MATRIX TRANSFORMATIONS IN SOME SEQUENCE SPACES

Ekrem SAVAŞ - MURSALEEN
Department of Mathematics, Frat University, Elazig-TURKEY
Department of Mathematics, Aligarh Muslim University, Aligarh-INDIA

Summary : The object of this note is to determine necessary and sufficient conditions for some matrix $A=\left(a_{n k}\right)$ such that A-transform of $x=\left(x_{k}\right)$ belongs to the set $\widehat{c}(q)$, where in particular $x \in c_{0}(p)$.

BAZI DİZİ UZAYLARINDA MATRİS DÖNÜŞÜMLERİ

Özet : Bu notun amacl, özel olarak $x \in c_{\mathrm{a}}(p)$ olduğunda $x=\left(x_{k}\right) \mathrm{nm}$ A-dönüşümünün $c(q)$ cümlesine ait olması için $A=\left(a_{n k}\right)$ matrisinin sağlaması gereken gerek ve yeter koşullan belirtmektir.

1. INTRODUCTION

Let s be the set of all real or complex sequences and let l_{∞}, c and c_{0} denote the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ respectively, normed as usual by $\|x\|=\sup _{k}\left|x_{k}\right|$.

Let D be shift operator on s, that is,

$$
D\left(x_{k}\right)=\left(x_{k+1}\right) .
$$

It may be recalled that the Banach limit L is a nonnegative linear functional on l_{∞} such that L is invariant under the shift operator, that is, $L(D x)=L(x)$ for all $x \in l_{\infty}$ and that $L(e)=1$, where $e=(1,1, \ldots)$. A sequence $x \in l_{\infty}$ is said to be almost convergent (see, Lorentz [1]) if all Banach limits of x coincide. Let \widehat{c} denote the set of all almost convergent sequences. Lorentz [${ }^{1}$] proved that

$$
\hat{c}=\left\{x: \lim _{m \rightarrow \infty} t_{m n}(x)=\lim _{m \rightarrow \infty} \frac{1}{m+1} \sum_{i=0}^{m} x_{n+t} \text { exist uniformly in } n\right\}
$$

Let $p=\left(p_{m}\right)$ be a sequence of real numbers such that $p_{m}>0$ and $\sup p_{m}<\infty$. We define (see, Nanda [5])
$\widehat{c}(p)=\left\{x: \lim _{m \rightarrow \infty}\left|\frac{1}{m+1} \sum_{i=0}^{m} x_{n+i}-L\right|^{\left.p_{m}=0 \text { uniformly in } n \text { for some } L \in C\right\} . ~ . ~ . ~}\right.$ If $p_{m}=1 \forall m$, then $\hat{c}(p)$ is same as \hat{c}.

Let us write $\sum x_{k}$ for $\sum_{k=0}^{\infty} x_{k}$. If $p_{k}>0$ is real then $p=\left(p_{k}\right)$ is such that $\sup _{k} p_{k}<\infty$.

Let us list the required sequence spaces as follows $\left[{ }^{2}\right],\left[^{3}\right]$:

$$
\begin{aligned}
& c_{0}(p)=\left\{x=\left(x_{k}\right):\left|x_{k}\right|^{p} k \rightarrow 0, \text { as } k \rightarrow \infty\right\} \\
& c(p)=\left\{x=\left(x_{k}\right):\left|x_{k}-L\right|^{p} k \rightarrow 0, \text { as } k \rightarrow \infty \text { for some } L\right\} .
\end{aligned}
$$

When $p_{k}=1$ for all k we write $c_{0}(p)=c_{0}$ and $c(p)=c$.
Let X and Y be two nonempty subsets of s. Let $A=\left(a_{n k}\right)(n, k=1,2,3, \ldots)$ be an infinite matrix of complex numbers. We write $A x=\left(A_{n}(x)\right)$ if $A_{n}(x)=$ $=\sum_{k=0}^{\infty} a_{n k} x_{k}$ converges for each n. If $x=\left(x_{k}\right) \in X \Rightarrow A x=\left(A_{n}(x)\right) \in Y$, we say that A defines a (matrix) transformation from X into Y and denote it by $A: X \rightarrow Y$. By (X, Y) we mean the class of matrices A such that $A: X \rightarrow Y$.

