:t |k, &—h,|:=Fk, n,
‘We shall say that ¢ is strong or weak according Iml-; lim inf s, is infinite or
finite. (LE VEQUE [']).

(For any Liouville number we have of course lim sup s, = + o0).

Theorem L Let 0,0, o, (b2 1, o, # 0) be algebraic numbers such that
[Q(o!lo,...,ock): Ql=m, and let Clx) =0y +o,x+ ... + o a*. If & is a
strong Liowville number, then the number C(£) = y belongs w U, .

Proof, Let the convergents of the regular continued fraction expansion

of the Liouville number ¢ be Pn {n =0,1,...). Since the Liouville number ¢
is strong, for the sequence w(n} = w, defined By l {——ﬁ" = g7 n=0,1,...)
we have lim inf @, = + 00. Then we have :

(10) E=Lr g g (g = 41, n=0,1..)

"

Now we apply Lemma 2 with P(z} = C(3), 2, = £, %, = P (n =0,1,...),
q

¥
and we get

1) C(é) - c(i’_) — ,;I (gw_%) c'(,) (n = 0,1,...),

] ]
where #, is a complex number with 0 < |,|< 1 and 0, is a real number

Py . Since lim Pn = £, there is a natural number IV,

Qn n - 9 QR

in the interval & ...

such that

e
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Py

1

(12)

< Zlfl., 0< 16,1 <2[& for every n > N,.

Using this, we obtain

(13) _ IC’(Gn)l<1ﬁ2-n'11;x(§acil).max [L, (2 [E)F] = ¢, (n > Ny,

T =
where ¢, > 0 is independent of n. b

For n > N, let P (x) denote the minimal polynomial of the algebraic

number C( fﬂ) , and let H(P) be the height of P (x).
Qn . . !
Applying Lemma 2 with P(z) = P,(z), 2, = C(9), #, = C(&) (n>Ny)
we have

w  r —P,,( c(%) )i 2)) @) @,

n n

where 4, is a complex number with 0 < [17,| < 1 and 8, is a point on the segment

¥ - C(&) . Hence there exists a real number ¢ with ¢ < ¢ < 1, such that

it

(15) E:,:.(i—t)y—l—tC(‘i") (n > N,).

n

On the other hand we have by (12)

[(2)
I

and using this in the relation (15) we obtain

) ‘ .
< kh+1) max ([a;[) - max [1,(2[§l)k]=cz {e; > 0),

i=10

(16) i<yl +¢ =¢ (n > Ny, (¢ >0).

D' Here and in the sequel €[ 5 €5 ,-.. Will denote positive real numbers independent of n.
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Now we know that [K : Q] = m, hence analogously to (13) we sce that
(17) [P(0)] < m*. max (1, ¢F) - H(P) (n > N,).

It follows from the definition of the polynomial P, (x) that P, ( C ( fi) ) =0.

]

Hence using this in (14) and combining the relations (10), (11), (13) and
(17), we obtain

| P3| < ¢, m* max (1, ¢]) - H(P,) » g; *® (n > Ny,

2

and so putting ¢, = ¢; - m* - max (1, ¢f') :

(18) 0 <|PMI< e g7 - HP,) (o > Ny).

(P.(y) = PLC(D) is not zero, since { is a transcendental number.)

Now, we shall give an upper bound for the height of P, (x). Put
(]‘9) ?n = C(%) (n > NO)?
or what is the same thing

Vulr— g gn —ey p g — . —a, pk =0

We see from (15) that, the value of the poljrnomial

F(y, 24, %4000 ;) = gﬁ.’)"“?ﬁ Xy —DP, 92*1 ""?1 e ""‘P’:: Xy

is zero fory =y, , 8, = o, = 0,..., k).

Therefore we can use Lemma 3 with d =1, [, =1(i = 0,..., k), g = m,

H< max [1, 2] ¢,

and we obtain

B T T I T R R D P N D R D D L D e S
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a

H(P,) < 3%+9™ . {max [1, (2 [E})F1}™ - qu™ - b7 oo B,

or putting ¢; = 3¢ 3™ . fmax [1, (2 [ENETP™ - h’" e B

“
(20) H(P) < ¢5- 9,’?’“ (n > Ny).

Since ¢, is independent of n, there is a natural number N, for which the

relation
(21) H(P) < g"*?
holds for n > max (IV,, N)).

Finally, combining the relations (18) and (21) we have

¢, H(P '
(22) |P ()] < - qm((") ) < o) (n > max (N,, N))).

=

As y was taken as a Liouville number we have lim sup w(n) = + o0, so

n—>

that we can choose a subsequence w(n;) with lim w(n) = + co. (22) will
R,—
give for this subsequence
c
(23) 0< 1Pl 4 (> max (N, N)).
5 '
H(Pn. )km+1
J

Now the sequence of heights {H(P, )} must contain a subsequence
J
{H(P, )} tending to + co. For otherwise {H(P, )} would be bounded from
T J

above and as the degrees of the polynomials P, (x) are also bounded (< m),

the sequence of polynomials {P, (x)} would contain only a finite number of
7

different polynomlals, therefore it would have at least one identical sub-

sequence, Let this be denoted with {P (%)}, where P, (x) = (x) say, for all .
i i
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b,
]
But we had P, | C —t = 0 for ail I, which would give us -
J A g,
L Jl
P".
~ Jl
rPICl— = (I=12,.)
gﬂ
I

By letting I - oo we obtain E(C(f)) = 0, which would mean that ¢ is

algebraic, in contradiction to its being a Liouville number. Thus we obtain

c
(24) 0 < |P.lr. ('y) | "<“ 4m(n_ ) (nn. > max (Nﬂ’ Nl))’
1 I Iy

(e, 3w
I

with lim H(P, ) = 4 o0 and lim o)(njk) = 4 co. Since the degree of
h->o - ]k k— co

Pn_ (x) < m, the relation (24) shows that
Tk

CI I pyy < m.

We shall complete the proof by showing the opposite inequality
u(y) = m, and for this we shall distinguish two cases according as m =1

or m > 1.

I — In the case m = 1, by definition of u(y) we have u(y) = 1, so together
with (%) for m = 1, we obtain u(y) = 1. '

IT — Suppese that m>1. Let P(x) be a polynomial of degree [ (0<l< m—1)
with integral coefficients, and let H(P) denote the height of P(x). Ana-
logously to (14), by Lemma 2 we have

~
—~

”(25) P()—Py) = mr—y,) P'(8),  (n> max (N, N)),

~

where 1, and f(i (n > max (N, , N,)) are complex numbers such that

0 <1, [6]< e (n > max (N, N,)).




