
İstanbul Üııiv. Fen Fek. Mat. Der. 52 (1993), 35 - 38 35 

O N G E N E R A L I Z E D R I C C I 2 -RECURRENT RIEMANNIAN M A N I F O L D 
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Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal-INDIA 

Summary : The object of this paper is to study a Riemannian 
manifold called generalized Ricci 2-recurrent Riemannian manifold. 

GENELLEŞTİRİLMİŞ RİCCİ "2-RECURRENT" R I E M A N N 
MANİFOLDU HAKKINDA 

Özet : Bu çalışmada, "genelleştirilmiş Riccİ '2-recurrent' Riemann 
manifoldu" adı verilen bir Rİemann manifoldu incelenmektedir. 

1. Introduction. A non-flat Riemannian manifold of dimension n is called 
a generalized 2-recurrent Riemannian manifold f1] i f the Riemannian curvature 
tensor R satisfies the condition 

(yvVvR) (X, T)Z = A(V) (V^iî) {X, Y) Z + £([/, V) R(Xy Y) Z (1.1) 

where A is a 1-form, B is a non-zero (0,2) tensor and V, the Levi-Civita connection 
of the manifold. Such a manifold has been denoted by G{2Kn}. I f A — 0, the 
manifold reduces to a 2-recurrent manifold introduced by Lichnerowicz [2J and 
.such a manifold İs denoted by 2Kn. When the Ricci tensor S satisfies 

<VV V p S) (Y,Z) = A (V) (Vv S) (Y, Z) + B{U,V) S(Y, Z) 

where A and B are stated earlier, then the manifold is called a generalized Ricci 
2-recurrent Riemannian manifold and such a manifold is denoted by G{2Rn}. 
I f , 4 = 0 , then the space reduces to a Ricci 2-recurrent space, studied by Chaki 
and Roy Chowdhury [ 3 ] . Such a manifold is denoted by 2Rn. 

Obviously every G {zKn} is a G {2Rn} but the converse is not necessarily 
true. The question as to when a G {2R„} can be a G {2Ktl} has been considered 
in section 2 of this paper. In section 3 i t İs shown that i f the scalar curvature 
r is constant then r must be zero and i f the tensor B is symmetric then the 
vector fields corresponding to the 1-form A and dr are collinear. I n the last 
section G {2R„} admitting a parallel vector field has been studied. 
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2. I t is known that the conforinal curvature tensor C of a Riemannian. 
manifold is given by 

C(X, r, Z , W) = R(X, Y, Z , FF) — [g(Y, Z ) S(X, W) -
H - 2 

- g (X, Z) » 0 + S(T, Z ) g (X , fF) - (2.1) 

- S(X, Z ) g(Y, W))+- ~ -[g(T, Z) g(X, W) -
(n-l)(«-2) 

- i ( A r , z ) wo] 

where S is the Ricci tensor and r is the scalar curvature of the manifold. 

Now let the Riemannian manifold be a G{zRn}. Then 

( V K VvS) (Y, Z) — A{V) {VVS) (Y, Z ) + B(U, V) S(Y, Z ) . (2.2) 

From (2.2) we get 

Vr V„ r = A (V) Va r + B (U, V) r. (2.3) 

By virtue of (2.2) and (2.3) i t follows from (2.1) that 

(Vy V„ C) (X, Y, Z, W) = (Vv Yv R) (X, Y, Z, W) + 

+ B(U, V) C(X, Y, Z, W) + A{V) (V„ C) (X, Y, Z , W) -

- A {V) (V„ R) (X, Y, Z , W) - B(U, V) R{X, Y, Z , W) 

or 

( V K C) (X, Y,Z,W)-A (V) (Vv C) (X, Y, Z , W) -

- B(U, V) C(X, F, Z , W) = (V„ V f f J?) (X, Y, Z, W) - (2.4) 

-A(V) (V„i?) (X, r ,Z , W)-B(U, V) R{X, Y,Z, W). 

