Istanbul Univ, Fen Fak, Mat. Der. 52 (1993), 7-16 7

AN ¥-PERIODIC FUNCTION AND A PLANE CURVE

Stanislaw GOZDZ
" Instytut Matematyki UMCS, PLM. Curie-Sklodowskiej 1., 20-031 Lublin-POLAND

Summary : In this paper F-periodic functions are defined. The Fourier
scries for F-periodic functions are considered. Applications of F-periodic
functions to plane curves are given.

BIiR ¥-PERIYODIK FONKSIYON VE BIR DUZLEM EGRISI

Ozet: Bu c¢algmada F-periyodik fonksiyonlar tanimlanmakta ve
bunlarin Fourier serileri gdzéniine alinmalta, ayrica bu tiir fonksiyonlarin
diizlem egrilerine uygulamalar: verilmektedir.

INTRODUCTION

A teal function f defined on R = (— o0, + o) is called F-periodic with re-
spect to a certain special function F if the equality holds:

FE®) =1

Next we define a Fourier series for these functions. In the second part of the paper
we apply F-periodic function to a plane curve.

Namely, let a plane curve be represented by (compare (16) ['])
e @ = [ 1O k@) er0 di, seR

and let the Fourier series (15) ['] for f be given by

f(s) = —;—- A, + Z (A,, cos %ﬁ— nK(s) -+ B, sin % nk (s)) .

0=}

Then the coefficients of the series are invariants of the curve.

s
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i. ON AN F-PERIODIC FUNCTION

Let (g, b) denote an opened interval included in the real line R= (— oo, 4 00).
We consider a one-to-one map F: (@, b) <—> (@, b) such that

(A) t<< F(t) for all e (g b),

(B) F is a strictly increasing function,

(C) F has the derivative on the whole interval (g, &).

Definition 1. Let us fix the function F. A function f: (g, b)) — R will be
called F-periodic if and only if ‘

FF@))Y=,F(@) for all tea, b). (1.1)

If F(t)y=1t+ L, 0+ LeR, then the above-mentioned definition gives
usual periodic function.

Now we prove that there exists an F-periodic function.

Theorem 1. If the function F is given, then there exists an F-periodic
function different from a constant.

Proof. To prove it, we define
F (®) = FF( (F@O)-)
y— times

and
F* @) = F (L E @)

v—times
for v=1,2,3, ..., where F! is the inverse function for F and F!(¢) = ¢.

By (A) and (B) for each fixed number 7, e (2, b) the interval is the following

sum
RN

@n =] <P ), P, @.1)

y=—mw

where << r,8) ={AeR : r = X <s}

Let y: << t,, F(t,)) — R be a real function. We observe that for an arbitrary
te(a, b) there exists exactly one number se << ¢, F(#,)) such that ¢ = F’'(s)
for exactly one integer v. Hence we define

o (DL y (s) 3.1y

for all re{a, b). Obviously o (F(f)) = a(¢), because F(¢) = Fv+1(s). This
means that o is an F-periodic function.

fotiaan
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F-periodic functions have properties similar to usual periodic functions.
Clearly, if f, g are two F-periodic functions, then f+g, fg and L (whenever g=0)
£

are F-periodic functions, too. For different functions # we can consider different
F-periodic functions.

Example, The map ¢ —— ¢* with the domain (0,1) or (1, - o) satisfies the
assumptions (A) and (B). Thus there exists a #*periodic function f different from
a constant, ie. f{%) = f(@). '

Theorem 2. If F is a continuous function, then there exists a continuous
F-periodic function different from a constant,

Proof. We consider decomposition (2.1) of the interval {a, b). Next taking
the continuous function y: << #,, F())-— R such tahat

im v (1) =17v(z) 4.1
1+ Fl#o)
- FlLp)

we define by (3.1) the continuous F-periodic function ¢ —s o (¢).

To introduce the Fourier series for an F-periodic function we prove the fol-
lowing

Proposition 1. Let f be a continuous F-periodic function with respect to the
function F satisfying (A) - (C) and let the function H (s) be defined as follows:

Fis)

§ > H (5) = f @ (0) F @) d, (5.1)

5

where ¢+ — o (#) is a ceriain function. Then the function # is constant if and
only if '
e (F() PP =a(t) for all t=(a, b).
Proof. We have
H (5) = (@ (F () F (s) — a () f(s).