ON THE SUBCLASSES U, IN MAHLER’S CLASSIFICATION 49

Hence we can write

~

26) |P(0)] < m?max (1, ¢")- H(P),  n > max (N,, N)),
and using this and (11) in (25), we obtain
(27) | POY = 1P(y,) | — ¢y g7 - H(P),  (n > max (N, N)).

On the other hand, by Lemma 5, there is an integer N, such that, if
n > N, then the degree of the algebraic number y, is equal to m. Since

I < m, we can use Lemma 1 with
«=1y,(n>max(Ny,, N, N,))), s=m, n=1 h=HP)

and we get

1
({4+ 1" (m + 1) HEPy" L HEPY

(28) | P(y,) | 2

Using (20) in (28) and putting (m + 1)'"™ m'"™ ¢l =™ = ¢, we have

s
H(P)m -1 qfr:m(m -1)

(29) | P(y)| = (n >. max (Ny, V;, N,)),

and combining the relations (27) and (29)

€s ¢, H(P)

(30) ] P()P)] Z fI(P)mHl qﬁm(m-— 1) - :(")

It follows from well known properties of continued fractions that if

’ & L . gn_“’("), then
QJI

(31) & 2 g, > @8F (n > N,),

where N, is a suitable natural number.
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On the other hand, by assuming that ¢ is a strong Liouville number,

there is a natural number N 4 such that
(32) w(n) > km(m —1) [(km +1) (n=—1) + 2] -+ m 41 (n > N,).

Now suppose that the polynomial P(x) satisfies the condition

(33) H(P) > max (q 2:4) ,

6

where v, is a fixed index satisfying vy > max (N,, N,, N,, N,;, N,). Itis
clear that, there exists a natural number v > v, for every polynomial P(x)
which satisfies (33), such that

(34) g, < H(P) < g,,,.

From (31) and (32) we see that the inequality

1
g, < gD "= U*2 holds for v > max (Ny, Ny, N,, Ny, N,).

Hence we can consider two cases in (34) as follows :

1
1) g, < H(P) < glmihem-1i2
%) N
2) qslf:_"1+1)(m—1)+2é‘ H(P) < Qy.|.1'-

1) Suppose that the first velation in (35) helds. If we write the rela-
tions (30) and (31) with n replaced by v we get by using (35) 1) :

CG c4
H(P)(’"”“) m-1) H(P)(km+1)(m-1)+1 ’

[P(y)| =

and using (33) :

62

(36) . [ P() | =

H(P)(km +1){m—1) °
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2) If the second relation in (35) holds, writing (30) with n replaced by
v - 1, from (35) 2) we obtain

€4 Cy
@7 [P = H(P)m o= 0 (D B em=1  ppelaD=1

and so by using first (35) and then (33) :

cef2

(38) P(y)| = H(Pymo- Ditimt D m—1)+2] s m—2

As the exponent of H(P) on the right hand side of (38) is greater than
that of (36), (38) is verified for ail polynomials P(x) of degree at most m —1

2
and of height greater than max (‘L- 4 ) This shows us that p(y) = m.
s

This, together with the relation u(y) < m gives us p(y) = m also in

case m > 1.

Note. It follows from the proof of Th. I that, if & is a Liouville number

which satisfies the condition

B9 lim inf w(n) > km(m —1) [(bm + 1) (m—1) + 2] + m + 1,

n—r o

then the conclusion of Th. I is still true.

Special case. Let o be an algebraic number of degree m. If £ is a Liouville
number which satisfies the condition (39), then the numbers o« + ¢ and o &
belong to U .

P. ERDOS ['] proved that, for every real number r, there exist Liouville
numbers (i = 1,2,3,4) such that '

(4‘0) r=€1“‘|‘€za 1'=€3-§4.

If r is a real algebraic number of degree m (m > 1) we have the following




52 KAMIL ALNIACIK

Corollary 1. Let o be a real algebraic number of degree m (m > 1), and
let £ (i = 1,2,3,4) be Liouville numbers which satisfy the relations o — & -+ &
o =C £, . Then
(A1) lim inf @(n), < m*—m® +m? -1 (i = 1,2,3,4).

1]

n—r

Proof. Suppose that ¢ =¢, ¢, and lim inf a}(n)g >mt—m® 4+ m?+1.

If we take y = ¢ — &, in Th. I, we see from (39) for k = 1 that

#y) = plo— &) = (&) = 2.

But this is impossible, since p(¢,) = 1.

1 :
Similarly, taking y = — &, in Th. I, we obtain
o

wy) = n(% 53) = p(Eh > 2,.

Which is impossible since p(&; ") = 1, by a well known property of Liouville
numbers.

Hence we have lim inf w(n)g smt—m* - m? 1 for i=1234.

mn—

Corollary 2. Let ¢ be o Liouville number such that lim inf w(n), >

n—r

2m(m — D [@m -+ 1) (m— 1)+ 2] -+ m -+ 1. Then, for every natural number
k, there are numbers y,(i = 1,2,3,4) which belong 1o U, such that

(42) é:'}’g‘Jf"}’z’ 62'}’3"}’4‘

Proof. Let a be a real algebraic number of degree k. We see from Th. T
and the property of £ that, the numbers

1

¢ ¢
'ylzo;_l_?, 'yz:—a+?,y3:a‘:2, 74:?@

belong to U, and we have & =y, -} y,, &=y, 7,.
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Theorem IL Let (i = 0,.... k), B,(j = 0,.... D)
20,120 max (b D>0, a,#0, f,=1) be algebmic numbers,
so that [Q(ag.....0p, Byseen B) : Q) =m, and iet the polynomials
Cle) —ap + g % + oo + o 2%, Diw) =B+ B4t ... + 8 st be relatively
249,
D)

prime. If £ is a strong Liowville number, then the number y = belongs

o U, .

