İstanbul Üniv. Fen Fak. Mat. Der. 52 (1993), 45 - 46

ABOUT THE 2-SYLOW SUBGROUPS OF A Q-GROUP

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Department, Bucharest-Magurele, ROMANIA

Summary : There is a long standing conjecture which asserts that for a Q-group the 2-Sylow subgroups are also Q-groups. In this note we study this conjecture for two classes of Q-groups.

BİR Q-GRUBUN 2-SYLOW ALT GRUPLARI HAKKINDA

Özet : Bu çalışmada, bir Q-grubun 2-Sylow alt gruplarının da Q-gruplar olduğuna ilişkin iddianın, iki Q-grup sınıfı için doğru olduğu ispat edilmektedir.

All groups will be finite and the notations and definitions will be those of $[^2]$.

Definition. A Q-group is a group G whose characters are rational valued.

The next theorem is a well-known result (see [¹]).

Theorem 1. A group G is a Q-gruop if and only if for every $g \in G$ g is conjugate to g^m for every integer m with (m, |g|) = 1.

Theorem 2. Let G be a Q-group and H be a 2-Sylow subgroup of G. If for every noninvolutory $h \in H$, $N_G (< h >)$ is subnormal in G then H is also a Q-group.

Proof. Let $h \in H$ be noninvolutory. Let f be the group morphism

 $f: N_G \ (< h >) \longrightarrow \operatorname{Aut} \ (< h >)$

defined by $f(x)(h) = x h x^{-1}$. f is surjectiv (theorem 1), because G is a Q-group. Let z, w be a set of generators for Aut (< h >) and x, $y \in N_G (< h >)$ such that f(x) = z and f(y) = w. We can suppose that $|x| = 2^j$ and $|y| = 2^k$, because Aut (< h >) is a 2-group. Since $N_G (< h >)$ is subnormal in G then

ION ARMEANU

 $H \cap N_G$ (< h>) is a 2-Sylow subgroup of N_G (< h>) so that using Sylow theorems there exist $u, v \in N_G$ (< h >) such that $s = u \times u^{-1}$, $t = v y v^{-1} \in H$. Then, clearly f(s) = f(x) = z and f(t) = f(y) = w so that

$$H \cap N_G (\langle h \rangle)/H \cap C_G (h) \approx \text{Aut } (\langle h \rangle).$$

Theorem 3. Let G be a Q-group and H a 2-Sylow subgroup of G. Suppose that for every $H' \in \text{Syl}_2(G)$ and for every noninvolutory $h \in H \cap H'$ such that $H' \cap N_G(\langle h \rangle) \in \text{Syl}_2(N_G(\langle h \rangle))$ and $N_G(\langle h \rangle) \cap H \subseteq H'$ there exist $g \in C_G(h)$ such that $H'^g = H$. Then H is also a Q-group.

Proof. Analogous with the proof of theorem 2, since $H' \cap N_G(\langle h \rangle) \in$ Syl₂ $(N_G(\langle h \rangle))$ we obtain s, $t \in H' \cap N_G(\langle h \rangle)$ such that f(s) = z and f(t) = w. Let $a = g s g^{-1} \in H$ and $b = gtg^{-1} \in H$. Then clearly f(a) = z and f(b) = w and H is a Q-group.

REFERENCES

[1] ISAACS, I.M. : Character Theory of Finite Groups, Academic Press, New York, 1976.

[⁸] ROSE, J.S. : A Course in Group Theory, Cambridge, 1978.

46