THE WAVE SOLUTIONS OF NON-SYMMETRIC UNIFIED FIELD THEORIES OF EINSTEIN, BONNOR AND SCHRÖDINGER

K.B. LAL and MUSTAKEEM

As a sequel to a former paper of the authors, an attempt has been made in the present paper to obtain the wave solutions of the field equations of non-symmetric unified field theories of Einstein, Bonnor and Schrödinger in the space-time represented by the metric

$$
d s^{3}=-d x^{2}-d y^{2}-d z^{2}+d t^{2}+2 A(2, t) d z d t+2 B(x, y) d x d y
$$

1. Introduction. Recently Lal and Mustakeem [$\left.{ }^{[1}\right]^{1)}$ have investigated the wave solutions of the field equations of general relativity in a space-time, represented by the metric

$$
\begin{equation*}
d s^{2}=-d x^{2}-d y^{2}-d z^{2}+d t^{2}+2 A d z d t+2 B d x d y \tag{1.1}
\end{equation*}
$$

where $A=A(z, t)$ and $B=B(x, y)$. In this paper we have attempted to obtain the wave solutions of the field equations of non-symmetric unified field theories of Einstein, Bonnor and Schrödinger in the space-time (1.1).

The field equations of A.Einstein's unified field theory $\left[{ }^{2}\right]$ are

$$
\begin{align*}
& g_{i j k} \equiv g_{i j, k}-g_{s j} \Gamma_{i k}^{s}-g_{i s} \Gamma^{s}{ }_{j k}=0, \tag{1.2}\\
& \Gamma_{t} \equiv \Gamma^{s}{ }^{s}=0, \tag{1.3}
\end{align*}
$$

$$
\left.\begin{array}{l}
\text { a) } R_{k l} \equiv \Gamma_{k l, s}^{s}-\Gamma_{k s, l}^{s}-\Gamma^{s}{ }_{l l} \Gamma^{t}{ }_{k s}+\Gamma^{s}{ }_{t s} \Gamma^{t}{ }_{k l}=0 \\
\text { b) }(i) R_{\underline{i j}}=0 ; \text { (ii) } R_{i j, k}+R_{i k, i}+R_{k k i, j}=0 \tag{1.4}
\end{array}\right\}
$$

where a comma followed by an index denotes ordinary partial differentiation and the Latin indices take the vaules 1, 2, 3, 4. A bar (-) and a hook (v) under two indices denote respectively symmetry and anti-symmetry between them.

Following the above notations the field equations of W.B. Bonnor [${ }^{3}$] are given by (1.2), $(1,3)$ and
${ }^{1}$) Numbers in brackets refer to the references at the end of the paper.

$$
\begin{align*}
& \text { a) } R_{i j}+p^{2} U_{i j}=0 \text {, } \tag{1.5}
\end{align*}
$$

where $R_{i j}$ is the Ricci tensor, p is an arbitrary real or imaginary constant and $U_{i k}$ is given by

$$
\begin{equation*}
U_{i k}=g_{k i}-g^{m n} g_{i m} g_{n k}+\frac{1}{2} g^{m n} g_{n m} g_{i k} \tag{1.6}
\end{equation*}
$$

Using similar notations the field equations of E.Schrödinger ([4], $\left.{ }^{5}\right]$) are given by (1.2), (1.3) and
a) $R_{i j}+\lambda g_{i j}=0$,
b) $\left.\left(\underset{\mathrm{v}}{R_{i j}}+\lambda \underset{\mathrm{v}}{\lambda g_{i j}}\right)_{, k}+\left(R_{\mathrm{v}}+\lambda \underset{\mathrm{v}}{ }+\underset{j_{k}}{ }\right)_{, i}+\underset{\mathrm{v}}{R_{k i}}+\lambda g_{\mathrm{v}}\right)_{, j}=0$
where λ is a non-vanishing constant.
2. Calculation of $\mathbf{g}_{i j}$. We have obtained [${ }^{1}$] the transverse-electro-magnetic wave solutions $F_{i j}$ of the generalized Maxwell's equations in the spacetime (1.1) which are given by

$$
F_{i j}=\left[\begin{array}{rrrr}
0 & 0 & -\sigma_{1} & \sigma_{1} \tag{2.1}\\
0 & 0 & \rho_{1} & -\rho_{1} \\
\sigma_{1} & -\rho_{1} & 0 & 0 \\
-\sigma_{1} & \rho_{1} & 0 & 0
\end{array}\right]
$$

where ρ_{1} and σ_{1} are arbitrary functions of x, y and $z-t$, which satisfy the condition $\partial \rho_{1} / \partial x+\partial \sigma_{1} / \partial y=0$.