Proof. Let the convergenls to the regular continued fraction expansion

of the strong Liouville number ¢ b peee)e Put
(43) | ]6f- L \ .
4

Using Lemma 2, we have

[ e — c( i ) = m(é — ﬂ) - C'(,)
(44) ! ; ; .
{m@~ (”):%&—”i)inma

i rn

~

where 5, and 5, are complex numbers with 0 < EAR jr;sl <1 and3d, , 3,
3

are real numbers which lie in the interval £ ... Pn Since lim Pu 5,
qn n-—> % n

and D(&) # 0, there is a natural number N, such that, for n > IV, the

relations

{|p,

<2085 18,0, (8,0 < 21¢)s #(3H<%

(45)
r Vi 1
UC@”<%%ID@H<%§JWM<P%&J

hold, where ¢, ¢, ¢,, ¢, are positive constants with respect to n.
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c g’i)
In
1)( Pu
)

of the number y, (n > IN,) and let H(P,) denote the height of P (x).

Now, put 9, = , and let P (x) denote the minimal polynomial

Using Lemma 2 with P(z) = P (2); 5, =9, 2, =7, (n> N, we have

~—
~

(46) P (y) — Pfy,) = ndy —7,) Pu(3,) (n > N,),

~

where 3; (n > N,) is a point on the segment y7y,.

Hence there is a real number ¢ with 0 ¢t < 1, such that

, P,
~ C(&) C( q,,')
(47) 8 =(1—1) D@ 4t P (n > N,).
D n
()
Using (45) we get
X |ew® 2¢,
@ 5. g | + o = o>

Let Q{og,.... &5 Byseeen B,) = K. Since [K:Q] = m, the degree of P (x)
is € m. Using this and (48) we obtain

~—
~

{49) [Pi(5,)| < m?. max (1, cfy) - H(P)) = ¢, H(P) (n > N,).

On the other hand, we see from (43), (44) and (45) that

C('P,,)
(50) w—y,.l=|%%—;(—;—)

< ey 4,

with a suitable positive constant ¢, .
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Since P ,(x) = 0, using (49) and (50) in (46) and puatting ¢, - ¢;3 = ¢, we getl
(51) | P,(y)] < ¢4 g7 H(P,) . (n > N,).

Now, we shall give an upper bound for the height h == H(P)) of
y, (n > N,). By the definition of y, we have -

v,,[ﬁo + ﬂ,(%”—) +o + ﬁ,(—?)!] =a, + oc,(P" ) o ak(-ﬂ)k,

n n

so that after multiplying hofh sides by guaxé b
(52) (BB, + B, B+ . + B B)— (dyog + Aoy + oo + 4, ) =0,
where A,(¢ = 0,..., k) and Bj(j = {},..., I} are rational integers with

(53) [A,‘r1 ]le < (max (11 2 l‘fl))m“ k1, q:mx 5y ) = ¢ qmax(k, 4}

i =0,.k; j=0,.1; n>N,),
P

n

since

<21¢] for n>N,.

According to this, we can use Lemma 3 with
g=m d=1, L=1 (=0L.,k+1+1), H<c, g,
and we obtain

. k {
(54) H(P”) < 3(k+l+4)m . q;tlax (5 h.m | crlrf5 .HO (ha'. )m . 'Ho (hﬁJ )m
1= J=

13 { ’
or, by putting glett+tim et IT (B )™ T1 (B )™ = ¢y5:
i=0 i J

(55) H(P) < e g ™= 0D (n>N).

It can be seen easily that, the positive constant ¢, is not dependent on ¢, ;
hence there is a nataral number N such that ¢, > ¢;, for n > N;. Using
this, (55) gives
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(56) H(P,) < gy -mex®.041

for n > max (N,, IN;). Using this in (51) we get

H (Pn) CI4
o{n} < a(m)

67 1P < ey 1
n H(Pﬂ)m ~max (&, 1} +1

(n > max (N,, Ny)).

In the same way as in the proof of the first part of Theorem T, it can be

shown that we can extract from {P (x)} a subsequence {P, (x)} such that
Tk

(58) 0 <P, )< F1a
"j,!,, w(njk)

H(P )m.max(}:,i)+l—l
I‘i:jk
with Tim H(P, )= 4 co and lim a‘)(njk Y=+ .

k—r oo I k— o

Since the degree of P, (x) < m, the relation (58) shows that
. Ik

(%) uy) < m,

To complete the proof it suffices to show that we have u(y) = m. For this

we shall distinguish two cases according as m=1 or m > 1:

Case L. If m =1, from the definition of x(y) we have a(y) > 1 and
from above p(y) < 1, so that we get pu(y) = L.

Casc 2. Let m>1 and let P(x) he a polynomial of degree f
(0 < f < m—1) with integral coefficients and let H(P) denote as usual the
height of P(x). If'we use Lemma 2, we obtain as in the proof of the
corresponding part of Theorem T:

P(y) — P(y,) = 1,y —9,) - P'(c,)
(59) o> N,
; IP’(U}J)I = C];H(P)v l}'—yn[ < ¢ q;m(n)

and consequently
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(60) [P() — P(y)| < ¢, HP) - g, (n > N,).

On the other hand, by Lemma 5, there is a natural number N, so
that the degree of the algebraie number y, is equal to m, for n > N,. Since
f < m, we have P(y,) # 0 for n > Ny, so we may apply Lemma 1 with
& = y,(n > max (N,, N)), s = m, n = f, and we obtain

1
(m ¥ )7 (74 1 HEPTT R,

(61) | P(r) = (n > max (N, Ng).

Using the relation f< m—1 and putting =" (m 4 1) elg™ = €75
we obtain from (55) and (61} :

(62) PG> o~ (n > max (N,, Np).
(Note that h? = H(P)).
On the other hand, since P(y,) # 0 for n > max (IV,, N}, we obtain

from (60) and (62) that

P
€7 Cia H("__)_ (n > max (N4a Nﬁ))'

H(P) 1 qn( 1 (ks 1y qn( )

Now, as ¢ is taken as a strong Liouville number, there cxists a natural

number N, , so that the relation
(64) wl(_n) > m(m— 1)max (k, ) [m(m—1) max (5, ) + m + 1] +m + 1
holds for n > N, .

Suppose that the polynomial P(x) satisfies the condition

. . 2¢
(65) H(P) > max ( 9, ﬁi‘h), v, > max (N,, N,, ).
€17
It is clear that, for every polynomial P(x) with (65}, there exists a natural

number v v, such that
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(66) q, < HP) <q,,.

Finally, by combining the relations (64) and (31) we obtain the ineguality

1
m(m 1) max (k, I)+m+1

7, <44
Hence, we can consider two cases in (66) as follows :

1
a) Q;; < H(P) < !lﬂ"{_l) max (i, )+ m+1

(67) .

