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ON GENERALIZED RICCI 2-RECURRENT RIEMANNIAN MANIFOLD

: U.C. DE-H.A. BISWAS
Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal-INDIA

Summary : The object of this paper is to study a Riemannian
manifold called generalized Ricci 2-recutrent Riemannian manifold.

GENELLESTIRILMIS RiCCi “2-RECURRENT” RIEMANN
MANIFOLDU HAKKINDA

Ozet : Bu cahigmada, “‘genellestirilmis Ricci “2-recurrent’ Riemann
manifoldu™ adr verilen bir Riemann manifoldu incelenmektedir.

1. Introduction. A non-flat Riemannian manifold of dimension # is called
a generalized 2-recurrent Riemannian manifold {!] if the Riemannian curvature
tensor R satisfies the condition

VyVyR (X, V) Z=A(N) (u B (X, ) Z+ BU, V) R, ) Z (L)

where A is a 1-form, B is a non-zero {0,2) tensor and V, the Levi-Civita connection
of the manifold. Such a manifold has been denoted by G {3K,}. If 4 =0, the
manifold reduces to a 2-recurrent manifold introduced by Lichnerowicz [} and
such a manifold is denoted by 2K, . When the Ricci tensor § satisfies

Vi Ve S) (Y, Z2)=4(V) (Vy 8 (Y, Z2) + B(U, V) §(Y, Z)

where 4 and B are stated earlier, then the manifold is called a generalized Ricci
2-recurrent Riemannian manifold and such a manifold is denoted by G {*R,}.
If A4 == 0, then the space reduces to a Ricci 2-recurrent space, studied by Chaki
and Roy Chowdhury [*]. Such a manifold is denoted by 2R, .

Obviously every G {2K } is a G{?R,} but the converse is not necessarily
true. The question as to when a G {2R,} can be a G {2K,} has been considered
in section 2 of this paper. In section 3 it is shown that if the scalar curvature
1 is constant then r must be zero and if the tensor B is symmetric then the
vector fields corresponding to the 1-form A and dr are collinear. Tn the last
section G {2R,} admitting a parallel vector field has been studied.
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2. It is known that the conforinal curvature tensor C of a Riemannian
manifold is given by
CWX,Y,Z W) =R, Y, Z, W) — ;—1—2 [ (Y, Z) S(X, W) —
—gX,2) S(Y, ")+ S(Y, Z) g(X, W) — 2.1)

—SX, 2) g(¥, W)] + [g(Y, Z) g(X, W) —

v
mr—D@n—2)
—g(X, 2) g(¥, W)]

where .S is the Ricci tensor and r is the scalar curvature of the manifold.
Now let the Riemannian manifold be a G {2R,}. Then
Vy VuS) (Y, 2) =A(V) (Vy 5) (Y, 2) + B(U, V) S(7, 2). (2.2)
From (2.2) we get
Vi Vgr=A(V) Vyr+ B(U, M1 2.3
By virtue of (2.2) and (2.3) it follows from (2.1) that
VpV, O (X, Y, Z, W)= (V, VyR) (X, Y, Z, W)+
+B(U, ¥) C(X, Y, Z, W)+ A(V) (Vy ©) (X, Y, Z, W) —
—AWV) (Vg R) (X, Y, 2, W)—B(U, V) RX, Y, Z, W)
or
(V,V,C) (X, Y, 2, W) — AWV) (V; ©) (X, ¥, Z, W) —
—BWU, V) C(X, Y, Z, W)=V, VuR) (X, ¥, Z, W) — (24
—AWV) Vg R) (X, Y, Z, W)—B(U, V) R(X, Y, Z, W).
Conversely, if (2.4) holds, putting ¥ = Z = ¢, in (2.4) where {¢;}, i =1,..., n

be an orthonormal basis of the tangent space at any point and taking sum over
L 1=i=n we get

Vp Vg O) (X, W) — (V) (Vg O) (X, W) — B(U, V) C(X, W) =
=V Vy ) (X, W) —A(V) (Vg §) (X, W) — B(U, V) S(X, W)
which reduces in virtue of C(X, W) =0 to
VeV S) (X, W)= A(V) (Vy S) (X, W) + B(U, V) S(X, W). 2.5
From (2.4) and (2.5) we can state the following theorem;

Theorem 1. A necessary and sufficient condition that a Riemannian
manifold be a G {*R,} is that (2.4) holds.
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In particular, if the Riemannian manifold is conformal to a flat manifold
or if # = 3 then the conformal curvature tensor € = 0. In the first case it follows
from (2.4) that the G {?R} is a G{?K}. In the second case it follows that the
G{’R,} is a G {*K,}.Thus we have the following theorem:

Theorem 2. Every G {2R,} (rn>3) is a G{2K} if it is conformal to a flat
manifold and every G{R,} is a G {3K,}.

3. From (2.3) it follows that if the scalar curvature r is constant then it
must be zero,

Again from (2.3) it follows that
AW Vyr — AU) Vpr +[BU, V) — BV, U)] r=0. (3.1)
If the tensor B is symmetric then we get from (3.1)
AWV) Vygr—AU) Vpr=290
or
AV dr(U) — AU) dr (V) =0.

From the above discussion we can state the following theorem:

Teorem 3. If the scalar curvature of a G {3R.} is constant, then it must
be zero and if the tensor B is symmetric then the vector fields corresponding to
the 1-forms A and dr are collinear.

4. G{®R,} admitting a parailel vector field. A vector field Q is said to be
parallel [ if
Vy 0 =0. : 4.1)
Then from the definition of

RX,Y) Z=V VL~V Vi Z—Vix nZ

we get
R(X,Y) Q=0 (4.2)
and hence .
S(¥, 0) =0. (4.3)
Taking covariant derivative of (4.2) and then applying Bianchi’s identity we get
(Vo R) (X, Y) Z=0. (4.4
From (4.4) it follows that

(Vo 8) (¥, Z2) =0. | 4.5

Also from (4.5) we get
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. ‘ - o Vyr=0. . S (4.6)
Puttmg U= Q n (2 3) and applying (4. 6) we ' get
| S B@ =0

from which it follows tha.t either B (0, = 0 or r = 0. Hence we can state the
following theorem: ..

Theorem 4. If a G{*R,} admits a parallel vector field @ then ither
B{(Q, VY= 0 or the scalar curvature vanishes.
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