ON WAVE SOLUTIONS OF THE FIELD EQUATIONS OF EINSTEIN'S,
BONNOR’S AND SCHRODINGER’S NON-SYMMETRIC UNIFIED THEORIES

K. B. LAL - B, R, MAURYA

In the present paper the field equations of EINSTEIN’s, BONNOR’s and

SCHRODINGER's non-symmetric unified field theories are investigated.

It has been found that the field equations of non-symmetric unified field

theories of EINSTEIN and BONNOR yield wave solutions under certain

conditions, whereas for the field equations of SCHRODINGER’s theory such
solutions do not exist.

1. Iniroduction. The present paper is in continuation to author’s
paper [1] 1} in which the wave solutions of field equations of general rela-

tivity in the space-time, represented by the metric
(L1) ds* = — A dx® —2D dxdy—Bdy* —(C—E)dz* —2E dzdt 4-(C - Ey di®,

where A, B, D are functions of the single variable Z = Z{(z—1t), C is any
function of (z,t), and E is any function of x,y,z and ¢ are investigated.
In this paper, with the help of line clement (1.1) the attempts have heen
made to obtain the wave solutions of the field equations of non-symmetric
unified field theories of EINSTEIN, BONNOR and SCHRODINGER. The ficld
equations of A. EINSTEIN’s unifield theory [°] are

1.2) Bk = 8Bijh — 8 Ty — &, F;:j =0,
(1.3 ry=r,=290,
v

)  Numbers in brackets refer to the references at the end of the paper.
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(14) a) Ry =1}, — i~ Iyl + I Iy =0,

b) () R; =0, (i) Ry, + Ry, + Ry, =0,
- v A"

v

where a comma followed by an index denotes ordinary partial differentiation
and latin indices take the values 1, 2, 3, 4, A bhar and a hook under two indi-
ces denote respectively symmetry and anti-symmetry between them.

Following above notation the field equations of W.B. BONNOR [°]
are given by (1.2), (1.3) and

(1.5) a) Ry + P U; =0,
b) (R, + Ry, + Ry, ) + P + Ui + Uip =0,
' v v v A" v

where R;; is the Ricci tensor, p is an arbitrary real or imaginary constant

and Uy is given by

(1.6) Up = &1 — g"\}n Bim Enie + % 5n\1fn Eum Sk *
v

On use of similar notations the field equations of E. SCHRODINGER ([*],
[']) are given by (1.2), (1.3) and

(LD @) Ry + g =0,

b) Ry +Agps + Ry +Agp); + (R + Agw),; =0,
v v v v v v

where 1 is a non-vanishing constant.

2. g,; corresponding to plane waves. We have obtained ['] the trans-
verse-electromagnetic wave solutions Fij of the generalized MAXWELL’s

equations in the space-time (1.1) which are given by

0 0 —¢ i3

@n B, =

y
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where 0, and o, are arbitrary functions of xjy and z—1, which satisfy
the conditions dp, /dx + o) /dy = 0 and
(ABpI/By — B oo, [ dx) — D(apl/ax — 50’1/6y)‘ = 0.

In this section we will find the non-symmetric g;; corresponding to above
Fy. Let us assume that

2.2) 8 =8 + & =hy + f;-
= v
where g; = h; is the symmetric part coinciding with the metric tensor of
the Riemannian space-time defined by the line element (1.1) and g; is the
‘ v

anti-symmetric part of g;; corresponding to the electromagnetic field (2.1).
Thus using (1.1) and (2.2) g;; are given by

— 4 —D +f12 flS f14
—D— —B

(23) (gu) - fm f23 f24
““'f13 _fzs —(C—E) —E +f34
__fu —Ju _E_f.'m (C+E)

T'o connect Fij with g;;, we shall use the equation

@4)  Fy=1euV—ggle = det(g))

introduced by IKEDA [*], where g7 is the contravariant tensor of g;; and
Gy = + 1 or—1 according as i, 7. k, 1 have even or old permutations.
From (2.1) we have F, = F, = 0. Hence from (2.4) we have

34 43

12=g21’g =g"