In this section we shall determine the non-symmetric $g_{i j}$ corresponding to above $\dot{F}_{i j}$. Assume that

$$
\begin{equation*}
g_{i j}=g_{\underline{i l}}+\underset{v}{g_{i j}}=h_{i j}+f_{i j} \tag{2.2}
\end{equation*}
$$

where $g_{i j}=h_{i j}$ is the symmetric part coinciding with the metric tensor of the Riemannian space-time defined by the line element (1.1) and $g_{i j}=f_{i j}$ is the anti-symmetric part of $g_{i j}$ corresponding to electromagnetic field (2.1). Thus using (1.1) and (2.2) $g_{i j}$ can be put as

$$
\left(g_{i j}\right)=\left[\begin{array}{cccc}
-1 & B+f_{12} & f_{13} & f_{14} \tag{2.3}\\
B-f_{12} & -1 & f_{23} & f_{24} \\
-f_{i 3} & -f_{23} & -1 & A+f_{34} \\
-f_{14} & -f_{24} & A-f_{34} & 1
\end{array}\right] .
$$

To connect the $F_{i j}$ given by (2.1) with $g_{i j}$ we shall use the relation

$$
\begin{equation*}
F_{i J}=\frac{1}{2} \varepsilon_{i j k l} \sqrt{-g} g^{k l} \quad\left(g=\operatorname{det}\left(g_{i j}\right)\right) \tag{2.4}
\end{equation*}
$$

introduced by Ikeda [${ }^{6}$], where $g^{i j}$ is the contravariant tensor of $g_{i j}$ and $\varepsilon_{i j k l}=+1$ or -1 according as i, j, k, l have even or odd permutations. From (2.1) we have $F_{34}=F_{12}=0$. Hence from (2.4) we get

$$
\begin{equation*}
g^{12}=g^{21}, g^{34}=: g^{43} \tag{2.5}
\end{equation*}
$$

Calculating the contravariant components $g^{12}, g^{21}, g^{34}, g^{43}$ from (2.3) and substituting into (2.5) we obtain the following equations:

$$
\begin{aligned}
& f_{i 2}\left(1+A^{2}-f_{34}^{2}\right)+f_{34}\left(f_{13} f_{24}-f_{i 4} f_{23}\right)=0, \\
& \left(1-B^{2}\right) f_{34}^{\prime}+f_{12}^{2} f_{34}-f_{12}\left(f_{13} f_{24}-f_{14} f_{23}\right)=0
\end{aligned}
$$

which on combining are reduced to $\left(1-B^{2}\right) f_{34}^{2}+\left(1+A^{2}\right) f_{12}^{2}=0$, where ($1-B^{2}$) >0, showing that $f_{12}=f_{34}=0$. Thus (2.3) becomes

$$
\left(g_{i j}\right)=\left[\begin{array}{cccc}
-1 & B & f_{13} & f_{14} \tag{2.6}\\
B & -1 & f_{23} & f_{24} \\
-f_{13} & -f_{23} & -1 & A \\
-f_{14} & -f_{24} & A & 1
\end{array}\right] .
$$

The determinant g formed from the above g_{i} is given by

$$
\begin{align*}
g= & -\left(1+A^{2}\right)\left(1-B^{2}\right)-f_{13}^{2}+f_{14}^{2}-f_{23}^{2}+f_{24}^{2}+\left(f_{13} f_{24}-f_{14} f_{23}\right)^{2} \\
& +2 A\left(f_{13} f_{14}+f_{23} f_{24}\right)+2 B\left(f_{14} f_{24}-f_{13} f_{23}\right)+ \\
& +2 A B\left(f_{13} f_{24}-f_{54} f_{23}\right) . \tag{2.7}
\end{align*}
$$

Assuming that $f_{13} f_{24}-f_{14} f_{23}=0$, we have from (2.6)

$$
\begin{align*}
& g g^{13}=-g g^{31}=-B f_{23}+A B f_{24}-f_{13}+A f_{14}, \\
& g g^{14}=-g g^{41}=A B f_{23}+B f_{24}+A f_{13}+f_{14}, \tag{2.8}\\
& g g^{23}=-g g^{32}=-f_{23}+A f_{24}-B f_{13}+A B f_{14}, \\
& g g^{24}=-g g^{42}=A f_{23}+f_{24}+A B f_{13}+B f_{14} .
\end{align*}
$$

Combining (2.1), (2.4) and (2.8) we get the four equations
$-B f_{23}+A B f_{24}-f_{13}+A f_{i 4}=\sqrt{-g} \rho_{1}$, etc., which on solving give

$$
\begin{align*}
& f_{13}=-f_{14}=\sqrt{-g}(1+A)\left(\rho_{1}-B \sigma_{1}\right) /\left(1+A^{2}\right)\left(1-B^{2}\right), \tag{2.9}\\
& f_{23}=-f_{24}=\sqrt{-g}(1+A)\left(\sigma_{1}-B \rho_{1}\right) /\left(1+A^{2}\right)\left(1-B^{2}\right),
\end{align*}
$$

and we have $g=-\left(1+A^{2}\right)\left(1-B^{2}\right)$. Substituting this value of g in (2.9) we have

$$
\begin{aligned}
& f_{13}=-f_{14}=(1+A)\left(\rho_{1}-B \sigma_{1}\right) / \sqrt{-g}=\rho(\text { say }) \\
& f_{23}=-f_{24}=(1+A)\left(\sigma_{1}-B \rho_{1}\right) / \sqrt{-g}=\sigma(\text { say })
\end{aligned}
$$

where ρ and σ are functions of $(z-t)$. Thus finally we have the mearic $g_{i i}$ as

$$
\left(g_{i j}\right)=\left[\begin{array}{rrrr}
-1 & B & \rho & -\rho \tag{2.10}\\
B & -1 & \sigma & -\sigma \\
-\rho & -\sigma & -1 & A \\
\rho & \sigma & A & 1
\end{array}\right]
$$