\ h) 9!:Ln_g_wi—l) max {k, ) +m+1 < H(P) < q”+1.

I — Suppose that the first relation in (67) holds. Writing the relation
(63) with n replaced by v and using (67) a) and (64) we get

€,,f2
(68) f P('y) ' 2 H(P)m(mml) 71’!131 (e, D m—1

(H(P) Iarge).

IT — Suppose that the second relation in (67) holds. Writing (63) with
n replaced by v + 1 and usmg (67) b) and (64) we obtain

€17/2
(69) I[P = F(P) =1y max (6, ) ngen =) e (6 -h o+ T =1

Since the degree of the polynomial P{x) can be any natural number f less
than m, the relations (68) and (69) show that in any case

(% %) uy) = m

From (%) and (¥ %) we get g#(y) = m and this completes the proof.

Note. If we take in Theorem II instead of: the strong Liouville number
¢, @ Liouville number which satigfies the condition (64), then the Theorem IT

Temains true.

Now, we shall give a related theorem to Th.1, which is of easier

application,
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Theorem IIL Let tg,..., 0, (k> 1, o, # 0) be algebraic numbers and let
[Qotysenes &) : Q] = m, and let & be an irrational number which admits a
rational approximation sequence }%—fz (a,, bjeZ, b>1 for i>1iy, with

i
a suitable i) satisfying the conditions

. log b, ,,
b .132. ——log b:— -
log b
2}  lim sup %8 i — < + .
1> to a.
log & — _bi

Then & is a Liouville number and y = oy + ... + o, e u,.

Proof. From 1) we have immediately lim b, — + oo, and from 1) and

= w

2} we obtain by division
-1

Q.
(70) lim (—Iog g2t | ) log b‘.) -t w,
a.
which immediately shows that ¢ is a Liouville number with lim JT = .

In order to prove the second, main assertion of the theorem we shall

show first that p(y) < m.

If we set
0. —
71 — L —=p T,
o s
we have by (70)
(72) lim @, =+ .

i—>ea

Now, let P;(x) denote the minimal polynomial of the algebraic number

al. a‘- k .
¥, = oty + o, ™ 4+ .ty ™ (i =1.2,...).

i
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By a similar reasoning to that given in the corresponding section ((14) - (22))
of the proof of Theorem I we obtain

c
(13) [Py — 2 for i> i,

o,

I{(Pt)fam + 1—_1

where i; is a suitable natural number, ¢,; is a positive constant which
depends only on k, m, ,..., ., £ but not on i and II(F,) denotes the
height of P,(x).

From (73) we obtain using the fact that £ is a Liouville number - again
an in Theorem I, (22) - (24), - that

' Cig
(74) <P, IS —0 >
Jk 'J
k4
H(P,' )km+l

Iy

with lim H(P, } = + o and lim w; = -+ . The relation (73} shows that
k—r o I k= Jp

(3¢ uy) < m.

If m =1, we get from (%) immediately pu(y) =1, as we have always
Hy) = 1.

Next, assume m > 1. In this case we shall show that
(% %) uiy) 2 m,
which together with (%) will conclude the proof of the theorem,

Now we can show as in Theorem I ((11) - (20)) that there exist positive
constants ¢y and c,; which depend only on o.(j = 0,..., k), k, m, £, and a

natural number i, such that the relations
a, ..
(75) l—,}i‘<2l€l (i > 2
. .

@, . .
(76) [P— ¥l < ey 5_? (& > 1)

i
[
c
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(77) H(P) < ¢,y bi™ i@ > iy,
hold.

Let P(x) be an arbitrary polynomial of degree f (0 < f< m-—1) with
rational integral coefficients and let II(P) denote the height of P(x). Then,

we have by Lemma 2

(78) P(y) — P(y) = gy — 7). P'(p) (i > iy,

where K, is a complex number with 0 < |#7,| <1 and p, is a point on the

segment 77y, .

As in the proof of Theorem I ((16) - (17)), there is a positive constant c,,
depending only on o (j = 0,..., k), k, m, £ such that

(19) I P'(p)] < e H(P) B (4 A

Combining the relations (76), (78) and (79), and putting ¢,,- ¢, = ¢,,

we obtain
(80) | P()| = lP(?i)iu—czz- £ — % ) - H(P) @i > iy).
Let
@) i~ lim sup ——o8lit
T log| & — _b“_'

P

According to the condition 2) of the Theorem, A is a finite number,

which is obviously non - negative.

Let t be a fixed natural number satisfying the inequality

(82) t> 1.
Then
(83) t=1,

and by condition 3) we have for sufficiently large i, say for i > i,:




62 KAMIL ALNIACIK

log b,
(84) ____Og;‘“_:ﬁl_ <t,
a
1 —
og ) & 5,
which is equivalent to
a, 1 .
(85) l & — IT' < T (@ > i,).
r bi'11
(80) and (85) together give us now :
€32 H(P) . .
(36) PO > (PG — 202 (> max (i, i)
bl

On the other hand by Lemma 5, there exiats a natural number i,, such
that for i > i, y, is exactly of degree m. As the degree f of P(x) is at
most m — 1, we have P(y) # 0 for i >i,. Hence by Lemma 1 we have

I .
(87) {P(y) | 2 F+ 1 m & I HEy T HEPY (£ > i)
Using f< m—1 this gives N

1 o
(88) IP(YJ)I = mm—l (m + 1)m—1 H(P)mml H(Pf)m-—l (I’ > I’4)‘
(86), (88) and (77) give together

H(P
(89) PO > 3 P)m_?i‘b,fm(m_]) _ L( ) (i > max (i, iy, i) °
' b1

where we have put m'™™ (m + D™ . o3q™ = ¢,

According to the condition 1) of the Theorem we can find an index

is, such that the following inequality holds :

i
I[:
f
[
i
I
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(90) log b, /log b, > p (i > i),
with g = bm(m— 1) [km(m —1) + m + 1] 3+ (m + 1) ¢.

Finally, suppose that the polynomial P(x) satisfies the further condition

2¢
(91) H(P) > max (bmax(ig,ia, id.fs)’ czjz ) = HO'
From (90) and (83) we get b, , > b,(i > i;), and it is clear that, for every

such polynomial there is a natural number j > max (i,, i,, i,. i;), such that
(92) b, < H(P) < bj+1 .