Using f,, = f,, = 0, the values of g, 8j and g'J finally obtained under the
assumption f,, f,. — f;, f,, = 0 are given by |

—4 —D P —p
—D —B o —a
(2.5) (85) =
—p —¢ —(C-E —E
v —E (€C+B|,
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where m = AB—D? p = (dp, + Dal)/\/; and ¢ = (Dp, Bal)/\/n—fz, and

—B/m  Djm U U
) Dim — Ajm 4 4
(2.6) &) =
—U -V  —ljc4wW W
—U -V W e +w |, i
- - !

where U = (Bp ~— DafmC, V = (4o — Dp)/mC, ,
W — [(do® — 2Dpa + Bp¥)im — E]JCE.

3. Connections Fg- corresponding to g;. We put
ko ok k
3.1 Iy =py + 4>
where pi; = I’i‘_ and q’" F"

By the above substitution the field equation (1.2) will give 64 equations
involving 24 ¢’s and 40 p’s. Following the method of II. TAKENO, M. IKEDA
and S. ABE to solve these 64 equations we first express all p’s in terms of ¢’s
and { 1 by the formula [*],

where {"} are CHRISTOFFEL symbols of the second kind formed from
h = & given by (1.1) and R is the corresponding contravariant tensor
of h;. After calculations, we find that the non-vanishing components of
p’s are given by

(33)  ph = —2Dp(gh, — gty /m. ph = 24p(a;, — qin) [ m,
pho=—A4/2C 4+ 20 {(C + E) (¢ — gly) + Edls — gt} / C°,
pho= — A4[2C —2p{(C — E) (¢}, — ¢ — By — gi} /.
P =— {39(922 — ‘Ititz) b Dﬂ(qu - ‘Ifaﬂ [m,

Po= (Dplgh — at) + Ao(gl; — ¢} /m,
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other non-vanishing components have heen omitted for the sake of brevity.

On using the values of p’s from (3.3) in (3.2) the non-vanishing com-
ponents of ¢’s are given by

B4 gl =—dgly = {—Bdpjox 4 1 D@p|d + do/om)}/m,
gy = —qly={—Dadp|dx + & A@p |3y + 30 0x)} [m,
Gy = — @ ={ Ddofdy— 1 B(p[dy + d0/00)}/m,
G = — o = {— A00|dy + 3 D(Op [y + 30 /0x)}|m,
G = q1p = — (Op/dy — 00/ dx) | 2C,
!I?a = 9’1113 =—q;4 = —9%4= AlG,
Mo = g = — qu = — qu = #/G,

where

A=[—p+p{P+(E,+E, +C,—C)Jj2C} + 5],
p=[—o+a{T+ (E,+E, +C,—C)J2C} + pQ,], and
P = (AB—DD)/2m, 8§ = (4D — AD)/2m,

Q, = (BD —BD)/2m, T = (AB— DD)/2m.

On substituting the values of ¢’s from (3.4) into (3.3) we obtain the
40 values of p’s in terms of A, B, C, D, E, p and ¢. Then using the values
of p’sand ¢’s into (3.1), the components of I f; finally obtained are given by

(3.5) ' =00, —A/2C, — A/2C], Tk = [0,0, — B/2C, — B/2C],
rt, =[0,0, — D/2C — (dp| 3y — do ] dx)|2C,
—D[2C — (8p|dy — 80| d%) /2C],

