ON WAVE, SOLUTIONS OF WEAKENED FIELD EQUATIONS IN
A V, XV, SPACE-TIME
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KILMISTER and NEWMANN [1]1} and LOVELOCEK [*] have mentioned field
equations as alternative to the vacuum field equations of the EINSTEIN
theory of general relativity, In this paper we have considered these egua-
tions in a Riemannian fourfold of class two representing the product of two
surfaces ie.. ¥, x ¥, space-time and it is found that the wave solation exist.

1. Introduetion. KITLMISTER and NEWMANN [!] preposed an alternative
set of field equations in general relativity which, in the absence of sources,

are given by
(11) !.J"fc;h =0

where a semi-colon (;) denotes covariant differentiation with respect to
CHRISTOI'FEL symbol {£}. The space which are interpreted as the gravitational
field in vacuo in the orthodox theory of general relativity form only a subset
of such spaces for these field equations. The field equations (1.1) are called
«weakened field ecuations» (ie. weaker than the EINSTEIN equations of
general relativity in vacuo) in the sense that each of them admits a class of

solutions for which
(1.2) R. =0,

as a sub-class of solution.

1) Numbers in brackets refer to the references at the end of the paper.
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On contracting the BIANCHI identities which hold in a general Riemannian
space and using the result in (1.1}, it is easy to see that the form (1.1) of the

weakened field equations is equivalent to
(1.3) Rfj,k h— R['k,j == O.

Although the physical implications of the weakened field equations are
yet not well-established hut many others have tried to find the solutions of these
field equations in the hope that these field equations may he useful in future,
THOMPSON [?] made investigations of the weakened field equations and
found several different static, spherically symmelric solutions not transfor-
mable into one another and showed conclusively that the weakened field equa-
tions are too weak, KILMISTER [*] has surveyed the question of alternative
field equations in general relativity. Further, LOVELOCK [*] , [¥] has solved
a number of alternative set of weakened field equations including (1.1) and
has obtained a static spherically symmetric solution which represents the field
of a massless charged particle at rest at the origin for all time. SWAMI [9]
has found three solutions of the weakened field equations (1.3) with R; % 0,
R;; #. A gy and has discussed some of the geometrical and dynamical aspect of
these solutions. Recently LAL and SINGH [?] have found the solutions of
the field equations (1.3) with some useful conclusion, in the cylindrical
symmetric space-time with metric [f]. LOVELOCK [*] has also mentioned
many other field equations as alternatives to the vacuum field equations
of the EINSTEIN theory of general relativity. One of these field equations is

(1.4) Hf = R} = 0.

In the present paper we have considered the field equations (1 3} and
(1.4) in a V, % ¥V, space-time with metric [8]:

(15) ds? = — A(ds® + dy®) — B(de® — di2),

where 4 = A(x, ¥), B = B(z, t) and xz, y, z, t correspond to x!, 22, 27, x!

respectively.
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2. Solution of the field equations (1.3). The component g correspon-
ding to the metric (1.5) are

!g” =—g32=—-1/A,

(g2 =—g"=—1/B

(2.1)

and the non-vanishing components of CHRISTOFFLL symbols of second

kind {z} are

e
§2§ = %1122= —%1215 = 4,24,
= b

= §3g = By/2B,

(2.2)

:‘& N 39?4% - 2522 = By2B.

Here the lower suffixes 1, 2, 3, 4 after a function indicate ordinary partial
differentiation with respeet to x, y, 3, t respectively. The RICCL tensor

R;; is defined by

(2.3) Ry = — s + 4 G — 83 6
Using (2.2) in (2.3) the non-vanishing components of R;; are

f Ryy = Ry = {(Ay; + Ap) A — (Af + A)}2A4E = X]2,

(2.4)
1 By = — By = {(Baa — B, B _'(Bj - Bz)}/ZBZ = Y/2,
where
X = (4yy + Ag)/4 — (4] + A))/42,
(2.5)

l Y = (Baa ﬁ B“)/B . (B: - B:)/Bz-
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From (2.1) and (2.4) the scalar curvature R = g B is given by