3. Connections $\Gamma^{k}{ }_{i j}$ corresponding to $g_{i j}$. Let us put

$$
\begin{equation*}
\Gamma^{k_{i j}}=p^{k_{i j}}+q^{k}{ }_{i j} \tag{3.1}
\end{equation*}
$$

where $p^{k}{ }_{i j}=p^{k}{ }_{j i}=\Gamma^{k_{i \underline{i j}}}$ and $q^{k_{i j}}=-q^{k_{j i}}=\Gamma^{k_{i j}}$. For the above
substitution the field equation (1.2) will give 64 equations involving $24 q$'s and $40 p$'s.

Putting $g_{i j ; k}=E^{k}{ }_{i j}$, we have from (1.2) with $i=j$ the following equations:

$$
\begin{align*}
& E_{11}^{k}: p^{1}{ }_{1 k}-B p_{1 k}^{2}+\rho q_{1 k}^{3}-\rho q^{4}{ }_{1 k}=0, \\
& E^{k}{ }_{22}:-B p^{1}{ }_{2 k}+p^{2}{ }_{2 k}+\sigma q^{3}{ }_{2 k}-\sigma q^{4}{ }_{2 k}=0, \tag{3.2}\\
& E^{k}{ }_{33}:-\rho q^{1}{ }_{3 k}-\sigma q_{3 k}^{2}+p_{3 k}^{3}-A p^{4}{ }_{3 k}=0, \\
& E^{k}{ }_{44}: \rho q^{1}{ }_{4 k}+\sigma q^{2}{ }_{4 k}-A q^{3}{ }_{4 k}-p^{4}{ }_{4 k}=0 .
\end{align*}
$$

Now putting $g_{i j ; k}+g_{j i ; k}=E_{i j^{k+}}$, from (1.2) with $i \neq j$ and (2.10), we have

$$
\begin{align*}
& E_{12}{ }^{k+}: \frac{\partial B}{\partial x^{k}}-B\left(p^{1}{ }_{1 k}+p^{2}{ }_{2 k}\right)+p^{2}{ }_{1 k}+p^{1}{ }_{2 k}+\sigma\left(q^{3}{ }_{1 k}-q^{4}{ }_{\mathrm{ik}}\right)+ \\
& +\mathrm{p}\left(q^{3}{ }_{2 k}-q^{4}{ }_{2 k}\right)=0, \\
& E_{13}{ }^{k+}: p^{3}{ }_{1 k}+p^{1}{ }_{3 k}-\rho\left(q^{1}{ }_{1 k}-q^{3}{ }_{3 k}+q^{4}{ }_{3 k}\right)-\sigma q^{2}{ }_{1 k}- \\
& -A q^{4}{ }_{1 k}-B q^{2}{ }_{3 k}=0, \\
& E_{1 q}{ }^{k+}: \rho\left(q^{1}{ }_{1 k}+q^{3}{ }_{4 k}-q^{4}{ }_{4 k}\right)-p^{4}{ }_{1 k}+p^{1}{ }_{4 k}+\sigma q^{2}{ }_{1 k}-A p^{3}{ }_{1 k} \\
& -B p^{2}{ }_{4 k}=0, \tag{3.3}\\
& E_{23}{ }^{k+}: \sigma\left(q^{2}{ }_{2 k}-q^{3}{ }_{3 k}+q^{4}{ }_{3 k}\right)-p^{2}{ }_{3 k}-p^{3}{ }_{2 k}+\rho q^{1}{ }_{2 k}+A p^{4}{ }_{2 k} \\
& +B p^{1}{ }_{3 k}=0, \\
& E_{24}{ }^{k+}: \sigma\left(q^{2}{ }_{2 k}+q^{3}{ }_{4 k}-q^{4}{ }_{4 k}\right)+p^{2}{ }_{4 k}-p^{4}{ }_{2 k}+\rho q^{1}{ }_{2 k}-A p^{3}{ }_{2 k} \\
& -B p^{1}{ }_{4 k}=0,
\end{align*}
$$

$$
\begin{aligned}
E_{34}{ }_{4}^{k+}: \frac{\partial A}{\partial x^{k}} & +\rho\left(q^{1}{ }_{3 k}-q^{1}{ }_{4 k}\right)+\sigma\left(q^{2}{ }_{3 k}-q^{2}{ }_{4 k}\right)+p_{4 k}^{3}-p^{4}{ }_{3 k}- \\
& -A\left(p^{3}{ }_{3 k}+p^{4}{ }_{4 k}\right)=0 .
\end{aligned}
$$