We now characterize the matrices in the class $\left(c_{0}(p), \tilde{c}(q)\right)$. We write

$$
t_{m n}(A x)=\sum_{k=0}^{\infty} a(n, k, m) x_{k}
$$

where

$$
a(n, k, m)=\frac{1}{m+1} \sum_{i=0}^{m} a_{n+i, k}
$$

(this notation is used throughout).
Recently, Sridhar [9] proved the following theorem:
Thearem A. $A \in\left(c_{0}(p), \widehat{c_{0}}(q)\right)$ if and only if

$$
\lim _{m \rightarrow \infty}|a(n, k, m)|^{q_{m}}=0 \quad(n, k=0,1, \ldots)
$$

and

$$
\lim _{N} \lim \sup _{m}\left(\sum_{k}|a(n, k, m)| N^{-1 / p_{k}}\right)^{q_{m}}=0 \quad(n=0,1, \ldots)
$$

The space $\widetilde{l}_{\infty}=\left\{x: \sup _{m, n}\left|t_{m n}(x)\right|<\infty\right\}$ has been introduced and investigated in Nanda [${ }^{[7}$]. Recently, Nanda [7] observed that this concept coincides with l_{∞} as following:

$$
\sup _{m, n}\left|\frac{1}{m+1} \sum_{i=0}^{m} x_{n+i}\right| \geqslant \sup _{n}\left|x_{n}\right|
$$

and

$$
\sup _{m, n}\left|\frac{1}{m+1} \sum_{i=0}^{m} x_{n+i}\right| \leq \sup _{n}\left|x_{n}\right| \frac{1}{m+1} \sum_{i=0}^{m} 1=\sup _{n}\left|x_{n}\right|
$$

The object of this paper is to obtain necessary and sufficient conditions to characterize the matrices of class $A \in\left(c_{0}(p), \tilde{c}(q)\right)$.

Now let us quote some known results as following:
Lemana B $\left(\left[^{4}\right]\right) . c_{0}^{*}(p)=\bigcup_{M>1}\left\{\left(a_{k}\right) \sum_{k}\left|a_{k}\right| M^{-1 / p_{k}}<\infty\right\}$
Lemara $\mathbb{C}\left(\left[{ }^{6}\right],\left[^{7}\right]\right) . A \in\left(c_{0}(p), l_{\infty}\right)=\left(c_{0}(p), \widehat{l_{\infty}}\right)$ if and only if $\sup _{m} \sum_{k}|a(n, k, m)| M^{-1 / p_{k}}<\infty$ for some integer $M>1$ and n.

2. MAIN RESULT'

Theorem [. $A \in\left(c_{0}(p), \hat{c}(q)\right)$ if and only if
(1) $\sup _{m} \sum_{k}|a(n, k, m)| M^{-1 / p_{k}}<\infty$ for some integer M and n,
(2) there exists $\alpha_{1}, \alpha_{2}, \ldots$ such that

$$
\left|a(n, k, m)-\alpha_{k}\right|^{q}{ }^{q} \rightarrow 0 \quad \text { as } m \rightarrow \text { uniformly in } n
$$

(3) $\lim _{M} \limsup _{m}\left(\sum_{k}\left[a(n, k, m)-\alpha_{k} \mid M^{-1 / p_{k}}\right)^{q_{m}}=0 \quad\right.$ for each n.

Proof. Sufficiency: Let conditions (1)-(3) hold and $\left(x_{k}\right) \in c_{0}(p)$. Since $q=\left(q_{m}\right)$ is bounded, (3) and Lemma B imply in particular ($a(n, k, m)-\alpha_{k}$) $\in c_{0}^{*}(p)$ for each n and m. Now, condition (1) together with lemma \mathbf{B} gives that $a(n, k, m) \in c_{0}^{*}(p)$ for each n and m.