ré =[0,0, —D/2C + (@p]d — da/dx) [2C,

—D(2C + @p/dy — 30 ]0%)[2C),
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Ffy=—TIh =[P+ {—Bap|dx + 3 D@p[dy -+ do]ox)}/m,
S—{—Daplax + L A@p|dy + 3a]3x)}/m,
(A—%0E|0x)| C + {(Bp— Do) dp/0x + % (da — Dp) (8p | 8y + @c [ 0x)} [ Cm,
"F’—;l =— "I = |P—{—Bop|ox + £ D@3 + 80 0x)}[m.
S+ {—Ddpjdx + L A@p|dy + do]dx)}|m,
(A + £ 2E{ox)/C - {(Bp — Do) dp/x + % (Ao — Dp) (0p/3y + d0/0x)} | Cm,
iy =— I3 = [Q + {Ddp/ 9y — £ B@p| % + da] 61} [ m,
T 4 {— ddaldy + 3 D@pldy 1 do] o} m,
(t—%0E[dy[C - {(4o— Dp) da 8y + % (Bp —Da) (2p[dy + da | %)} [ Cm,
Iy = — Iy = [0, — {Ddc|dy — & B(dp|dy + da]ox)}/m,
T — (- Ad0/dy -+ % DOp /2y + 000}/ m,
— (4 + 1 E[3y)/C + {(Aa — Dp) 89|y -+ & (Bp — Do) (Op/2y + da[x)}| Crm,
23 ’ 23 23 ],
Iy = I'y = — I'ty = {(BE[ox— D 0E|dy){2m +- 2(Ba— Df) [ m},
F§3 = FL =—1T = —-{(D@E/ax—Aanay)/Zm + 2(Doa— Af)[m},
Iy =8, E[2C* + C,j2C — E,[2C,
Ity =S, E[2C* + C,/2C—E,{C—E, [2C,

ry = S, E[2C* + C,/2C - E,[2C + E | C,
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ry, =S8, E[2C* + C,[2C + E,/2C,
Iy =TI} =—8 E[2C* + C,/2C— E [2C,
Iy =TIty =—S8 E[2C* 4+ C,/2C + E,/2C,
where
S,=E,+E+C,~C,,
o =—m' [(Bp—Do)dp|dx + % (Ao — Dp)(@p /3y + 3o/ dm)],

B = —m'[(dc— Dp)éo |8y + % (Bp — Do) (9p By + 0/ 8x)],

4. Solution of the field equation (1.3). On substituting of the values

of ¢’s from (3.4) in the equation I}, = 0, we find that it is identically satis-
v
fied for ¢ = 1 and 2 whereas for ¢ = 3 and 4 it is satisfied subject to the

condition

“.1n Boplox + Ada|dy = D(@p[dy + 20 d%).

5. Solution of the field equation (1.4). To solve the field equation
(1.4) the components of the generalized RICCI tensor using the formula

61D  R;=TYy, —TIt

if,8 is,j

_Flj F:s+rfsrfj

are calculated and then on substitution of the values of I’ L from (3.5) into
(5.1) and using (4.1), the non-vanishing components of RICCI tensor R

are given hy

(5.2) B,=—R,=—4dp[2m+ (A, + 1)]C—(E, + E,)/2C,

R, = ___R41 - dpl2m — (33 + }»4)/6— E, + E14)/2C’
R23 = —R24 = — AO’/Zm + (.u3 + #4)/6_- (E23 + E24)/ZC’

R,=—B, = dof2m— (g, +p)/C—(E, +E,)}]|2C,
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R, = — ¢+ (4E + 4Q)[2m + 5/2m® 4 N(C — E)/2C7,
R, = — ¢+ (4E 4 4Q)[2m + n/2m* — N(C + E)[2C?,
R,, = R, = { — (4E + 4Q)/2m — n/2m® + ENj2C",
where
(5.3) 4 =(BF|a® —2D& |oxdy 4+ AF |3y,
¢ = (m—m2m— (4 B— D — i&(E, 4 E, + €, — C)j2C}/2m,
n = {(Bép|ox — Ado | oy + (AB—2D% (8p/ dy + do | dx)
4 4D(@p | ox b0 | 3y)},
. Q = (Bow/ox— Dapjox) — (Dowjdy — AdB[dy),
N = (€3 CDJC— (Cy3—Caa) + (Co4-Cy) (By + E|C— Eyy— Eyy—2Ey,
= — 2C(, +4)[p = —2C(u, + )] p.

The indices 3 and 4 attached to A and p denote differentiation with res-
pect to z and t respectively and &, f are the same as given in equation (3.5).