Next putting $g_{i l ; k}-g_{i j ; k}=E_{i j}{ }^{k-}$, we have from (1.2) with $i \neq j$ and (2.10)

$$
\begin{align*}
& E_{12}{ }^{k-}:-B\left(q^{1}{ }_{1 k}-q^{2}{ }_{2 k}\right)+\left(q^{2}{ }_{1 k}-q^{1}{ }_{2 k}\right)+\sigma\left(p^{3}{ }_{1 k}-p_{1 k}^{4}\right)-p\left(p^{3}{ }_{2 k}-p^{4}{ }_{2 k}\right)=0, \\
& E_{13}{ }^{k-}: \frac{\partial \rho}{\partial x^{k}}-\rho\left(p_{1 k}^{1}+p^{3}{ }_{3 k}-p^{4}{ }_{3 k}\right)+q^{3}{ }_{1 k}-q^{1}{ }_{3 k}-\sigma p^{2}{ }_{1 k}- \\
& -A q^{4}{ }_{1 k}+B q^{2}{ }_{3 k}=0, \\
& E_{14}{ }^{{ }^{-}}:-\frac{\partial \rho}{\partial x^{k}}-\rho\left(p^{1}{ }_{1 k}-p^{3}{ }_{4 k}+p^{4}{ }_{4 k}\right)-q^{4}{ }_{1 k}-q^{1}{ }_{4 k} \\
& +\sigma p_{1 k}-A q_{1 k}^{3}+B q_{4 k}^{2}=0, \\
& E_{23}{ }^{k-}: \frac{\partial \sigma}{\partial x^{k}}-\sigma\left(p^{2}{ }_{2 k}+p^{3}{ }_{3 k}-p^{4}{ }_{3 k}\right)+q^{3}{ }_{2 k}-q^{2}{ }_{3 k}-\rho p^{1}{ }_{2 k} \tag{3.4}\\
& -A q^{4}{ }_{2 k}+B q^{1}{ }_{3 k}=0, \\
& E_{24}{ }^{k-}:-\frac{\partial \sigma}{\partial x^{k}}-\sigma\left(p^{2}{ }_{2 k}-p^{3}{ }_{4 k}+p^{4}{ }_{4 k}\right)-q^{2}{ }_{4 k}-q^{4}{ }_{2 k}+\rho p^{1}{ }_{2 k}- \\
& -A \underline{q}^{3}{ }_{2 k}+B q^{1}{ }_{4 k}=0, \\
& E_{34}{ }^{k-}: \rho\left(p^{1}{ }_{3 k}+p^{1}{ }_{4 k}\right)+\sigma\left(p^{2}{ }_{3 k}+p^{2}{ }_{4 k}\right)-\left(q^{3}{ }_{4 k}+q^{4}{ }_{3 k}\right)- \\
& -A\left(q^{3}{ }_{3 k}-q^{4}{ }_{4 k}\right)=0 .
\end{align*}
$$

Following the methods of H. Takeno, M. Ikeda and S. Abe to solve the above 64 equations we first express all p 's in terms of q 's and $\{k\}$ by the formula [7]

$$
\begin{equation*}
p^{k}{ }_{i j}=\left\{\left\{_{i j}^{k}\right\}+h^{k l}\left(q^{m}{ }_{l j} f_{j m}+q^{m}{ }_{l j} f_{i m}\right),\right. \tag{3.5}
\end{equation*}
$$

where $\left\{{ }_{i j}^{k}\right\}$ are the Christoffel symbols of the second kind formed from $h_{i j}=g_{i j}$ given by (1.1) and $h^{k l}$ is the conjugate contravariant tensor of $h_{k l}$. The nonvanishing independent components of $\left\{\begin{array}{l}k \\ i j\end{array}\right\}$ are

$$
\begin{array}{ll}
\left\{\begin{array}{l}
11
\end{array}\right\}=-B B_{1} /\left(1-B^{2}\right) \equiv B \mu, & \left\{\begin{array}{l}
33
\end{array}\right\}=A A_{3} /\left(1+A^{2}\right) \equiv A \psi, \\
\left\{\begin{array}{l}
21
\end{array}\right\}=-B_{1} /\left(1-B^{2}\right) \equiv \mu, & \left\{\begin{array}{l}
43
\end{array}\right\}=A_{3} /\left(1+A^{2}\right) \equiv \psi, \\
\left\{\begin{array}{l}
1 \\
22
\end{array}\right\}=-B_{2} /\left(1-B^{2}\right) \equiv \nu, & \left\{\begin{array}{l}
34 \\
44
\end{array}\right\}=-A_{4} /\left(1+A^{2}\right) \equiv-\phi, \tag{3.6}\\
\{22\}=-B B_{2} /\left(1-B^{2}\right)=B \nu, & \{44\}=A A_{4} /\left(1+A^{2}\right) \equiv A \phi,
\end{array}
$$

where $B_{1}, B_{2}, A_{3}, A_{4}$ stand for $\partial B / \partial x, \partial B / \partial y, \partial A / \partial z, \partial A / \partial t$ respectively.

