İstanbul Univ. Fen Fak. Mat. Der. 52 (1993), 1-5

MATRIX TRANSFORMATIONS IN SOME SEQUENCE SPACES

Ekrem SAVAŞ - MURSALEEN

Department of Mathematics, Firat University, Elazığ-TURKEY Department of Mathematics, Aligarh Muslim University, Aligarh-INDIA

Summary: The object of this note is to determine necessary and sufficient conditions for some matrix $A = (a_{nk})$ such that A-transform of $x = (x_k)$ belongs to the set c(q), where in particular $x \in c_0(p)$.

BAZI DİZİ UZAYLARINDA MATRİS DÖNÜŞÜMLERİ

Özet : Bu notun amacı, özel olarak $x \in c_q(p)$ olduğunda $x = (x_k)$ nm A-dönüşümünün c(q) cümlesine ait olması için $A = (a_{nk})$ matrisinin sağlaması gereken gerek ve yeter koşulları belirtmektir.

1. INTRODUCTION

Let s be the set of all real or complex sequences and let l_{∞} , c and c_0 denote the Banach spaces of bounded, convergent and null sequences $x=(x_k)$ respectively, normed as usual by $||x|| = \sup |x_k|$.

Let D be shift operator on s, that is,

$$D(x_k) = (x_{k+1}).$$

It may be recalled that the Banach limit L is a nonnegative linear functional on l_{∞} such that L is invariant under the shift operator, that is, L(Dx) = L(x) for all $x \in l_{\infty}$ and that L(e) = 1, where e = (1,1,...). A sequence $x \in l_{\infty}$ is said to be almost convergent (see, Lorentz [¹]) if all Banach limits of x coincide. Let \hat{c} denote the set of all almost convergent sequences. Lorentz [¹] proved that

$$\widehat{c} = \left\{ x : \lim_{m \to \infty} t_{mn}(x) = \lim_{m \to \infty} \frac{1}{m+1} \sum_{i=0}^{m} x_{n+i} \text{ exist uniformly in } n \right\}.$$

Let $p=(p_m)$ be a sequence of real numbers such that $p_m > 0$ and $\sup p_m < \infty$. We define (see, Nanda [⁵])

1

SELA COSSERVACIÓN

Ekrem SAVAŞ - MURSALEEN

$$\widehat{c}(p) = \left\{ x : \lim_{m \to \infty} \left| \frac{1}{m+1} \sum_{i=0}^{m} x_{n+i} - L \right|^{p} = 0 \text{ uniformly in } n \text{ for some } L \in C \right\}.$$

If $p_m = 1 \quad \forall m$, then $\widehat{c}(p)$ is same as \widehat{c} .

Let us write $\sum x_k$ for $\sum_{k=0}^{\infty} x_k$. If $p_k > 0$ is real then $p = (p_k)$ is such that $\sup_k p_k < \infty$.

Let us list the required sequence spaces as follows [2], [3]:

$$c_0(p) = \{ x = (x_k) : |x_k|^{p_k} \to 0, \text{ as } k \to \infty \}$$

$$c(p) = \{ x = (x_k) : |x_k - L|^{p_k} \to 0, \text{ as } k \to \infty \text{ for some } L \}.$$

When $p_k = 1$ for all k we write $c_0(p) = c_0$ and c(p) = c.

Let X and Y be two nonempty subsets of s. Let $A=(a_{nk})$ (n, k=1, 2, 3, ...)be an infinite matrix of complex numbers. We write $A x = (A_n(x))$ if $A_n(x) =$ $= \sum_{k=0}^{\infty} a_{nk} x_k$ converges for each n. If $x=(x_k) \in X \Longrightarrow A x=(A_n(x)) \in Y$, we say that A defines a (matrix) transformation from X into Y and denote it by $A: X \to Y$. By (X, Y) we mean the class of matrices A such that $A: X \to Y$.

We now characterize the matrices in the class $(c_0(p), c(q))$. We write

$$t_{mn}(A x) = \sum_{k=0}^{\infty} a(n, k, m) x_k$$

where

$$a(n, k, m) = \frac{1}{m+1} \sum_{i=0}^{m} a_{n+i, k}$$

(this notation is used throughout).

Recently, Sridhar [9] proved the following theorem:

Theorem A. $A \in (c_0(p), c_0(q))$ if and only if $\lim_{m \to \infty} |a(n, k, m)|^{q_m} = 0$ (n, k = 0, 1, ...)

and

MATRIX TRANSFORMATIONS IN SOME SEQUENCE SPACES

$$\lim_{N} \limsup_{m} \left(\sum_{k} |a(n,k,m)| N^{-1/p_{k}} \right)^{q_{m}} = 0 \quad (n = 0, 1, ...)$$

The space $\widehat{l}_{\infty} = \{x : \sup_{m, n} |t_{mn}(x)| < \infty\}$ has been introduced and investigated in Nanda [⁶]. Recently, Nanda [⁷] observed that this concept coincides with l_{∞} as following:

$$\sup_{m,n} \left| \frac{1}{m+1} \sum_{i=0}^{m} x_{n+i} \right| \ge \sup_{n} |x_n|$$

and

$$\sup_{m,n} \left| \frac{1}{m+1} \sum_{i=0}^{m} x_{n+i} \right| \le \sup_{n} |x_{n}| \frac{1}{m+1} \sum_{i=0}^{m} 1 = \sup_{n} |x_{n}|.$$

The object of this paper is to obtain necessary and sufficient conditions to characterize the matrices of class $A \in (c_0(p), \widehat{c}(q))$.