As in the proofs of the two previous theorems we distinguish two cases
as follows :
S S
a) b < H(P) < b}frm—Demil
(93) i

1 — Suppose that the inequality (93) a) holds. Writing (89) with ¢ replaced
by j and using (93) a) and (91) we obtain

€32

(94) PO > g pyinton=Tm1
2 — If the inequality (93) b) holds, we get first by writing (89) with ¢
replaced by j 4+ 1

¢ c,, H(P)
(95) [P(3)] > P —
Py gy T
J+2
Using the first half of (93) b), (95) becomes
€23 ¢y H(P)
(96) [P(V)[ > H(P)z[frpz(m_l)+m+1]+m—l - 1 *

b

t
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Now, (90) with i =j 4 1 gives

1
. 1 [k -1 +1 1
(97) bjt+2 > bj[Jruin(rn Ytm+1l+m+ .

Using the second half of (93) h) this gives

i
(%8) bira > H(P) Pom(m—-D+m+1l+m+1

Putting (98) in (96) and using (91) gives us at last

€,y/2
(99) IP(}’)i > -H(P)t[km(m331)+m+1]+m—1 :

As the right hand side of (99) is less than that of (94), we have in both
cases (93) a) and (93) b) :

€g3/2
iP(T)I > H(P)A[Icm(m~1)+m+1]+m“*l

for any polynomial P(x) whose degree < m and whose height > H,.

Therefore pu(¢) =z m, which concludes the proof of the theorem.

Note, As an example to the Liouville number in Theorem IIT we can
take the number

1 1 1 1
fm’zT_n”F_z“jT"FF‘f-m‘[--zT!-i‘----

In fact, if we put

a. 1 1

J:W“F*-i-----[-

21! ?

we have

it a; 2 & .
b,- = 2%, é—b— < Z(T'l), (120,1,...).
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These relations give us

log b;

—=i+1,
log b, L

jog by _ G+ D)

which show immediately that the conditions 1) and 2) of the. Theorem III

are satisfied.

CHAPTER 1II

In this chapter, .we shall show directly, i.e. without using the fact
U, = U, (m = 1,2,...), that the classes U, (m = 1,2,...), in the classification
of Koksma are not empty.

Koksma’s classifieation. Let £ he a complex number, Suppose that « is
an algebraic number of degree n and P(x) is the irreducible polynomial of
t, normalized such that its coefficients are relatively prime and its first
coefficient is positive. One then defines the height H{x) of « by H(x) = H(P).

Now put
wi(H, §) = min [¢—aqf
degu<n
H{g)<n
aFEE
and next put
— log (Hw,(H, £))
leg H

w, (&) = lim sup

H—> e

o

9

w'(£) = hm sup

n— o

w,(H, £) is a nonincreasing function of H and the functions w;(f) and

w' (&) satisfy the respective inequalities 0 < w () < oo,
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0 < w'(¢) € o0, Let g'(¢) be the smallest number n with () = oo, if such

integers exist, otherwise put u'(¢) = 0.

Call ¢ an
A" — number if w(f) =0, p) = 0,
§" — number if 0 < w'({) < 0, p(§) = oo,
T* — namber if w () = w0, u(€) = o,

U’ — number if w'(§) = oo, #(¢) < .

(See KOKSMA [']). By the definition of U, the set U, = {¢{ e U’ , W) =m}
is a subelass of U' and U, N U, =¢, if m # n. Hence we have the

partition U = iJ U:n .
m=1

Theorem. Let 0 yuuuy & o Booeees f(k > 0, 12 0, max (k, 1) > 0, §, = 1)
be algebraic nambers with [Q(og .05 Bgsers ) :Ql =m and let ¢ be
a sirong Liouville number. If the polynomials C(x) = ay + ... + o 2%,

¢(6)
D(&)

D(x) = By + ... + B, o' are relatively prime, then y — belongs to U,, .

Proof. Let the convergents of the regular continued fraction expansion

of ¢ be %_ (n = 1.2,...). Put

n

= by,

M |¢_§1

"

It is clear that the equation D(x) = 0 has only a finite number of solu-

tions in {), that is, there exist a natural number Ny, sach that if n > N,

n

)
then D(—bl) # 0,
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(2]

i

n

Now we put

(2) Y, = (n > N,).

By the definition of the algebraic number y,, the value of the polynomial

a
(3) F (9 %oreor Zpevr Tygyy) = B ? ¥z, + (T) Kpqz T oo

H

2, ! max (k, ) a, ¢, k
+ ™ xk+,+[——bn . x0+?xl+...+ . £

" E R

is zero for y = y,, %, = (i = 0,0, B), %, ;. = B,(j = 0,..., D).

a -
On the other hand, since lim - = &, £ # 0, there is a natural number

b

R—>e&@ n

N, , such that if n > N then [a, [ < 2]{]),.

Hence we have
(4) H, < (max (L, ¢;))me=® 9. ppextcd (n > max (N,, N)),

where ¢, =2 |¢| and H, is the maximum of the absolute values of the

coefficients of F,(y, %g 400 &5 1)
Now, by Lemma 3 in Chapter I and by (4) we obtain

(5) H? <, b‘;‘m‘("-l)"" for n > max (N;, N)),
n

where ¢, is a positive constant, which depends on & m, k, I, o ..., %,
Bg+-» By» but not on Hy .

As b - 4 oo for n— o0, we have ¢, < b, for n > N,, and we obtain

from (5) :

(6) H < bm.mux(h.l)+l .
¥ n
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Next, by using Lemma 2 in Chapter I, we get

c(o) - C(‘;—) (e~ :—) tn) o) < o5
™)
D) = D(%) +(e— b—) o )] < e

where ¢; and ¢, are positive constants, Hence from (1) and (7) we have

( a" a’n
\Dkr [ (n)| +|C T) + fey(n)]
(8) [y — ')’nl < n - n n-w(n) .
LCIREES
n
Sinee lim . = ¢, there is a natural number IV, and a positive constant

n— o ]

¢s, so that the relations

Jeli

L

> 21D >0

@
<a ()

hold for n > N,. Combining the relations (8) and (9) we obtain

o bl

n

(10) 0<ly—y,I<ebi®  (n>max(N, N,, N,, N = N),

where ¢, is again a positive constant. (y =y, is impossible, as this would

entail that ¢ is algebraic.)