Inserting the relevant quantities in (3.5) with the help of (2.10) and (3.6) we can express $40 p$'s in terms of $h_{i j}$ and $q^{k}{ }_{i j}$ as follows:

$$
\begin{align*}
p^{1}{ }_{11}= & B \mu+2 B \rho\left(q^{3}{ }_{12}-q^{4}{ }_{12}\right) /\left(1-B^{2}\right), \\
p^{2}{ }_{11} & =\mu+2 \rho\left(q^{3}{ }_{12}-q^{4}{ }_{12}\right) /\left(1-B^{2}\right), \\
p^{3}{ }_{11} & =2 \rho\left(q^{3}{ }_{13}-q^{4}{ }_{13}-A q^{3}{ }_{14}+A q^{4}{ }_{14}\right) /\left(1+A^{2}\right), \\
p^{4}{ }_{11} & =-2 \rho\left(A q^{3}{ }_{13}-A q^{4}{ }_{13}+q^{3}{ }_{14}-q^{4}{ }_{14}\right) /\left(1+A^{2}\right), \\
p^{1}{ }_{12}= & (B \sigma-\rho)\left(q^{3}{ }_{12}-q^{4}{ }_{12}\right) /\left(1-B^{2}\right), p^{2}{ }_{12}=(\sigma-B \rho)\left(q^{3}{ }_{12}-q^{4}{ }_{12}\right) /\left(1-B^{2}\right), \\
p_{12}^{3}= & \left(\sigma q^{3}{ }_{13}-\sigma q^{4}{ }_{13}+\rho q^{3}{ }_{23}-\rho q^{4}{ }_{23}\right) /\left(1+A^{2}\right)- \tag{3.7}\\
& \quad-A\left(\sigma q^{3}{ }_{14}-\sigma q^{4}{ }_{14}+\rho q^{3}{ }_{24}-\rho q^{4}{ }_{24}\right) /\left(1+A^{2}\right), \\
& \quad \quad-\left(\sigma q^{3}{ }_{14}-\sigma q^{4}{ }_{14}+\rho q^{3}{ }_{24}-\rho q^{4}{ }_{24}\right) /\left(1+A^{2}\right),
\end{align*}
$$

and the expressions for $p^{k}{ }_{13}, p^{k}{ }_{14}, p^{k}{ }_{22}, p^{k}{ }_{23}, p^{k}{ }_{24}, p^{k}{ }_{33}, p^{k}{ }_{34}, p^{k}{ }_{44}$ are omitted for brevity's sake.

On substituting the values of p 's in terms of q 's obtained from (3.7) in (3.2) and (3.3) we find that 40 equations thus obtained are identically satisfied, while on putting the values of p 's in (3.4) we have 24 equations in q 's as given below:

$$
\begin{align*}
E_{12}{ }^{1-}: & q_{12}^{1}-B q_{12}^{2}+\rho \sigma\left\{(1+A)\left(q^{3}{ }_{13}-q^{4}{ }_{13}\right)+(1-A)\left(q^{3}{ }_{14}-\right.\right. \\
& \left.\left.\quad-q^{4}{ }_{14}\right)\right\} /\left(1+A^{2}\right)-\rho^{2}\left\{(1+A)\left(q^{3}{ }_{23}-q^{4}{ }_{23}\right)\right. \\
& \left.\quad+(1-A)\left(q^{3}{ }_{24}-q^{4}{ }_{24}\right)\right\} /\left(1+A^{2}\right)=0, \\
E_{12}{ }^{2-}: & q_{12}^{2}-B q_{12}^{1}+\sigma^{2}\left\{(1+A)\left(q^{3}{ }_{13}-q^{4}{ }_{13}\right)\right. \\
& \left.+(1-A)\left(q_{14}^{3}-q^{4}{ }_{14}\right)\right\} /\left(1+A^{2}\right)-\rho \sigma\left\{(1+A)\left(q^{3}{ }_{23}-q^{4}{ }_{23}\right)\right. \\
& \left.+(1-A)\left(q^{3}{ }_{24}-q^{4}{ }_{24}\right)\right\} /\left(1+A^{2}\right)=0, \tag{3.8}
\end{align*}
$$

(Similar 20 equations are omitted for brevity's sake).

$$
\begin{aligned}
& E_{34}{ }^{3-}: q^{3}{ }_{34}-A q^{4}{ }_{34}+\left\{(\rho+B \sigma)\left(\rho q_{13}^{1}+\sigma q_{13}^{2}+\rho q_{14}^{1}+\sigma q^{2}{ }_{14}\right)\right. \\
&\left.\quad+(\sigma+B \rho)\left(\rho q^{1}{ }_{23}+\sigma q^{2}{ }_{23}+\rho q^{1}{ }_{24}+\sigma q^{2}{ }_{24}\right)\right\} /\left(1-B^{2}\right)=0, \\
& E_{34}{ }^{4-}: q^{4}{ }_{34}+A q_{34}^{3}+(\rho+B \sigma)\left(\rho q_{13}^{1}+\sigma q_{13}^{2}+\rho q_{14}^{1}+\sigma q_{14}^{2}\right) \\
&\left.+(\sigma+B \rho)\left(\rho q^{1}{ }_{23}+\sigma q^{2}{ }_{23}+\rho q^{1}{ }_{24}+\sigma q^{2}{ }_{24}\right)\right\} /\left(1-B^{2}\right)=0 .
\end{aligned}
$$