Since it is clear from Lemma \mathbf{B} that $c_{0}^{*}(p)$ is a linear space, on substraction, we get $\left(\alpha_{k}\right) \in c_{0}^{*}(p)$ so that $\sum_{k} \alpha_{k} x_{k}$ must exist for each $x=\left(x_{k}\right) \in c_{0}(p)$. Let $\sum_{k} \alpha_{k}, x_{k}=L(x)$. By virtue of conditions (2), (3) and Lemma A, we have for every $x \in c_{0}(p)$

$$
A x-L(x) \in \widehat{c}_{0}(q)
$$

i.e.

$$
A x \in \widehat{c}(q)
$$

with $\lim A x=L(x)$. Hence $A \in\left(c_{0}(p), \stackrel{c}{c}(q)\right)$.
Necessity : Let $A \in\left(c_{0}(p), \widehat{c}(q)\right)$. Since $\widehat{c}(q)<l_{\infty}$ we have $A \in\left(c_{0}(p), l_{\infty}\right)$ so that by Lemma C, (1) is necessary. Condition (2) follows from the fact that $e_{k} \in c_{0}(p)$ and

$$
\begin{equation*}
\left|t_{m n}(A x)-L(x)\right|^{q_{m}} \rightarrow 0 \quad(m \rightarrow \infty, \text { uniformly in } n) \tag{*}
\end{equation*}
$$

To prove (3), let $g(x)=\sup _{k}\left|x_{k}\right|^{p_{k} / H}$, where $H=\max \left(1, \sup _{k} p_{k}\right)$ define a paranorm on $c_{0}(p)$. Then,

$$
g\left(x-\sum_{k-1}^{n} x_{k} e_{k}\right)=\sup _{k \geq n+1}\left|x_{k}\right|^{p_{k} / \Delta} \rightarrow 0 \quad(n \rightarrow \infty)
$$

so that $x=\sum_{k} x_{k} e_{k}$ with the same topology on $c_{0}(p)$. Now for each n, m, $a(n, k, m) x_{k} \in c_{0}^{*}(p)$ and hence $t_{m n}(A x) \in c_{0}(p)$. Using uniform boundedness principle we see that $L \in c_{0}^{\prime}(p)$. Hence for each $x \in c_{0}(p) \quad L(x)=L\left(\sum_{k} x_{k} e_{k}\right)=$ $=\sum_{k} x_{k} L\left(e_{k}\right)$ and by $\left({ }^{*}\right)$ we get $\left|\left(\sum_{k} a(n, k, m)-\alpha_{k}\right) x_{k}\right|^{q_{m}} \rightarrow 0 \quad(m \rightarrow \infty$, uniformly in n). Hence $A x-L(x) \in \widehat{c_{0}}(q)$, so that by Lemma A condition (3) is necessary.

Now we conclude this paper by stating the following result:
Corollary ($\left.{ }^{5}\right]$). $A \in\left(c_{0}(p), \widehat{c}\right)$ if and only if there exists an absolute constant $M>1$ such that

$$
\sup _{m} \sum_{k}|a(n, k, m)| M^{-1 / p_{k}}<\infty \quad \text { for each } n
$$

and

$$
\lim _{m \rightarrow \infty} a(n, k, m)=\alpha_{k} \text { uniformly in } n \text {, for each fixed } k .
$$

REFERENCES

[1] LORENTZ, C.G. : A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
[²] LASCARIDES, G.G. - MADDOX, I.J. : Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99-104.
[] MADDOX, I.J.
: Spaces of strongly summable sequences, Quart. J. Math., Oxford Ser. (2) 18 (1967), 345-355.
[4] MADDOX, I.J.
[5] NANDÄ, S.
["] NANDA, S.
: Continous and Köthe-Toeplitz dual of certain sequence spaces, Proc. Camb. Phil. Soc. 65 (1967), 431-435.
: Infinite matrices and almosi convergence, J, Indian Math. Soc. 40 (1976), 173-184.
: Matrix transformations and almost boundedness, Glasnik Math. 14 (34) (1976), 99-107.
[${ }^{1}$] NANDA, S .
[${ }^{8}$] ROLES, J.W.
[${ }^{9}$] SRIDHAR,S.
On some sequence spaces, The Mathematics Student, 48 (1980), No. 4, 348-352.
: Ph. D. Thesis, University of Lancester (1970).
: Infinite matrices and almost convergence, Acta Ciencia Indica, XI (1985), No. 1, 55.

