ON GENERALIZED RICCI 2-RECURRENT RIEMANNIAN MANIFOLD

U.C. DE-H.A. BISWAS

Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal-INDIA

Summary : The object of this paper is to study a Riemannian manifold called generalized Ricci 2-recurrent Riemannian manifold.

GENELLEŞTİRİLMİŞ RİCCİ "2-RECURRENT" RIEMANN MANIFOLDU HAKKINDA

Özet : Bu çalışmada, "genelleştirilmiş Ricci '2-recurrent' Riemann manifoldu" adı verilen bir Riemann manifoldu incelenmektedir.

1. Introduction. A non-flat Riemannian manifold of dimension n is called a generalized 2-recurrent Riemannian manifold [¹] if the Riemannian curvature tensor R satisfies the condition

$$(\nabla_V \nabla_U R) (X, Y) Z = A(V) (\nabla_U R) (X, Y) Z + B(U, V) R(X, Y) Z$$
 (1.1)

where A is a 1-form, B is a non-zero (0,2) tensor and ∇ , the Levi-Civita connection of the manifold. Such a manifold has been denoted by $G\{{}^{2}K_{n}\}$. If A = 0, the manifold reduces to a 2-recurrent manifold introduced by Lichnerowicz [²] and such a manifold is denoted by ${}^{2}K_{n}$. When the Ricci tensor S satisfies

 $(\nabla_V \nabla_U S) (Y, Z) = A(V) (\nabla_U S) (Y, Z) + B(U, V) S(Y, Z)$

where A and B are stated earlier, then the manifold is called a generalized Ricci 2-recurrent Riemannian manifold and such a manifold is denoted by $G\{{}^{2}R_{n}\}$. If A = 0, then the space reduces to a Ricci 2-recurrent space, studied by Chaki and Roy Chowdhury [3]. Such a manifold is denoted by ${}^{2}R_{n}$.

Obviously every $G\{{}^{2}K_{n}\}$ is a $G\{{}^{2}R_{n}\}$ but the converse is not necessarily true. The question as to when a $G\{{}^{2}R_{n}\}$ can be a $G\{{}^{2}K_{n}\}$ has been considered in section 2 of this paper. In section 3 it is shown that if the scalar curvature r is constant then r must be zero and if the tensor B is symmetric then the vector fields corresponding to the 1-form A and dr are collinear. In the last section $G\{{}^{2}R_{n}\}$ admitting a parallel vector field has been studied. 2. It is known that the conformal curvature tensor C of a Riemannian manifold is given by

$$C(X, Y, Z, W) = R(X, Y, Z, W) - \frac{1}{n-2} [g(Y, Z) \ S(X, W) - g(X, Z) \ S(Y, W) + S(Y, Z) \ g(X, W) - (2.1) - S(X, Z) \ g(Y, W)] + \frac{r}{(n-1)(n-2)} [g(Y, Z) \ g(X, W) - g(X, Z) \ g(Y, W)]$$

where S is the Ricci tensor and r is the scalar curvature of the manifold.

Now let the Riemannian manifold be a $G\{^2R_n\}$. Then

$$(\nabla_{V} \nabla_{U} S) (Y, Z) = A(V) (\nabla_{U} S) (Y, Z) + B(U, V) S(Y, Z).$$
(2.2)

From (2.2) we get

$$\nabla_{V} \nabla_{U} r = A(V) \nabla_{U} r + B(U, V) r.$$
(2.3)

By virtue of (2.2) and (2.3) it follows from (2.1) that

$$(\nabla_{V} \nabla_{U} C) (X, Y, Z, W) = (\nabla_{V} \nabla_{U} R) (X, Y, Z, W) + + B(U, V) C(X, Y, Z, W) + A(V) (\nabla_{U} C) (X, Y, Z, W) - - A(V) (\nabla_{U} R) (X, Y, Z, W) - B(U, V) R(X, Y, Z, W)$$

or

$$(\nabla_{V} \nabla_{U} C) (X, Y, Z, W) - A(V) (\nabla_{U} C) (X, Y, Z, W) - - B(U, V) C(X, Y, Z, W) = (\nabla_{V} \nabla_{U} R) (X, Y, Z, W) - - A(V) (\nabla_{U} R) (X, Y, Z, W) - B(U, V) R(X, Y, Z, W).$$
(2.4)