Thus $24 q$'s as obtained from 24 simultaneous equations in (3.8) are given by

$$
\begin{align*}
& q_{12}^{1}=q^{2}{ }_{12}=q^{3}{ }_{12}=q_{12}^{4}=q^{1}{ }_{34}=q^{2}{ }_{34}=q^{3}{ }_{13}=q^{4}{ }_{13}=q^{3}{ }_{14}= \\
&=q_{14}^{4}=q^{3}{ }_{23}=q^{4}{ }_{23}=q^{3}{ }_{24}=q^{4}{ }_{24}=q^{3}{ }_{34}=q^{4}{ }_{34}=0, \tag{3.9}\\
& q^{1}{ }_{13}=-q_{14}^{1}=\beta \mu, \quad q_{23}^{1}=-q^{1}{ }_{24}=\alpha \nu, \\
& q_{13}^{2}=-q^{2}{ }_{14}=\alpha \mu, \quad q^{2}=-q_{24}^{2}=\beta \nu,
\end{align*}
$$

where $\alpha=-(\rho+B \sigma)\left(-B+\frac{2 A \rho \sigma}{\left(1+A^{2}\right)}\right) /\left\{\left(1+\frac{2 A \sigma^{2}}{\left(1+A^{2}\right)}\right)\left(1+\frac{2 A \rho^{2}}{\left(1+A^{2}\right)}\right)-\right.$

$$
\left.-\left(-B+\frac{2 A \rho \sigma}{\left(1+A^{2}\right)}\right)^{2}\right\}
$$

and $\beta=(\rho+B \sigma)\left(1+\frac{2 A \rho^{2}}{\left(1+A^{2}\right)}\right) /\left\{\left(1+\frac{2 A \sigma^{2}}{\left(1+A^{2}\right)}\right)\left(1+\frac{2 A \rho^{2}}{\left(1+A^{2}\right)}\right)\right.$

$$
\left.-\left(-B+\frac{2 A \rho \sigma}{\left(1+A^{2}\right)}\right)^{2}\right\}
$$

Then putting the values of q 's from (3.9) in (3.7) we get the values of p 's in terms of A, B and ρ, σ as follows:

$p^{k}{ }_{11}[B \mu$	μ	0	0],
$p^{k}{ }_{12}[0$	0	0	0],
$p^{k}{ }_{22}[\nu$	$\mathrm{B} \nu$	0	0],
$p^{k}{ }_{34}[0$	0	0	0],
$p^{k}{ }_{13}[0$	0	$\frac{-(1+A) M \mu}{\left(1+A^{2}\right)}$	$\left.\frac{-(1-A) M \mu}{\left(1+A^{2}\right)}\right],$
$p^{k}{ }_{14}[0$	0	$\frac{(1+A) M \mu}{\left(1+A^{2}\right)}$	$\left.\frac{(1-A) M \mu}{\left(1+A^{2}\right)}\right],$
$p^{k}{ }_{23}[0$	0	$\frac{-(\mathrm{i}+A) L \nu}{\left(1+A^{2}\right)}$	$\left.\frac{-(1-A) L \nu}{\left(1+A^{2}\right)}\right]$
$p^{k}{ }_{24}[0$	0	$\frac{(1+A) L \nu}{\left(1+A^{2}\right)}$	$\left.\frac{(1-A) L \nu}{\left(1+A^{2}\right)}\right]$,
$p^{k}{ }_{33}\left[\frac{2(M \mu+B L \nu)}{\left(1-B^{2}\right)}\right.$	$\frac{2(B M \mu+L v)}{\left(1-B^{2}\right)}$	$A \psi$	$\Psi]$,
$p^{k}{ }_{44}\left[\frac{2(M \mu+B L \nu)}{\left(1-B^{2}\right)}\right.$	$\frac{2(B M \mu+L \nu)}{\left(1-B^{2}\right)}$	- ϕ	$A \phi \quad]$,

where $(\rho \alpha+\sigma \beta)=L$ and $(\sigma \alpha+\rho \beta)=M$.
Substituting the values of p 's and q 's from (3.10) and (3.9) respectively into (3.1) we get the non-symmetric connections as follows :

