İstanbul Üniv. Fen Fak. Mat. Der. 52 (1993), 39 - 44

ON PROJECTIVE TRANSFORMATION OF PSEUDO PROJECTIVE SYMMETRIC SPACES

U.C. DE-H.A. BISWAS

Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal - INDIA

Summary : In this paper we study the projective transformation of pseudo projective symmetric spaces $(PWS)_n$.

PSÖDO PROJEKTIF SİMETRİK UZAYLARIN PROJEKTİF DÖNÜŞÜMÜ HAKKINDA

Özet : Bu çalışmada psödo projecktif simetrik uzayların projektif dönüşümü incelenmektedir.

1. INTRODUCTION

Let M_n be an n(>2) dimensional Riemannian space of class upto any necessary order with its metric g. Let M_n^* be another Riemannian space with metric g^* such that M_n^* is obtained by a projective transformation of the M_n , that is, the M_n and the M_n^* are in geodesic correspondence. The projective transformation is characterized by the relation of the Christoffel symbols of the M_n and the M_n^* as follows

$$\begin{bmatrix} {}^{h}_{ij} \end{bmatrix} = \{ {}^{h}_{ij} \} + \delta^{h}_{i} \phi_{j} + \delta^{h}_{j} \phi_{i}$$
(1.1)

where Latin indices take values 1, 2, ..., n, the symbol * denotes the quantity of the M_n^* and the ϕ_i is a gradient vector field associated with the projective transformation [¹].

If the ϕ_i vanishes, the transformation is affine.

Let R_{ijk}^h , R_{ij} and R denote respectively the curvature tensor, Ricci tensor and the scalar curvature of the M_n . Under the projective transformation (1.1), as is well known, the projective curvature tensor W_{ijk}^h is invariant, that is

$$W_{ijk}^{*h} = W_{ijk}^h \tag{1.2}$$

where $W_{ijk}^{h} = R_{ijk}^{h} - \frac{1}{n-1} (\delta_{k}^{h} R_{ij} - \delta_{j}^{h} R_{ik})$ and satisfies

U.C. DE-H.A. BISWAS

$$W^h_{ijk} = - W^h_{ikj} \tag{1.3}$$

$$W_{aij}^{a} = W_{iaj}^{a} = W_{ija}^{a} = 0$$
(1.4)

$$W_{ijk}^{h} + W_{jki}^{h} + W_{kij}^{h} = 0$$
 (1.5)

$$W_{hijk} + W_{hjki} + W_{hkij} = 0. (1.6)$$

In a recent paper Chaki introduced a type of non-flat Riemannian space whose projective curvature tensor W_{ijk}^h satisfies the condition

$$W^{h}_{ijk,l} = 2 \lambda_{l} W^{h}_{ijk} + \lambda^{h} W_{lijk} + \lambda_{i} W^{h}_{ijk} + \lambda_{j} W^{h}_{ilk} + \lambda_{k} W^{h}_{ijl} \qquad (1.7)$$

where λ_l is a non-zero vector. Such a space has been called a pseudo projective symmetric space [²] and was denoted by $(PWS)_n$. If λ_l becomes zero then the space reduces to a projective symmetric space [³]. In this paper, we shall study the case where the M_n and M_n^* are pseudo projective symmetric spaces. In section 2, we shall discuss the case of $\lambda_l = \lambda_l^*$, that is, the associated vectors of M_n and M_n^* are same. In section 3, we shall devote the case of $\lambda_l \neq \lambda_l^*$, that is, the associated vector of the M_n^* is different from the one of the M_n .

2. THE CASE OF $\lambda_l = \lambda_l^*$

Differentiating (1.2) covariantly and making use of (1.1), we have

 $W_{ijk,l}^{*h} = W_{ijk,l}^{h} - 2 \phi_{l} W_{ijk}^{h} + \delta_{l}^{h} \phi_{a} W_{ijk}^{a} - \phi_{i} W_{ljk}^{h} - \phi_{j} W_{ilk}^{h} - \phi_{k} W_{ijl}^{h}$ (2.1) where ; and , denote covariant differentiation with respect to g^{*} and g respectively. Then from (2.1) by virtue of (1.7) we have

$$2 \phi_j W^h_{ijk} - \delta^h_l \phi_a W^a_{ijk} + \phi_i W^h_{ijk} + \phi_j W^h_{ijk} + \phi_k W^h_{ijl} = 0.$$
(2.2)

On contraction we get by virtue of (1.4)

$$\phi_a W^a_{ijk} = 0 \qquad (n > 2).$$
 (2.3)

Substituting (2.3) into (2.2), we get

$$2 \phi_I W^h_{ijk} + \phi_i W^h_{ijk} + \phi_j W^h_{ilk} + \phi_k W^h_{ijl} = 0$$
(2.4)

and consequently,

$$2 \phi_l W_{hijk} + \phi_l W_{hijk} + \phi_j W_{hilk} + \phi_k W_{hijl} = 0.$$
 (A)

But K. Amur and P. Desai showed in their paper [3] that the equation (A) implies either the space is Einstein or the ϕ_i is a null vector. Hence we can state the following theorem:

Teorem 2.1. Let M_n^* be a projective transformation of an M_n . If the projective curvature tensors satisfy the condition (A), then the M_n and the M_n^* are Einstein spaces or the transformation is affine.