As lim sup w(n) - + 06, we can choose a subsequence {w(n;)}, such that
lim a(n) = + . As b, tend to - o0 with j— 0, (10) with n=n,
Jo o Fl

(j = 1,2,...) gives us, that {y, } has an infinite number of different terms
: . J

(otherwise b;j ) would have a Positive lower bourd). If we put HTn = H(y,),

the sequence {H(y, )} has a subsequence {H(y )} tending to + w
J i
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(otherwise the sequence {7y, } as consisting of algebraic numbers of bounded
J

height and bounded degree would contain only a finite number of different

terms),

Finally putting (6) in (10) we get for {y, }
Ik
%
w(ujk)

for n, > N.
% K

)m ,max (k1) +1

H(y

n,
3

(11) gives us u'(y) < m. To prove the opposite inequalty z'(y)> m we

distinguish two cases as follows :

I— If m=1, then pu'(y)< 1 and as always z'(y) = 1, so u'(y) = L.

Hence in this case the proof is complete,

II — Suppose that m > 1. Let § be an algebraic number of degree
s(1 £ s < m—-1) and let H(f) be the height of 8. By Lemma 5 in Chapler I,
there exists a natural number IV, , such that the degree of the algebraic
number y,_ is equal to m, if n° > IV,. On the other hand, since s m—1,
the minimal polynomial of f§ is different from the minimal polynomial of
y,(n > N,). Hence we may use Lemma 4 in Chapter 1 with (5), and we
obtain

1 .
BT it (1 1) G (1, o)) ¥ B B D G

12) Iy, —F1=
and putting 2! m™™ (m + I)' 7" (max (I, ¢) )} ™™ = ¢, we have

[
(13) Iy, —Bi= iy bm(minm(,ﬁ,) (n > max (N,, N, N,, N,, N)).

Next, using the inequality [y— f#]~=|(y,—8) + (¢ —v) = ly,—Bl—lr—n}b
and (10), (13) we obtain

a9 ppiz o e
H(ﬁ)m b:(m - 1) max (k, I} b:(n)




0 KAMIL ALNIACIK

Now, since { is strong, then there is a natural number N, such that

the ineqguality
(15) o) > mm —1)max (b, ) [m(m-—1)max (b, 1) + m + 1} +m 1

holds for n > ;. I'inally, suppose that the algebraic number § satisfies

the condition

2¢

(16) H(f) > max (bmax(No,Na,Nz.Ns,Na.Ns) ’ ) = H,.

It is clear that, for every H(f) with (16), there exists a natural number j,

such that

(1 b,< H(f) <b,,.
[ S

On the other hand, since b}"f’l‘_l) max ( tmtl b,, we can consider

two cases in (17) as follows :

1
Sa) b, < H(B) < bl 1) max e hemtl
(18)

1
(})) b}::{(_n;-l)max(k.l)+m+l < H(ﬁ) < bj+l .
I-— Suppose that (18) a) heolds. Then writing (14) with n replaced
by j and using (15), (16) and (18) a), we obtain

[

€7 s
(19) - [')’ - ﬁi = H(ﬂ)m(mm Dmax & H+m H(ﬁ)m(m— 1) max (&, H+m+ 1
/2

= H(B)m(m —Tymax{k )4+m

for H(f) > H,.

II — If (18) b) holds, writing (14) with n replaced by 7 + 1 and using
(15), (16) and (18) b) we have
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€, [2
ly— Bl > u
H(ﬁ)m(m— 1) max (k, ) {re(m — 1} max (k, ) +m-+1]-+m

(20
for H(B) > H, .

Hence the relations (19) and (20) show that p'(y) > m. But we had
#'(¥) € m, therefore i'(y) = m, and the proof is completed. :

CHAPTER HI

In this chapter, we shall show that the classes U (m = 1,2,...) for the
Hensel’s field @ of p - adic numbers are not empty.

Mabhler’s classification in @,. Let P(x) be a polynomial with integral
coefficients and H(P) be the height of P(x).

Suppose that m and A4 are two natural number and a € Q, .

Then Mahler puts
w0l )= min  ({PE)},).
degP<<m
H(P) < A4
Pla) # 0

Ft is clear that 0 < (¢ ] 4) < 1, since, if P(x) =1, then | P(a)], = L.

Next Mahler puts

L —lego,uld)
0.0 = Vo L
and
» wﬂ’l(“)
o) = llr;m_*s:p .

By what we said above, w_(«) as a function of m is nondecreasing. One has,
0< o (0) < w and 0 < of(0) < .
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If o, («) = co for some integer m, let u(2) be the smallest such integer;

if @, («) < o for every m, put p(a) = w.

Mahler calls the nuinber o« an

A — number if old) =0, ple) = o,
S — number if 0 < wle) < 0, ula) = o0,
T — number if wlo) = o, pla) = o,
U - number if wla) = o, p(a) <

(K. MAIILER [*]). By the definition of U, theset U — {¢e U I () = m} is
a subset of U and we have U= |J U.

me=]

It is clear that, U, is not empty; for example the p - adic number Z p"!
n=1

belongs to U, . Now, to prove that U, is pot empty, we shall use

following lemmas :

Lemma 1, Let P(x) =ay, 4 a, x + ... 4 a, x0 be a polyromial of

degree m, with integral coefficients and « be a p - adic algebraic number of
degree M with P(a) # 0. Then the relation

P(M—l)t

1P)], >
(M + mq)! H(PY" H(a)™

holds, where o], = p~", t = min (0, h)., end H(P), H{a) are the height of
P(x) and the height of the minimal polynemial of the algebraic number o
respectively (K. MAHLER [*], P. 179 - 181).

Lemma 2. Let ay,.., 0%, PBorueey f(h =0, 12 0, max(k, ) > 1,

@ # 0, fp = 1) be algebraic number in @,. If the polynomials

Clx) =0y 4+ a, 2 + ... -+ kaxk, D) =F,+ B2+ ... + [J’,x' are relatively
C{x)

prime, then for xe€Q, the p-adic number — -~ is a primitive element

Diz)
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of the field Q(%y,..., & » Byoeeer B;) = K except for only a finite number of
values of x.

Lemma 3. Let o, ,...,0 (k> 1) be algebraic numbers in Qp with
[ty +eon o) : Q] = g and let F(y, %, ,..., x,) be a polynomial with integral
coefficients, whose degree in vy is at least one, If y is an algebraic number

such that F(n, a ,..., «) = 0, then the degree of # < dg and

2dg+{, +.ul)g t !
hvgi’s g+ e t) .thalg_”hﬂ;;g’
where h, is the height of #, h, is the height of o (i =1,...,k), I is the
maximum of the absolute values of the coefficients of F, 1, is the degree of
Fin x(i~1,.,k), and d is the degree of F in y.

