LARMOR RADIUS AND COLLISIONAL EFFECTS ON
THERMAL-CONYECTIVE INSTABILITY OF A COMPOSITE
STELLAR ATMOSPHERE *)

R. C. SHARMA

The problem of thermal-convective insiability of 2 hydromagnetic composite stellar atmosphere

has been studied to include simultaneously the effects of finite Larmor radius and the fric-

tional effects with neutrals. The effect of a uniform rotation has also been included, Tt is found

that the criterion for monetonic instability holds good in the presence of the effects due to ro-
tation, finite TARMOR radius and frictional effects with neutrals.

1. Imtreduction. The convective instability (in which motions are driven by buoyancy for-
ces) of a thermally unstable atmosphere has been termed as «thermal-convective instability»
by DeFouw (1970). He has generalized the ScHWARZSCHILD criterion for convection to include
departures from adiabatic motion and has shown that a thermally unstable atmosphere is also
convectively unstable, irrespective of the atmospheric temperature gradient.

Derouw (1970) has found that a stellar atmosphere is unstable if
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where L is the heat-loss function and «, +, k, Ly, Lo denote respectively the coefficient of ther-
mal expansion, the coefficient of thermometric conductivity, the wave number of the perturbation,
the partial derivative of I. with respect to temperature 7 and the partial derivative of L with res-
pect to density p, both evaluated in the equilibrium state. Cj is is the specific heat at constant
pressure.

The effects of a uniform rotation and a uniform magnetic field on thermal-convective ins-
tability of a stellar atmosphere have been studied, separately by Derouw (1970) and simulta-
neously by BaaTia (1971). The effects of the finiteness of the ion Larmor radius. which exhibits
itself in the form of a magnetic viscosity in the fluid equations, on plasma instabilities have been
studied by several authors (e.g. RosErTs and TAYLOR, 1962 ; RosenpLUTH, KrArr and Rosro-
KER, 1962; JUkEs, 1964; SHARMA, 1972). Recently SHARMA and PraxasH (1977) have studied the
finite LaARMOR radius effect on thermal-convective instability of a stellar atmosphere. It has been
found in the above studies that inequality (1) is a sufficient condition for monotonic instability,
for situations of astrophysical interest. In the above studies, a fully ionized plasma has been consi-
dered. Quite frequently the plasma is not fully ionized and may, instead, be permeated with
neutral atoms. The collisional effects on the stability of superposed media have been studied by
Hans (1968). BuaTia and Stemer (1972) have considered the Larmor radius and collisional
effects on the dynamic stability of a composite medium. They idealized a plasma, which may
not be fully ionized but alse permeated with neutral atoms, as a composite mixture of a hydro-
magnetic (ionized) component and a neutral component, the two interacting through mutual
collisions. ’ o

1) Coemmunicated by Prof. Dr. Bam BEHARI on July 14, 1975,
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It may, therefore, be of importance and is the object of the present paper to study the result
of the simultaneous inclusion of finite LaArRMoRr radius and collisional effects on the thermal-
convective instability of a composite stellar atmosphere. The effect of a uniform rotation has also
been included.

Consider an.infinite horizontal composlte layer conststtng ofa fLmter conducting hydro-
magnetic mcompressmle fluid of denstty ¢ and a, neutral gas of denslty g whtch is in a state

of uniform rotation L! = (0, 0, £2); dcted on'by a-vertical magnetic field H=(0, 0, #) and
gravity force g= (0, 0, —g). This layer is heated such that a steady temperature gradient
A (= dT|dz) is maintained, Regarding.the model under consideration we assume that both the
ionized fluid and the neutral gas behave like continuum fluids and that the effects on the neutral
component resulting from the. presence of gravity and pressure are neglected The magnettc field
interacts w1th the' 1omzed compohent only o : o . Co-

2. Perturbation equatlons The ftrst Iaw of thermodynamtcs may be wntten S - -
ar _ p de
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where c,, . K T and t denote respecttvely the spec:tftc heat at constant volume the thermal

condugtivity, the temperature and the time,

Following Derouw (1970), ‘the linéarized perturbation form’ of Equation @) is"'
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where 0 is the perturbation in temperature In obtammg (3), use has been made of the Bous-
SINESQ equatlon of state,

@ . se=—uel.

Let q(u, v, w), h (i, Ay, k), d¢ and Sp denote the perturbations in velocity, magnetic field
H, density ¢ and pressure p respectively ; g, ¥, 9, Qq,. v, denote, respectively, the gravitational
acceleration, the kinematic viscosity, the resistivity, the velocity of the neutral gas and the colli-
sion frequency between the two components of the composite medium.

The Imeartzed perturbatton equattons govermng the mOthIl of the mtxture of the hydro-
magnettc f luid and a neutral gas are

3
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For the vertical magnetic field H (0, 0, H) the stress tensor components P, taking int¢ account
the finite ion gyration, have the-components (SHARMA, 1972)
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In Equation (9), e¥, — N’I;I4 wﬁ',' where “’H is the ion-gyfatidn.frequency, while N and T
denote, respectively, the number densnty and the i ion temperature.

We consider the case in which both the boundaries are free and the medlum ad]ommg the
fluid is non—conductmg The case, of two free boundaries is the most appropriate. for stel]ar almos-
phere (SeIEGEL, 1965).

The boundary conditions appropriate fpr the prob];:m are (CHANPRASE_KHAR, 1961}

_o % _
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t = 0 and kx, Ay, i, are continuous with an external vacuum field. Here £ and E denote the z-
components of vorticity and current density I‘E:SpE:Ctlve]y .o o s

3. ‘Dispersion relation. Analyzing in terms of normal modes, we seck soluticin_s whose de-
pendence on space and time coordinates is of the form '
an oo ‘exp fik, x +ikyy + nilsink, z,

where &, is an integral multiple of = divided by the thickness of the fluid llayer,‘

] 2 2 2
k=, + ky +k)VE ‘
is the wave number of the perturbation and i is the growth rate, :

Eliminating q4 between Equations (5) and (6), -Equations (3) and ES);(B) give!
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where

an . e o= ‘n(l + —a-f“-) and «, = gqfe.

n+ v,
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Elimipating 6, {, 4, and E from Equations (12)-(16) and using (11), we obtain the disper-
sion relation

(18) N+ A +A4nrt+A4,n+48+4,788+A4,n+ A, =0,
where £
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4, Dlscussion. In many cases of astrophysica.'llintefes’t,"the effects of viscosity and resist}vity
are negligible, Setting » == % = 0 in Equation {18) reduces it to
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In the limit of vanishing the collisional frequency »., Equation (20) reduces to the result
I(Eq. (18), SHarMa and Praxasy (1977)1

When D <0, i.e. when inequality (1) is satisfied, the constant term in Equation (20} is nega-
tive. This means that the Equation (20} has a positive real root, leading to monotonic instability.
‘The criterion for instability (!} is, thus, the same in the presence of the effecis due to rotation,
finite Larmor radius and the frictional effects with neutrals on the thermal-convective instability
of a composite stellar atmosphere,
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OZET

Hidromanyetik, kompozit bir yildiz atmosferindeki termik-konvektif dengesizlik problemi,
sonin LARMOR varigaplart ve nétr cisimlerle sirliinome etkenlerinin etkisi diiginilefek
incelenmigtir. Diizgiin bicr ddnme hareketi problemin kogullarina sokutmusgtur. Monoton
dengesizlik kuralinin ddénme. sonluy LARMOR ¢apt ve ndtrlerle sirtinmenin etkisi altinda,

vine gegerli oldugu gdridmiigtiir. L i