ON PROJECTIVE TRANSFORMATION ...

First we assume that the M_n and M_n^* are both projective symmetric spaces. Then we have $W_{ijk,l}^{h} = 0$ and $W_{ijk,l}^{*h} = 0$. Since the condition (A) is satisfied, from Theorem (2.1) we have

Theorem 2.2. If a projective symmetric space is transformed into another projective symmetric one by a projective transformation (1.1), then the spaces are Einstein or the transformation is affine.

Next we assume that the M_n and the M_n^* are both pseudo projective symmetric spaces with the same associated vector λ_I . Then we have from (1.7)

$$W_{ijk,l}^{*h} = 2\lambda_l W_{ijk}^{*h} + \lambda^h W_{lijk}^{*} + \lambda_i W_{lijk}^{*h} + \lambda_j W_{ilk}^{*h} + \lambda_k W_{ijl}^{*h}.$$

Consequently the condition (A) is satisfied owing to (1.2). Thus from theorem (2.1) we have

Theorem 2.3. If a pseudo projective symmetric space is transformed into another pseudo projective symmetric space with the same associated vector by a projective transformation (1.1), then the spaces are Einstein or the transformation is affine.

3. THE CASE OF $\lambda_l \neq \lambda_l^*$

We assume that the M_n and M_n^* are both pseudo projective symmetric spaces with the different associated vectors. Then we have

$$W^{h}_{ijk, l} = 2 \lambda_{l} W^{h}_{ljk} + \lambda^{h} W_{lljk} + \lambda_{i} W^{h}_{ljk} + \lambda_{j} W^{h}_{ilk} + \lambda_{k} W^{h}_{ijl}$$

and

$$W_{ijk,\ l}^{*h} = 2\,\lambda_l^* \,\,W_{ijk}^{*h} + \lambda^{*h} \,\,W_{lijk}^* + \,\lambda_l^* \,\,W_{ljk}^{*h} + \,\lambda_j^* \,\,W_{ilk}^{*h} + \,\lambda_k^* \,\,W_{ijl}^h.$$

Substituting these equations into (2.1) and using (1.2) we get

$$2 (\lambda_{l}^{*} - \lambda_{l}) W_{ijk}^{h} + (\lambda^{*h} - \lambda^{h}) W_{ijjk} + (\lambda_{i}^{*} - \lambda_{i}) W_{iik}^{h} + (\lambda_{j}^{*} - \lambda_{j}) W_{ilk}^{h} + (\lambda_{k}^{*} - \lambda_{k}) W_{ijl}^{h} = -2 \phi_{l} W_{ijk}^{h} + (3.1) + \delta_{l}^{h} \phi_{a} W_{ijk}^{a} - \phi_{i} W_{ijk}^{h} - \phi_{j} W_{ilk}^{h} - \phi_{k} W_{ijl}^{h}.$$

Transvecting (3.1) with g^{ij} we have

$$2 (\lambda_l^* - \lambda_l) W_k^h + (\lambda^{*h} - \lambda^h) W_{lk} + (\lambda^{*j} - \lambda^j) W_{ljk}^h + (\lambda^{*i} - \lambda^l) W_{ilk}^h + (\lambda_k^* - \lambda_k) W_l^h = -2 \phi_l W_k^h + (3.2) + \delta_l^h \phi_a W_k^a - \phi^i W_{lik}^h - \phi^i W_{ilk}^h - \phi_k W_l^h$$

where

$$W_k^h = g^{ij} W_{ijk}^h = \frac{1}{(n-1)} (n R_k^h - R \delta_k^h),$$
$$W_{ij} = g_{ia} W_j^a = W_{ji}$$

or

$$2 (\lambda_{l}^{*} - \lambda_{l}) W_{hk} + (\lambda_{h}^{*} - \lambda_{h}) W_{lk} + (\lambda^{*a} - \lambda^{a}) W_{hlak} + (\lambda^{*a} - \lambda^{a}) W_{halk} + (\lambda_{k}^{*} - \lambda_{k}) W_{hl} = -2 \phi_{l} W_{hk} + (3.3) + g_{hl} \phi_{a} W_{k}^{a} - \phi^{a} W_{hlak} - \phi^{a} W_{halk} - \phi_{k} W_{hl}.$$

Interchanging h and k in (3.3) and substracting it from (3.3) and then transvecting with g^{hl} it is found

$$(\lambda^*{}^a - \lambda^a) W_{ka} = (n-1) \phi^a W_{ka}.$$
(3.4)