The proof is the same as in the Lemma 3 in Chapter 1.

Theorem L Let o, @, Byoeees fi (6 = 0, 2 0, max (&, I) > 0,
a, # 0, B;=1) be algebraic numbers in Q, with [Q(¢g..., %> Boyr-r B;) 1 0] =m,
and £e Qp be ¢ p - adic number, whose canenical form is
&= aupu" + a; pu‘ + .+ canpn" 4+ e O<a,<p, aeZ (n=201,,.),

u
. 1
where u, > 0, lim oL I

n— n

I the polynomials C(x) =a+a,x+ ... +a a*, D(x) = By+ %t ... + B«
Cg)
D(Z)

are relatively prime, then the p - adic number y =

belongs to U

m "

Proof. Let us put

(1) ¢, =ayp' +ap'+.ote,p” p=a,,p L (n=0,1,..)).

By approximating ¢ with ¢, and taking into account the condition

Uty

lim

n—o u'n

= + o0, we sce casily that (e U, .
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We have
(2) =&, + o, (n = 0,1,...),
and so

CE) =CE) +p,l2+ 0,28 +p) + o + B+ 4+ o]
? D) =D, + 2, [By + 828, + o) + o +BEET + o 4+ 27D
Next put

U 4 02 4 p) e £ & L gy =5
(4) (n=0,1,...)

ﬁl +ﬁ?.(2 'fn + ,0,,) + b + ﬁ[(l fi—l + T + pfm_l) = Uy

It is clear that the equation D(x) = 0 has only finitely many solutions in
(), hence there exists a natural number IV, , such that D({,) # 0 for every
n > [V,. Hence by the definition of v and by (3) we obtain

€@ €E)  DE)S,—CE)3,
©) T T o) T D Do > ol
and so putting
_CE) D) d,—CE), i
O T I TR (m > No)
we have
(6) y =1, + p,0, (n > Ny).

—h, —e.
Let o[, =p *(E=0l...k), 18], =p T(j=0L..1),

t, = min (0, &;,... k), t; = min {0, ey, ¢, ... €), t, = max (0, e;,... €).

Now, since u, > 0, £ and £ are p - adic integers, Hence, by definitions of the
0 I P g Y

~
—

p-adic numbers 6., d,, v,, 0, (r > Ny, we see that
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Ian 'p < P—lu, lén]p < PHM

(7) (m > Ny).
19,1, < p*7% o, l, < p¥aoh

Now, let

(8) Px) = b + 8% + .. + b &S (f< m, n> N

be the minimal polynomial of y, (n > N} and H(P ) be the height of P, (x).
We see from (6) that

(9) P.(y) = Py, + p, G,) (n > No)v

and so

(10) P"('Y) = P"(‘}’”) + pn [bgn) Oy + rer + b}n)(fy;f—l o, + " + 'C'n#1 G'rfl)]

or, putting b g, + ... + b(fy[ o, + ... + o7 of) = a,, we have

(11) Pn(y) = Pn(?n) + £y Oy (n > NO)'
But we have P (7,) = 0, hence using this and (1), (11) and (7) we obtain that

m2ty ~ta—1)

(12) |P,()), < 2— =t (n > Np).
n+1 n+1

P

It is clear that ¢, is a positive constant.

Now, we shall give an upper bound for H(P) (n > Ng). Since

7, By + B & A e + BEY — (g + 0y &y + oo + 0 £} = 0, the value of
the function ’

Ty, gpeenn 2 gy} = y(xk+l + L%+ & xk+!+1)

;
— Xy — G Xy e — L %
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is zero for y =y,(n > No), 5 =o;(i = 0,..,b), 2 ;1 = B,(j = 0,..., 1)

and the maximum of the absolute wvalues of the coefficients of

2max (&, I}.u

F(y, %y 5000 % 1) Is at most p " (n > Ny
Using this in Lemma 3, we have

(k-+i4+4)m 2m max (k, ) u m m m m
. ".ha o b R

o I o

(13) hr =H(P)<3
. . k+I+4)m m m m n
or putting 1:2__3(""") .h"o'“h"h.hﬁo“:hﬂz ,

2 l;
max (¥, 1} u,

(14) H(P)< e - p (n > Np).
Here, since ¢, is a constant and w, —+ 0 for n — o, there exists a natural
number N, , such that

"
(15) c,<p” for n>N,.

Hence from the relations (12) and (15) we obtain that

c ¢

(16) 1Py, < — IH < L " (n > max (I, IV,)).

P [2 max (k, /). m+1] ”n

()
Let us put Hnrr s,, so that (16) can be written as
u,
c

(17) 1B, < I ,

s
H(P")Z max {ft, hm+1

where s, > o0 .

By a reasoning exactly similar to that used in the proof of Theorem I
of Chapter I (from (22) to (24)), we conclude from (17) that u(y) < m.

To complete the proof we have now to prove the opposite inequality
#(7) = m. To this end we distinguish two cases accordingas m =l orm>1:
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1— Let m = 1. Then we have p(y) = 1 as in the proof of Theorem I,
Chapter I and the proof is complete for this case.

2 — Suppose that m > 1. Let P(x) = 4, + 4, x + ... + 4, «*
(4, # 0, s < m—1) be a polynomial with integral coefficients and H(P) be
the height of P(x). As in (10), we have by (6)

@18)  P(y) = P(y,) + p,[4; 6, + ... + A (s 0, + oo + o7 03}
or putting

Al 4 e As(s ?::—1 g, T pfldl G:) =0y

we obtain that

(19) P(?) = P('},n) + pn ;:t (n > NU)’

~

and we see from the definition of ;:l and (7) that

—~

(20) 5], < pm@aio—) (m > N,).