Conversely, i f (2.4) holds, putting Y = Z = et in (2.4) where {e,}, i ~ 1,..., n 
be an orthonormal basis of the tangent space at any point and taking sum over 
i , 1 i i i « we get 

(VF v„ c) (x, w) - ^ ( F ) c) (x, w)-B(u, v) c{x,w) = 
= (V„vffsf) (x, ^ ) - ^ ( K ) (v„s) (x, wo-tfCc, n S(x, »O 

which reduces in virtue of C (X, i ^ ) = 0 to 

(VyVuS) (X, W) = A(V) Q7aS) (X, ^ ) + 5 ( ^ *0 S(^ , W). (2.5) 

From (2.4) and (2.5) we can state the following theorem: 

Theorem 1. A necessary and sufficient condition that a Riemannian 
manifold be a G{2Rn} is that (2.4) holds. 
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I n particular, i f the Riemannian manifold is conformal to a flat manifold 
or i f n = 3 then the conformal curvature tensor C ~ 0. I n the first case i t follows 
from (2.4) that the G {2RJ is a G{2Kn}. I n the second case i t follows that the 
G{2R3} is a G {2K3}.Thxx& we have the following theorem: 

Theorem 2. Every G {2Rn} (n > 3) is a G {2Kn} i f i t is conformal to a flat 
manifold and every G{2R3} is a G{ZK3}. 

3. From (2.3) i t follows that i f the scalar curvature r is constant then i t 
must be zero. 

Again from (2.3) i t follows that 

A(V) V a r - A(U) Vvr + [B(U, V) - B(V, U)] r = 0. (3.1) 

I f the tensor B is symmetric then we get from (3.1) 

A(V) V ^ r - A(U)Vyr = 0 

or 

A(V) dr(U)~A(U) dr(V) = Q. 

From the above discussion we can state the following theorem: 

Teorem 3. I f the scalar curvature of a G {2Rn} is constant, then i t must 
be zero and i f the tensor B is symmetric then the vector fields corresponding to 
the 1-forms A and dr are collinear. 

4. G {2i?„} admitting a parallel vector field. A vector field Q is said to be 
parallel [ 4 ] i f 

V * 2 = 0 . (4.1) 

Then from the definition of 

R(X, Y) Z = V i V r Z - V r V 1 Z - V K n Z 

we get 
R(X,Y)Q=0 (4.2) 

and hence 

5 ( ^ 0 = 0 . (4.3) 

Taking covariant derivative of (4.2) and then applying Bianchi's identity we get 

( V G R) (X, Y) Z = 0. (4.4) 

From (4.4) i t follows that 

( V e S ) (Y,Z) = 0. (4.5) 

Also from (4.5) we get 
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V o r = 0. (4.6) 

Putting U = Q in (2.3) and applying (4.6) we get 

B(Q, V) r = 0 
from which i t follows that either B(Q, K ) = 0 or ;• = 0. Hence we can state the 

following theorem: 

Theorem 4. I f a G {2JRn} admits a parallel vector field Q then either 

^G2> V)= 0 or the scalar curvature vanishes. 

R E F E R E N C E S 

I1] ROY, A . K . : On generalized 2-recurrent tensor in Riemannian space, Bull. 
Acad. Roy. Belg. CI. Sc. Se Ser., 58 (1972-2), 220-228. 

[ a ] LICHNEROWICZ, A. : Courbure, nombres de betti, et espaces symetriques, Proc. 
of the Intern. Cong, of Mat. 2 (1952), 216-223. 

[ aj CHAKI , M.C. and : On Ricci recurrent space of second order, Ind. J. Math., 29 
ROY CHOWDHURI, A.N. (1967), 279-287. 

H SCHOUTEN, J.A. : Ricci Calculus (2nd edition), Springer-Verlag, 1954, 322. 