Now let us quote some known results as following:

Lemma B ([4]).
$$c_0^*(p) = \bigcup_{M>1} \left\{ (a_k) \sum_k |a_k| M^{-1/p_k} < \infty \right\}$$

Lemma C ([⁶], [⁷]). $A \in (c_0(p), l_\infty) = (c_0(p), \widehat{l_\infty})$ if and only if $\sup_m \sum_k |a(n, k, m)| M^{-1/p_k} < \infty \text{ for some integer } M > 1 \text{ and } n.$

2. MAIN RESULT

Theorem 1. $A \in (c_0(p), \widehat{c}(q))$ if and only if

- (1) $\sup_{m} \sum_{k} |a(n, k, m)| M^{-1/p_{k}} < \infty \text{ for some integer } M \text{ and } n,$
- (2) there exists $\alpha_1, \alpha_2, \dots$ such that

 $|a(n, k, m) - \alpha_k|^{q_m} \rightarrow 0$ as $m \rightarrow$ uniformly in n,

(3) $\lim_{M} \limsup_{m} \left(\sum_{k} \left[a(n, k, m) - \alpha_{k} \right] M^{-1/p_{k}} \right)^{q_{m}} = 0 \quad \text{for each } n.$

Proof. Sufficiency: Let conditions (1) - (3) hold and $(x_k) \in c_0(p)$. Since $q = (q_m)$ is bounded, (3) and Lemma B imply in particular $(a(n, k, m) - a_k) \in c_0^*(p)$ for each n and m. Now, condition (1) together with lemma B gives that $a(n, k, m) \in c_0^*(p)$ for each n and m.

3

Ekrem SAVAŞ - MURSALEEN

Since it is clear from Lemma **B** that $c_0^*(p)$ is a linear space, on substraction, we get $(\alpha_k) \in c_0^*(p)$ so that $\sum_k \alpha_k x_k$ must exist for each $x = (x_k) \in c_0(p)$. Let $\sum_k \alpha_k x_k = L(x)$. By virtue of conditions (2), (3) and Lemma A, we have for every $x \in c_0(p)$

$$A x - L(x) \in \widehat{c_0}(q),$$

i.e.

$$4 x \in \widehat{c}(q)$$

with $\lim A x = L(x)$. Hence $A \in (c_0(p), \widehat{c}(q))$.

Necessity : Let $A \in (c_0(p), c(q))$. Since $c(q) < l_{\infty}$ we have $A \in (c_0(p), l_{\infty})$ so that by Lemma C, (1) is necessary. Condition (2) follows from the fact that $e_k \in c_0(p)$ and

$$|t_{mn}(Ax) - L(x)|^{q_m} \to 0 \quad (m \to \infty, \text{ uniformly in } n).$$
 (*)

To prove (3), let $g(x) = \sup_{k} |x_k|^{p_k/H}$, where $H = \max(1, \sup_{k} p_k)$ define a paranorm on $c_0(p)$. Then,

$$g\left(x-\sum_{k=1}^{n}x_{k}e_{k}\right)=\sup_{k\geq n+1}x_{k}\left|^{p_{k}/H}\rightarrow0\quad(n\rightarrow\infty),$$

so that $x = \sum_{k} x_k e_k$ with the same topology on $c_0(p)$. Now for each n, m, $a(n, k, m) x_k \in c_0^*(p)$ and hence $t_{mn}(A x) \in c_0(p)$. Using uniform boundedness principle we see that $L \in c_0'(p)$. Hence for each $x \in c_0(p)$ $L(x) = L\left(\sum_{k} x_k e_k\right) =$

$$=\sum_{k} x_{k} L(e_{k}) \text{ and by (*) we get } \left| \left(\sum_{k} a(n, k, m) - a_{k} \right) x_{k} \right|^{q_{m}} \to 0 \quad (m \to \infty)$$

uniformly in n). Hence $A x - L(x) \in c_0(q)$, so that by Lemma A condition (3) is necessary.

Now we conclude this paper by stating the following result:

Corollary ([⁵]). $A \in (c_0(p), c)$ if and only if there exists an absolute constant M > 1 such that

$$\sup_{m} \sum_{k} |a(n, k, m)| M^{-1/\rho_{k}} < \infty \quad \text{for each } n$$

and

$$\lim_{m\to\infty} a(n, k, m) = a_k \text{ uniformly in } n, \text{ for each fixed } k.$$

MATRIX TRANSFORMATIONS IN SOME SEQUENCE SPACES

REFERENCES

[1]	LORENTZ, C.G.	:	A contribution to the theory of divergent se- quences, Acta Math. 80 (1948), 167-190.
[*]	LASCARIDES, G.G MADDOX, I.J.	:	Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99-104.
[*]	MADDOX, I.J.	:	Spaces of strongly summable sequences, Quart. J. Math., Oxford Ser. (2) 18 (1967), 345-355.
[⁴]	MADDOX, I.J.	:	Continous and Köthe - Toeplitz dual of certain sequence spaces, Proc. Camb. Phil. Soc. 65 (1967), 431-435.
[5]	NANDÀ, S.	:	Infinite matrices and almost convergence, J. Indian Math. Soc. 40 (1976), 173-184.
[⁴]	NANDA, S.	:	Matrix transformations and almost bounded- ness, Glasnik Math. 14 (34) (1976), 99-107.
[²]	NANDA, S.	:	On some sequence spaces, The Mathematics Student, 48 (1980), No. 4, 348-352.
[⁸]	ROLES, J.W.	:	Ph. D. Thesis, University of Lancester (1970).
[°]	SRIDHAR, S.	:	Infinite matrices and almost convergence, Acta Ciencia Indica, XI (1985), No. 1, 55.

5