Now using the values of (5.2) into the strong field equation (1.4) a)
we have

(5.4)  — dp/2m + (4 + 4)/C — (E,, + E,)[2C =0,
— dpj2m + (4, + A)/C + &y, + E,)j2C =0,
— doj2m + (b + 1)IC — By, + Ep)[2C =0,
— dof2m + (u, + p)/C + (B, + E,)2C =0,
(5.5) M— N(C—E)/2C* = M + N(C + E)j2C* = M + NEj2¢* =0,

where

M = & — (4E + 4Q)/2m — nj2m>.
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The equations (5.5) is satisfied if and only if
(5.6) M =0 and
5.7 N =0,
while the equations in (5.4), with the help of (5.7) are satisfied if and only if
(58) 4p =0, 46 =0,
69 E,+E =0 E,+E =0
which on integration yields the forms of E which are given by

(5.10) E=(x+y+2 ¢(z—1) + ¢ ¥) d,(z—1),
E=(x+y-+1)¢a—1) L dlx, y) ¢,z —1),
E=d¢x, 5, 2—1) + 2 oz — 1),

E=¢@ y,z—t)+t dz—1).

Hence g;; given by (2.5) are the solutions of the field equation (1.4) a) under
the conditions (5.6), (5.7), 5.8) and (5.10).

Next putting the values of R; from (5.2) into (1.4) b) (i), we find that
it is satisfied if and only if the conditions (5.6), (5.7) and (5.10) hold, while
the field equation (1.4) b) (if) is satisfied when

(5.11) 4(0p/dy — dof/dx) =0 and N =0,

Therefore wave solutions of the EINSTEIN’s weak field equations (1.4)
b) (i) and (1.4) b) (i) are composed of g; given by (2.5) under the con-
ditions (5.6), (5.7), (5.10) and (5.11) respectively.

6. Wave solutions of the field equations of BONNOR’s non-symmetric
unified theory, The first two of the field equations of above theory [°] are
the same as the field equations (1.2) and (1.3) of EINSTEIN’s unified
field theory. Hence their solutions in the space - time (1.I) will he given
by (2.5) and (4.1).
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On  substituting the values of g;; and g? from (2.5) and (2.6) into

(1.6), the non-vanishing components of U, arc given by
61 U,=—U,=—U,=U,=—p—C4U+ DV),

Up=—Uy=—"U, =U, =—0o—CDU + BY),

23

Uy,=-—U, =U

43

U, =—2C(U + a¥).

33 44

When the values of Uy from (6.1) and R; with the help of (5.2) are
substituted into the field equation (1.5) a), we find that it is satisfied under

the condition
(6.2) mM 4 2p°(Bp® —2Dpo + Ac®) = 0

along with the conditions given by the equations (5.7) and (5.10), where
M is given by (5.5). Therefore, the wave solutions of the field equation
(1.5) a) is composed of g;; given by (2.5) under the conditions (4.1), (5.7),
(5.10) and (6.2).

- Now substituting the values of Rij and U, into the field equation

|1
\ A

(1.5) b) we find that it is satisfied if and only if
(6.3) (4 + 4mp®) (8p/dy — 80/dx) = 0 and N =0,

Thus g; given by (2.5) constitute the wave solutions of the ficld equation
(1.5) b) under the conditions (4.1) and (6.3).

7. Solution of SCHRUDINGER’s field equations. On substituting the
values of R; from (5.2) and g;; from (2.5) into (1.7) b), we find that they
cannot be satisfied and other equations are the same as in the first two field
equations of EINSTEIN’s and BONNOR’s unified field theories, which have
‘the solution (2.5) under the condition (4.1).

_ It is interesting. to note that the wave solutions of the field equations
of EINSTEIN’s and BONNOR’s non-symmetric unified field theories as found
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by H. TAKENO [*] and ['°], LAL and ALI [°], and LAL and SRIVASTAVA [']
can easily be derived from the solutions obtained in this paper by taking
the functional character of A, B, C, D, E, p and ¢ as assumed by them.
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OZET

Bu c¢ahgmada EINSTEIN’in, BONNOR'un ve SCHRODINGER’in simetrik

olmayan Birlesik Alan Teorileri incelenmekte, EINSTEIN ve BONNOR'un

teorilerinin baz gartlar altmda dalga ¢bziimleri verdikleri, fakat SCHRO-

DINGER teorisinde bu tiir ¢bziimlerin mevcut olmadify sonucu elde edil-
mektedir.