$\Gamma^{k}{ }_{11}\left[B_{1}{ }^{1} \quad \mu\right.$	0	0
$\Gamma^{k}{ }_{22}[\nu \quad B \nu$	0	0]
$\Gamma^{k}{ }_{12}[0$	0	0 I
$\Gamma_{43}^{k}{ }_{43}[0 \quad 0$	0	0
$\Gamma_{13}^{k}[\beta \mu, \quad \alpha \mu$	$\frac{-(1+A) M \mu}{\left(1+A^{2}\right)}$	$\left.\frac{-(1-A) M \mu}{\left(1+A^{2}\right)}\right]$
$\Gamma^{k}{ }_{14}[-\beta \mu \quad-\alpha \mu$	$\frac{(1+A) M \mu}{\left(1+A^{2}\right)}$	$\left.\frac{(1-A) M \mu}{\left(1+A^{2}\right)}\right]$
$\Gamma^{*}{ }_{23}[\alpha \nu \quad \beta \nu$	$\frac{-(1+A) L \nu}{\left(1+A^{2}\right)}$	$\left.\frac{-(1-A) L \nu}{\left(1+A^{2}\right)}\right]$
$\Gamma^{*}{ }_{24}[-\alpha \nu-\beta \nu$	$\frac{(1+A) L \nu}{\left(1+A^{2}\right)}$	$\frac{(1-A) L \nu}{\left(1+A^{2}\right)}$
$\Gamma^{k}{ }_{31}[-\beta \mu \quad-\alpha \mu$	$\frac{-(1+A) M \mu}{\left(1+A^{2}\right)}$	$\left.\frac{-(1-A) M \mu}{\left(1+A^{2}\right)}\right]$
$\Gamma_{32}^{k}[-\alpha \nu \quad-\beta \nu$	$\frac{-(1+A) L \nu}{\left(1+A^{2}\right)}$	$\left.\frac{-(1-A) L \nu}{\left(1+A^{2}\right)}\right],$
$1^{k}{ }_{41}[\beta \mu, \quad \alpha \mu$	$\frac{(1+A) M \mu}{\left(1+A^{2}\right)}$	$\left.\frac{(1-A) M \mu}{\left(1+A^{2}\right)}\right]$
$\Gamma_{42}^{k}[\alpha \nu \quad \beta \nu$	$\frac{(1+A) L \nu}{\left(1+A^{2}\right)}$	$\frac{(1-A) L \nu}{\left(1+A^{2}\right)}$
$\Gamma^{k}{ }_{33}\left[\frac{2(M \mu+B L \nu)}{\left(1-B^{2}\right)} \frac{2(B M \mu+L \nu)}{\left(1-B^{2}\right)}\right.$	$A \psi$	ψ
$\Gamma^{k}{ }_{44}\left[\frac{2(M \mu+B L \nu)}{\left(1-B^{2}\right)} \frac{2(B M \mu+L \nu)}{\left(1-B^{2}\right)}\right.$	$-\phi$	$A \phi$

4. Solution of the Secoud Field Equation (1.3). Inserting relevant quantities in (1.3) we find that out of the four equations $\Gamma_{v s}^{s}=0$ equations for $t=1$ and $t=2$ are identically satisfied while equations for $t=3$ and $t=4$ are satisfied when the following relation holds:

$$
\begin{equation*}
\mu+\nu=0 \tag{4.1}
\end{equation*}
$$

Thus (4.1) is a necessary condition in order that the Einstein's second field equation in the space-time (1.1) be satisfied.
5. Solutions of the Field Equations (1.4). To solve the field equations (1.4) we shall first calculate the components of the generalized Ricci tensor by the formula

$$
\begin{equation*}
R_{i j}=\Gamma_{i j, s}^{s}-\Gamma_{i s, j}^{s}-\Gamma_{t j}^{s} \Gamma_{i s}^{t}+\Gamma_{t s}^{s} \Gamma_{i j}^{t} \tag{5.1}
\end{equation*}
$$

Substituting the values of Γ^{k} from (3.11) into (5.1) we get the following components of the generalized Ricci tensor:

$$
\begin{align*}
& R_{11}=\mu_{2}+B \mu \nu+\frac{2 A}{\left(1+A^{2}\right)}(M \mu)_{1}-\frac{4 A^{2} M^{2} \mu^{2}}{\left(1+A^{2}\right)^{2}}-\frac{2 A \mu(B M \mu+L \nu)}{\left(1+A^{2}\right)}, \\
& R_{22}=\nu_{1}+B \mu \nu+\frac{2 A}{\left(1+A^{2}\right)}(L \nu)_{2}-\frac{4 A^{2} L^{2} \nu^{2}}{\left(1+A^{2}\right)^{2}}-\frac{2 A \nu(M \mu+B L \nu)}{\left(1+A^{2}\right)}, \\
& R_{12}=-(B \mu)_{2}-\mu \nu+\frac{2 A}{\left(1+A^{2}\right)}(M \mu)_{2}-\frac{4 A^{2} L M \mu \nu}{\left(1+A^{2}\right)^{2}}, \\
& R_{21}=-(B \nu)_{1}-\mu \nu+\frac{2 A}{\left(1+A^{2}\right)}(L \nu)_{1}-\frac{4 A^{2} L M \mu \nu}{\left(1+A^{2}\right)^{2}}, \\
& R_{13}=(\beta \mu)_{1}+(\alpha \mu)_{2}-(1-B) \alpha \mu \nu-M N \mu-\left(\frac{(1-A) M \mu}{\left(1+A^{2}\right)}\right)_{3}- \\
& -\left(\frac{(1-A) M \mu}{\left(1+A^{2}\right)}\right)_{4}, \\
& R_{31}=-(\beta \mu)_{1}-(\alpha \mu)_{2}+(1-B) \alpha \mu \nu- \\
& -M N \mu-\left(\frac{(1+A) M \mu}{\left(1+A^{2}\right)}\right)_{3}-\left(\frac{(1-A) M \mu}{\left(1+A^{2}\right)}\right)_{4}, \tag{5.2}\\
& R_{23}=(\alpha \nu)_{1}+(\beta \nu)_{2}--(1-B) \alpha_{1} \nu- \\
& -L N \nu-\left(\frac{(1-A) L \nu}{\left(1+A^{2}\right)}\right)_{3}-\left(\frac{(1-A) L \nu}{\left(1+A^{2}\right)}\right)_{4}, \\
& R_{24}=-(\alpha \nu)_{1}-(\beta \nu)_{2}+(1-B) \alpha \mu \nu+ \\
& +L S \nu+\left(\frac{(1+A) L \nu}{\left(1+A^{2}\right)}\right)_{3}+\left(\frac{(1+A) L \nu}{\left(1+A^{2}\right)}\right)_{4}, \\
& R_{14}=-(\beta \mu)_{1}-(\alpha \mu)_{2}+(1-B) \alpha \mu \nu+M S \mu+Q, \\
& R_{41}=(\beta \mu)_{1}+(\alpha \mu)_{2}-(1-B) \alpha \mu \nu+M S \mu+Q, \\
& R_{32}=-(\alpha \nu)_{1}-(\beta \nu)_{2}+(1-B) \alpha \mu \nu-L N \nu-W, \\
& R_{42}=(\alpha \nu)_{1}+(\beta \nu)_{2}-(1-B) \alpha \mu \nu+L S \nu+W \text {, } \\
& R_{34}+(A \psi)_{4}=R_{43}+(A \phi)_{3}=\phi \psi-I-A H,
\end{align*}
$$