Contracting (3.1) we get

$$3 \left(\lambda_a^* - \lambda_a\right) W_{ijk}^a = (n-2) \phi_a W_{ijk}^a .$$
(3.5)

From (3.4) and (3.5) we get

$$\phi^a W_{ak} = 0. \tag{3.6}$$

Transvecting (3.1) with $3(\lambda_h^* - \lambda_h)$ and applying (3.5) ve get

$$2 (n-2) (\lambda_{i}^{*} - \lambda_{i}) \phi_{a} W_{ijk}^{a} = -3 (\lambda_{h}^{*} - \lambda_{h}) (\lambda^{*h} - \lambda^{h}) W_{lijk} - - (n-2) (\lambda_{i}^{*} - \lambda_{i}) \phi_{a} W_{ijk}^{a} - (n-2) (\lambda_{j}^{*} - \lambda_{j}) \phi_{a} W_{iik}^{a} - - (n-2) (\lambda_{k}^{*} - \lambda_{k}) \phi_{a} W_{ijl}^{a} - 2 (n-2) \phi_{l} \phi_{a} W_{ijk}^{a} - (n-2) \phi_{i} \phi_{a} W_{ijk}^{a} - (n-2) \phi_{j} \phi_{a} W_{ijk}^{a} - - (n-2) \phi_{k} \phi_{a} W_{ijl}^{a} + 3 (\lambda_{l} - \lambda_{l}) \phi_{a} W_{ijk}^{a} .$$

Again using (1.3), (1.5) and (1.6) we get from (3.1)

$$2 (\lambda_l^* - \lambda_l) W_{ilk}^a + 2 (\lambda_j^* - \lambda_j) W_{ikl}^a + 2 (\lambda_k^* - \lambda_k) W_{ilj}^a =$$

$$= -2 (\lambda_j^* - \lambda_j) W_{ilk}^a - 2 (\lambda_k^* - \lambda_k) W_{ijl}^a - (3.8)$$

$$-2 (\lambda_l^* - \lambda_l) W_{ikj}^a - \delta_l^a \phi_h W_{ljk}^b - \delta_j^a W_{ikl}^b - \delta_k^a \phi_b W_{ilj}^b.$$

Now multiplying (3.8) by $(n-2) \phi_a$ and using (3.7) and transvecting with g^{ij} we get

$$[3(\lambda^{*i} - \lambda^{i}) + (n-2)\phi^{i}] W^{a}_{ikl} = 0 \qquad [by (3.6)]. \tag{3.9}$$

Then either

$$\phi_a W^a_{ikl} = 0 \tag{3.10}$$

or

ON PROJECTIVE TRANSFORMATION...

$$3 (\lambda^{*i} - \lambda^{i}) + (n-2) \phi^{i} = 0.$$
 (3.11)

Now using (3.6) and (3.10) in (3.3) it follows that

$$(\lambda_a - \lambda_o) \phi^a W_{lk} = 0. \tag{3.12}$$

Thus we have the following

Lemma. If a pseudo projective symmetric space M_n with the associate vector λ_i is transformed into another pseudo projective symmetric space M_n^* with the associated vector λ_i^* by a projective transformation (1.1), then one of the following cases occurs

$$3(\lambda^{*i} - \lambda^{i}) + (n-2)\phi^{i} = 0$$
(3.13)

$$(\lambda_a^* - \lambda_a) \phi^a = 0 \tag{3.14}$$

 $W_{lk} = 0$, that is, the M_n is an Einstein space. (3.15)

Now we consider the equation (3.13). From (3.5) and (3.13) we get

$$2(n-2)\phi_a W^a_{ijk} = 0$$

or

$$\phi_a W^a_{ijk} = 0$$
, since $n > 2$.

This relation holds in (3.10). Hence either (3.14) or (3.15) holds.

Thus we can state the following

Theorem 3.1. If a pseudo projective symmetric space M_n with the associated vector λ_t is transformed into another pseudo projective symmetric space M_n^* with the associated vector λ_t^* by a projective transformation (1.1), then one of the following cases occurs:

(i) Either M_n is an Einstein space or

(ii)
$$(\lambda_a^{\tau} - \lambda_a) \phi^a = 0.$$

REFERENCES

[']	EISENHART, L.P.	:	Riemannian geometry, Princeton, 1966.
[*]	CHAKI, M.C. and SAHA, S.K.	:	On pseudo projective symmetrie manifolds, Bulletin of the Institute of Mathematics, Academia Sinica, 17 (1989), No. 1, 59-65.
[³]	SOOS, Gy.	:	Über die geodätischen Abbildungen von Riemannschen Räumen auf projektiv-symmetrische Riemannsche Räume, Acta Math. Acad. Sci. Hung., 9 (1958), 359-361.
[*]	AMUR, Krishna and DESAI, P.	:	Recurrent properties of projectively related spaces, Tensor, N.S., 29 (1975).

-43

(2) A second s second s Second secon second sec