Proposition 2. If the function F is given and F satisfies conditions (A) ~ (C),
then there exists 2 positive function o such that

Py — 20 6.1
® TS CHY

Proof. We apply notions from the proof of Prop. 1. Considering the
decomposition (2.1) we define

i
1
e
B
k
5
3
i
B
i

I
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v (), if te<t,, F(t)

—dlﬂ—-, it =F(s), v=1,2,3,..
a@) = {—F|() 7.1
O={ (5" &)

v (s) (i F‘) (), if t=F"(s), p=—1,—2,—3,...
ds

where' v () is a positive function.
TV(‘)(—, if te< ty, F(t)
— F (1)
(&
Y (5)

7 i t=F'(8), v=1,2,3,...
a (F (1) = FJqu

ds

vCﬂ&?fWﬂ@Lfr=ﬂ@Lu=—z—&—%"
AY

v (5), if ¢t =F1(s).
Hence
F@),if te<<t,, F()

alt)

crw) NV EEO=PO M (=6, v=1,23.

FFE () =F@), if t=F'(s), n=—1,—2,-3,....
So it is verified that

e
PO=TFey

Corollary 1. If the function 7y satisfies the condition (4.1), then the function
a(#) defined by (7.1) is continuous,

Now we present the Fourier series for an F-periodic function whenever F
satisfies the conditions (A) - (C). We fix a positive continuous F-periodic function
t —> k(t) and we fix a positive continuous function « (#) satisfying the condition
(6.1). By Proposition 1 the number p defined as follows

F()

B=ja®k®$

t

is not dependent on the variable ie(q, ).
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Propesition 3. If g is a function defined on R with the period B, then the
following function

Ft)y=g&@),
!
where K (1) = f a(s)k (s)ds, t ,e(ab), is F-periodic.
toy
Indeed
H F(i

f(F(f))Zg(K(F(f)))Zg(?‘)a(a‘)k(S)ds)zg(f + f ):

=g &K@+ P =g&@) =S
For each fixed te (e b) we consider the real Hilbert space X2 oy [k o]
of all functions defined in the interval [#, F (¢)] with the scalar product:
F(1}

fo)= [ k© a6 (g6 ds.

[

Proposition 4. The sequence of F-periodic functions:

L z 2nn \/Z . 2mn . ‘
7P ,VB cos—B——K(s), B sin i K(s), n=1,2,3... (8.1}

with the domain se[f, F(¢)] is the orthonormal and complete system in the real

Hilbert space L[z,, Fay o] for each re(a, b).

Let f: (2, 5) — R be an F-periodic continuous function. The Fourier series
for f restricted to the interval ¢ < 5 < F(s) is given by the formula

1) = % A, + Z (A,, (1) cos EBE nK(s) + B, (1) sin % n K(s)) G0
n=I[
Propesition 3. The coefficients A;z (), B, (¢) of series (5.2) are independent
of the variable 7. :
Proof. The coefficients are expressed by the following formulas:
F(r)

4, (t)—é f F@) k() a @) cos-z—;nK(u) i

and
F()

B, (1) =:;- f £ k() @ () sin Q—B’E n K () du.

By the relation (6.1) those coefficients are constant functions for n =1, 2,....
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2. APPLICATIONS TO A PLANE CURVE

Let F be a function satisfying (A) - (C). We denote by Ly the set of all positive
continuous functions such that

o G (1)
FO=TFo

Next we denote by Cp the set of all F-periodic continuous functions defined on
~ (a,b). In this section we examine the following class $% of all C! -curves of the form

[3

2(8) = g () = j a (s) ¢F® s, (1.2)

fo
where aely, ke Cg.
Let €, denote the set of all positive continuous periodic functions defined

on R with the period L. If f, peC, and a =pf, k= ; , then formula (1.2)
gives the tepregsentation for plane- curve considered in [!].

For every curve r, €% we can compute the curvature in the following
meaning: Let ® denote the angle between tangent vectors z(s) and z° (s4-#) and
[ denote the length of the arc of the curve between the points z(s) and z (s-+A).
Then there exists the bound

lim 2 = k (5). 2.2)
a0 ]
Indeed
lim 2_ — 11m w : Sin W _ hm sin @ _
o [ 0 smew 1 A0 )

[z (), 2" (s + A)]

s+ ?

B0
lz@z G+l f17o)a

5

= hm

where [z, w] is the determinant of the vectors z and w.

Hence

o _ 1 EE), 2GR
! |2’ (s)1® w0 h

A0

But 2’ (¢2) = a (2) £ (def K (1) see Prop. 3).
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Thus

stk

(), 2 (s + 0] =a(s)als+h j a () k () du.

Tinally

s-+h

lhlfl{‘)l H(g« = a31(s) a(a(s+h % f a () k () du = k (5).

5

So a counterpart of theorem about integration of the curvature has the form:

Proposition 6. Let a curve r, €M be represented by (2.3). Then the angle
between tangent vectors z’ (¢,) and 2’ (f,) is equal to:

f k() a(s)ds.