Conversely, if (2.4) holds, putting $Y = Z = e_i$ in (2.4) where $\{e_i\}$, i = 1, ..., n be an orthonormal basis of the tangent space at any point and taking sum over $i, 1 \le i \le n$ we get

$$(\nabla_{V} \nabla_{U} C) (X, W) - A(V) (\nabla_{U} C) (X, W) - B(U, V) C(X, W) =$$

= $(\nabla_{V} \nabla_{U} S) (X, W) - A(V) (\nabla_{U} S) (X, W) - B(U, V) S(X, W)$

which reduces in virtue of C(X, W) = 0 to

$$(\nabla_{V} \nabla_{U} S) (X, W) = A(V) (\nabla_{U} S) (X, W) + B(U, V) S(X, W).$$
(2.5)

From (2.4) and (2.5) we can state the following theorem:

Theorem 1. A necessary and sufficient condition that a Riemannian manifold be a $G\{{}^{2}R_{n}\}$ is that (2.4) holds.

36

ON GENERALIZED RICCI 2-RECURRENT ...

In particular, if the Riemannian manifold is conformal to a flat manifold or if n = 3 then the conformal curvature tensor C = 0. In the first case it follows from (2.4) that the $G\{{}^{2}R_{n}\}$ is a $G\{{}^{2}K_{n}\}$. In the second case it follows that the $G\{{}^{2}R_{3}\}$ is a $G\{{}^{2}K_{3}\}$. Thus we have the following theorem:

Theorem 2. Every $G\{{}^{2}R_{n}\}$ (n > 3) is a $G\{{}^{2}K_{n}\}$ if it is conformal to a flat manifold and every $G\{{}^{2}R_{3}\}$ is a $G\{{}^{2}K_{3}\}$.

3. From (2.3) it follows that if the scalar curvature r is constant then it must be zero.

Again from (2.3) it follows that

$$A(V) \nabla_{U} r - A(U) \nabla_{V} r + [B(U, V) - B(V, U)] r = 0.$$
(3.1)

If the tensor B is symmetric then we get from (3.1)

$$A(V) \nabla_{U} r - A(U) \nabla_{V} r = 0$$

or

$$A(V) dr(U) - A(U) dr(V) = 0.$$

From the above discussion we can state the following theorem:

Teorem 3. If the scalar curvature of a $G\{{}^2R_n\}$ is constant, then it must be zero and if the tensor *B* is symmetric then the vector fields corresponding to the 1-forms *A* and *dr* are collinear.

4. $G\{{}^{2}R_{n}\}$ admitting a parallel vector field. A vector field Q is said to be parallel [4] if

$$\nabla_{X} Q = 0. \tag{4.1}$$

Then from the definition of

 $R(X, Y) Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z$

we get

$$R(X, Y) Q = 0 \tag{4.2}$$

and hence

$$S(Y, Q) = 0.$$
 (4.3)

Taking covariant derivative of (4.2) and then applying Bianchi's identity we get

$$(\nabla_O R) (X, Y) Z = 0. \tag{4.4}$$

From (4.4) it follows that

$$(\nabla_O S) (Y, Z) = 0. \tag{4.5}$$

Also from (4.5) we get

 $abla_{m{arrho}} r = 0.$ (4.6) A state of the sta Putting U = Q in (2.3) and applying (4.6) we get B(Q, V) r = 0

from which it follows that either B(Q, V)=0 or r=0. Hence we can state the following theorem:

Theorem 4. If a $G\{{}^{2}R_{n}\}$ admits a parallel vector field Q then either B(Q, V) = 0 or the scalar curvature vanishes.

REFERENCES

[¹]	ROY, A.K. :	On generalized 2-recurrent tensor in Riemannian space, Bull. Acad. Roy. Belg. Cl. Sc. Se Ser., 58 (1972-2), 220-228.
[²]	LICHNEROWICZ, A. :	Courbure, nombres de betti, et espaces symetriques, Proc. of the Intern. Cong. of Mat. 2 (1952), 216-223.
[*]	CHAKI, M.C. and : ROY CHOWDHURI, A.N.	On Ricci recurrent space of second order, Ind. J. Math., 29 (1967), 279-287.
[⁴]	SCHOUTEN, J.A. :	Ricci Calculus (2nd edition), Springer-Verlag, 1954, 322.

38