(2.6) R=-—(Ayy + Agg)/ A* + (4] + A}/ A* + (Byy— Boa) [B* + (B, — B) /B>,

A first contraction of vacuum field equations (1.3) gives

2.7) By, —R,; =0

and the twice contracted BIANCHI identities imply
(2.8) Rfj — (1/2) R!J. = {

where a comma denotes partial differentiation. From the two equations (2.7)

and (2.8) we have Ry == 0 which imply that R = constant,
Using the values of {¥} from (2.2) in (1.3), we get
(2.9) a) A3, R, — A, R, =0,
b) A8, By — A, Ry, =0,
¢) B, By B Ry =0,
d B R, —B;R, = 0.
Using the components of R; from (2.4) in (2.9) a - (2.9) d, we get
(2.10) X=K, 4,
(2.11) , Y = K, B,
where K| and K, are arhitrary constants.
Putting ¢ = log A4 and b = log B in equation (2.10) and (2.11), we get
(2.12) 4y + ay = K, &,

(2.13) by — byy = K, eb.
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Reducing equation (2.12) to canonical form by changing the dependent
variable « into p, where p = p (£, #) and

(2.14) E=axfiy ., §=x—1,
we get (2.12) as
(2.15) Ppjot oy = (K, /4) .

FEquation (2.15) is of LIOUVILLE’s form and by FORSYTH [°] has a solution
of the form

(2.16) ¢ = 2f/() £;/[/1(8) + (Ki4) L(n)]?,

where each f, and f, is an arbitrary function of its argument and prime de-

notes partial differentiation with respect to it.

Hence exact solution of equation (2.12) is

(2.17) a=log A =log [2f/(x + iy)] +log [f,(x—iy¥)] —2log[fi(x + iy)
+ (K, /4) {fo{x —iy)}).

Similarly, (2.13) can be reduced to canonical form by changing the dependent
variable b into p,, where p, = p; (£;, #,) and

(2.18) =241t , ¥ =2—1

we get (2.13) as

(2.19) &p, 108, Oy = (Ky/4) ¢,

which gives the exact solution of equation {2.13) in the form

(220) b =log B =log[2g'(x + 1)] + log[gile—1)] —2log[g,(s | 1)
+ (Kz/4) {ga(z— 1)},

where each g, and g, is an arbitrary function of its argument and prime

denotes partial differentiation with respect to it.
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Now using (2.10) and (2.11) in (2.6), we get
(2.21) _ R=—(K +K))=K

where K is another constant, which is consistent with the result that in a
RIEMANNIAN space-time where weakened field equations hold R must he

constant.

Thus, equations (1.5), (2.17) and (2.20) (for which R; # 0 and
Ry # Ag;, A being a constant) constitute wave solutions of the weakened

field equation (1.3) in a ¥V, x F, space-time.

3. Solutions of equation (1.4}, From (2.I) and (2.4) the non-vani-

shing components of the tensor RY are

R = R%2 = X/[2.4%

(3.1)
' | R® = —R* = Y/2B2
Using the components of RY from (3.1) in the field equations (1.4), we get
(3.2) a) 0,X— A4,Xj4 =0,

b) 2,X —A4,X[/4 =0,

c) Y — BY/B =0,

dy 6,Y—B,Y/B=0.
From (3.2) a) - (3.2) d), we have
(3.3) X = kyd,

(3.4) Y = k,B,

where k, and k; are arbitrary constants,
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Putting again a = log 4 and b = log B in equation (3.3) and (3.4), we get
(3.5) gy az = ke,
(3.6) bys— bey = kg e,
The exact solutions of (3.5) and (3.6) are respectively in the form
(3.7) a = log A = log [2F!(x + iy)] + log [F'(x — iy)]
— 2log [Fi(x + iy) - (bs/4) {Falx — iy)}],
(3.8) b= log B = log [26/(z + 1)] + log [6/(z —1)]
— 21og [Gy{z + 1) -+ (ka/4) {Gy(z— )31,

where I\, ¥, and G|, G, are arbitrary functions of their arguments and

primes denote the partial differentiation with respect to their arguments.

Thus equations (1.5), (3.7), (3.8) constitute wave solutions of the
weakened field equations (1.4).
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GZET

KILMISTER ve NEWMANN [!] ve LOVELOCK [*], EINSTEIN'in genel relati-
vite teoriginde gecen bogluktaki alan denklemlerinin yerini alabilecek alan
denklemleri éne siirmiiglerdir. Bu cahsmada ikinei simftan dért boyutlu bir
RIEMANN uzay: olarak diigiiniilen iki yiizeyin ¢arprmi olarak elde edilmis
bir uzay-zaman evreni, yani ¥, X ¥, biciminde bir evrende bu denklemler
incelenmig ve dalga ¢oziimlerinin vark@ kamtlanmigtir,