Now we present a certain geometrical property common to all curves from
the class M. To express it, we consider a positively oriented oval T [2]. Let X
denote a point lying on I' which moves on I' conformable to the orientation of T,
It is easy to see that if the point X passes the way equal to the length of I', then
the tangent vector at the point X rotates on the angle equal to 2x. Now we show
the following generalization:

Proposition 7. An arbitrary curve r,, €M has the following properties:

(I rex is a locally strictly convex curve,
(I1) the curve determines two numbers m % 0 and B # 0 such that if a

point X'¢ r,x passes the way equal to m, then the tangent vector at the point
X rotates on the angle equal to fi,

Proof. (I) Let a plane curve r,, M. Now, if r. . (¢") is a fixed point on
Fon then the unit tangent and normal vectors are equal to &%) apnd e,
respectively. The vector v hooked to r,, (") with the end in the arbitrary
point ryp (¢7) is expressed by :

o
p == j u (5) eFO ds,
b

whenever ¢’ < t”.

The determinant of v with the uit vector has the following form :

[eiK 0, 3] = f 0. (s) sin (K (s) — K (")) ds.

r

Hence putting © = K (s), du = a (s)k(s)ds we have
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(™ )
KW | y] = —sin (w— K{t") du,
[67O, 3] f ey S e K@)
K1)
where K~1 denotes the inverse function to K.
Next putting A=u—K (), d\ = du, we have

(™) —EQ)
1

[¢Ee) v] = sin A
E(KT O +EQ@))
0

d .

This means that the determinant is non-negative. Thus ry; (") and r, . (£*) are in
the same half-plane determined by the tangent vector €@}, Therefore r,, is
a locally convex curve.

(II) By Prop. 6 if a point X moves on r,, and passes the way equal to

F(f)
m— [,
t
F)
then the tangent vector at X rotates on the angle equal to § = f o () k(5) ds.

i

. 1.
Let a plane curve r,y e 3R be represented by formula (2.3). Obviously s

F-periodic function and it has the Fourier series in the form

i_iAO.JrZ(AR cos 2X n K+ B, sinEEnK). (3.2)
2 - p B

It is easy to verify that if 7, e is a closed curve, then the perimeter of 7, is
equal to w4, . Thus the coefficient 4, is an invariant of the curve. Generalizing
this fact we give the following

Theerem 3, For each curve r,, the Fouries coefficients of series (1.6) are
invariants for the curve.

Proaf. This means that 4,,, B, (n=0,1,2,...)) do not depend on translation
and rotation and parameterization. The proof of the first part of the theorem
is easy and we omit it. To prove that the coefficients do not depend on paramete-
rization we consider two equivalent curves. let a one-to-one function
o ¢, d) < (&,b) be given. We assume that o*(t) > 0 for 1e(e. d). Then the
curve o (0(1) is equivalent to the curve r,; (). Exactly r. (o(1) R, ie.:
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Fok (6(1)) = Vo, , ke (T)y

where o, (¥) = a (o (z)) 6’ (t) and kll (t) == k (o (7). Indeed, with the aid of
the standard change of variable rule s = o (u) we obtain

5 afw)
o) i f @) kG du T i f a0 k) du

e (0 (2)) = f TOrk: ds = f o (o) o’ () e dy;

fp To
secondly we put # = o (p) and du = o’ (p)dp

M
ifa@r@ea@de

= f afo@m)o(we " dp.

Denoting o, (t) = a(c(t)) ¢’ () and %, (z) = k(6 (z)) we have
Yk (0(0) = 1y, 1, (0).

It is easy to verify that &k, € Cp,, a, €Ly , where F, = o (F (o (T))).
Let a curve Aei® have two equivalent representations: z ==r,; () and
Z=Fy, i, (T), where t=0o(7). Let Agl) , Afl“ , B}II) denote the Fourier coefficients

1 . .
for It Then we obtain the equalities
‘1

Ao = AE,\]) » An = AE:D » Bn = B;(,D =12,

By the definition of the Fourier coefficient we have

Fi(v)
A — 2 f o, (v)cos?'—nnKl(v)dv =
K B B

g~ 1 (F{a(7))) v
2

- f o (o (1)) cos (—?—n f oo (@) k(o () (p)dp) & () d,

* Ty

now we change variable putting r = o (p) and dr =o' (p)dp

5~ IF (o)) o(n) _
= —g— f a (o () cos (% n(j;- a () k() d?‘) o’ (v) dv,

mext we put p=c(¥) and dp = o () dv
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Fla(=)) U
= %(( a (n) cos (Z‘ﬁintf a(r) k() dr) dp;

"
but K(n) = f a (M k() dr, so finally we obtain
fo
F

:—‘;—f a (i) coszl;mnf((u)du —4,.

Similarly we verify the equalities A{ = 4, and B® = B, . This means that
the Fourier coefficients of s are independent of parameterizations. This

completes the proof.
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