On the other hand, by Lemma 2 there exists a natural number N,,
such that if n > N,, then the degree of y, is equal to m. Thus P(y,} # 0
for n > N,, and we may use Lemma 1 with [y,|, =pt, M =m,my; =s,

and we obtain
P ~ stz —to)

21 P = > N,, N.),
(21) [P(y,) 1, = (m 1 ) H(P)™ H(P.} (n > max Ny, N,)
- P—m(f;-—fn)
and so using (14) in (21) and putting ¢, = @m — )T we have
€
(22) [Py, = 2m(m3._1) max (k, (n > max (N, N,)).
Yn 11

Now by the assumption lim > = -} o0, there exists a natural

n—+ o n

number IV;, such that if n > N;, then the relation
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23) 2 S 2m(m— 1) max (k, ) [2m(m — 1)max (b, ) + m + 1] + m -1

ull

holds. Next suppose that, H{P) satisfies the condition

¥ s}
(24) H(P) > max ( p max (Ng, Nz, Na) | _é:_) =H,.

For every H(P) with (24) there exists a natural number j, such that

U,

(25) pi < H(P) < pitt.

Now, from (23), we have two cases in (25) as follows :

N =5 S
; 2m(m—Y)max {, ) +m+1
a) pi<HP)<p I
(26)
I Y+l
2m(m—1) max (k, ) +mn+1
lb) {m—1) max (k, )+ +

I — If the case (26) a) holds, writing (1), (20), (22) with n replaced
by j, we obtain

< HP)< pit',

]
(27) [P(y), = H(P)2(n-Dmax (e im !
(28) 12,0yl € < ;. :
PYip Puf+1 H(P)zm(m- 1y max(k, H+m+1

Next, writing (16) and (19) with » replaced by j and combining the rela-
tions (23), (25), (27), (28) and (as a consequence of (27) and (28))

29) [P, = max (1P, |p,0,1,) = | P,
we see that

)

(30)

for H(P) > H,.

IP(}’) fp = H(P)zm(m—l)mnx(k, HN+m
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11 — Suppose that (20} b) holds. If we write (1), (20), (22) with =
replaced by j + 1, then we have

: ¢
1
(3 1) [ P('},J'+l) ;P 2 H(P)Zm(m Z1y ek s, §) [2m(m— 1) max (k, H im+1]+m *
(32) ! Piy1 Pyt !p < _H'(P)ﬂm(m—-l)max (. D [2mi(m = 1) max (k, 4m + 1 +bm 1

But it follows from (31) and (32) that

~—

1PG)], = max (1P, » 181 0z l) = 1P, 01, »

and so we obtain

3
7} Lu 2 H(P)2m(m ZTymax (k, 1) (2m(m —1) max (&, ) +m +11+m

(33) LP(

The relations (30} and (33) show that, if P(x) is a polynomial of degree
S(f < m —1) with integral coefficients and H(P) is sufficiently large, then

(34) iP(?) |p Z €yt H(P)-—2m(m-l)mnx ¢ D{2m(m—1) max (k, ) +m+11—m

By the definition of u(y), (34) gives p(y) > m and thus we have
#(y) == m, and the proof is completed for m > 1.

Special case. Let oo be a p - adic algebraic number of degree m, and £ be a
p - adic number verifying the conditions of Theorem I. Then o 4+ &, w- (e U, .

It can he easily seen from the proof of Theorem I, that it is

u
sufficient to suppose lim sup L + o« and the condition (23), instead

> o un

. . Basd
of the stronger assumption im ——— = + o . Hence we have the
n—+ o un
following :

Corollary. If the p - adic number ¢ in Theorem I has the canonical from

¢ =a0pu°—|— al;pu1 4.0+ anpu" Fuves Ug = 0 and such that lim sup Bst + w

nre U,
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and lim inf Yatt >2m(m—1) max (k, I) [2m{m — 1) max (&, I} -+ m] + m 41,

n—> o u,

then Theorem I holds also in this more general case.

Theorem L. Let ay,...,a, (k> 1, a, # 0) be p - adic algebraic numbers
in Q, with [Qegscoq) 1 Q] =m, and & be o p-adic number in the

canonical from

u, ", ©,
E=a,p "+ ap + .o ta, p’ ..

(@20, u ,>u, ag,eN, 0<e <p—1T1 (v=01.)).

Further suppose that the sequence {u} has a subsequence {u, } verifying the

conditions
u
. +1
1) lim —= = 4 w0,
n—wo ¥,
n
“,
2) lim sup ptl < 4 .

n—+ U, 41
n

Then the p - adic number y = oy + a, & + ... + o 6_" belongs to the p - adic
Um class.

L1

We approximate ¢ by & = a, puo +..ta p " Prom 1) and 2)
we see easily that £ is a p - adie U, (Liouville} number. The proof, which
we shall omit, can be conducted by using a combination of the arguments

used in the proofs of the Theorem I above (adapted to the special case
D(x) = 1) and the Theorem II{ of Chapter I.

We conclude with some examples :

1} As an example for a p - adic number ¢ verifying the conditions of

Theorem I above we can take

E=14p" 4 p" ™

which can be seen at once.
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2) As an cxample for a number ¢ of Theorem II above we can take

£, =1+ p*+ (p¥ + P+ PP 4 L
4 (p™ 4 pttt L pt)

For £, , if we define

w, =0, u, =1, u, =nrl4+n (n>2),
L] N 1 n

we see that u, ; = (r + 1)!, and consequently
n

u, m+14+m+1)
1 . .
lim —* = lim — = + ¢,
L uvu n— nl+n
Mg @ D]
m Stlp - = m - oy, = L
n—> = uvn+1 n—> et ("‘ + 1)'
so that all the conditions on ¢ are wverified.
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GZET

Bu ¢abgmada lavvetli bir Liouville sayismin cebirsel katsayii tam ve ras-
yonel kombinezonlar1 incelenerek bunlarim Mahler’'in U, alt simfina ait
olduklarn gosterilmelktedir (Burada m, bu katsayilarm bLelirttigi cebirsel
say1 cisminin derecesini gostermektedir). Boylece Up,{m = 1, 2,...) Maller
alt smiflarinm highirinin bos olmadiima dair ilk énce 1953 de LEVEQUE
tarafindan elde edilen sonucun yeni bir ispati bulunmus olmaktadw, Tam
kombinezonlar halinde, Hensel’in p - adik sayilar cisminde ynkarikine henzer
bir sonug elde edilmektedir,
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Corrections to the foregoing paper

Please make the following correctiouns in the references quoted

in the text :
page line wrong right
41 2 and 20 GUTING [1] GUTING [*]
44 7 LEVEQUE [1] LEVEQUE [9]
51 18 P. ErDOS [1] P. ERDOs [?]
66 3 Koksma [1] KoksMma [*]

72 § and 19 K. MAHLER [?] K. MAHLER [?]