$$
\begin{aligned}
& R_{33}=\psi_{4}+A \phi \psi+I+H+2 T, \\
& R_{44}=-\phi_{3}-A \phi \psi+I-H+2 T,
\end{aligned}
$$

where

$$
\begin{gathered}
N=\frac{A(1-A) \phi+(1+A) \Psi}{\left(1+A^{2}\right)}, \quad S=\frac{A(1+A) \psi-(1-A) \phi}{\left(1+A^{2}\right)}, \\
Q=\left(\frac{(1+A) M \mu}{\left(1+A^{2}\right)}\right)_{3}+\left(\frac{(1+A) M \mu}{\left(1+A^{2}\right)}\right)_{4}, \quad W=\left(\frac{(1+A) L \nu}{\left(1+A^{2}\right)}\right)_{3}+ \\
+\left(\frac{(1-A) L \nu}{\left(1+A^{2}\right)}\right)_{4}, \\
I=\beta^{2}\left(\mu^{2}+\nu^{2}\right)+2 \alpha^{2} \mu \nu, \quad H=\frac{4\left(M^{2} \mu^{2}+2 B M L \mu \nu+L^{2} \nu^{2}\right)}{\left(1-B^{2}\right)\left(1+A^{2}\right)}, \\
T=\frac{B\left\{M \mu^{2}+(L+M) B \mu \nu+L \nu^{2}\right\}}{\left(1-B^{2}\right)}+\left(\frac{M \mu+B L \nu}{\left(1-B^{2}\right)}\right)_{1}+\left(\frac{B M \mu+L \nu}{\left(1-B^{2}\right)}\right)_{2} .
\end{gathered}
$$

Now substituting the values of $R_{i j}$ from (5.2) into (1.4a) and using (4.1), we find that it is satisfied if and only if

$$
\begin{align*}
& \rho \alpha+\sigma \beta=0, \quad \sigma \alpha+\rho \beta=0, A_{34}-A A_{3} A_{4} /\left(1+A^{2}\right)=0, \tag{5.3}\\
& \alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}=0 . \tag{5.4}
\end{align*}
$$

Next putting $R_{i j}$ from (5.2) into (1.4b) (i) and using (4.1) we see that it is satisfied if the relation (5.3) holds, while equation (1.4b) (ii), for the same values of $R_{i j}$, is satisfied if and only if

$$
\begin{align*}
& \left(\beta_{3}+\beta_{4}\right)\left\{\left(B_{11}-B_{22}\right)+2 B\left(B_{1}{ }^{2}-B_{2}{ }^{2}\right) /\left(1-B^{2}\right)\right\}+B_{1}\left(\beta_{13}+\beta_{14}+\alpha_{23}+\alpha_{24}\right)- \\
& B_{2}\left(\alpha_{13}+\alpha_{14}+\beta_{23}+\beta_{24}\right)=0, \tag{5.5}\\
& \alpha\left(\nu_{11}+\nu_{22}\right)+2\left(\alpha_{1}+\beta_{2}\right) \nu_{1}+\left(\alpha_{11}+\alpha_{22}\right) \nu+2\left(\alpha_{2}+\beta_{1}\right) \nu_{2}+2 \beta \nu_{21}+2 \beta_{21} \nu \\
& +\alpha(\mu+2 B \nu)\left(\nu_{2}-\nu_{1}\right)+\nu(\mu+B \nu)\left(\alpha_{2}-\alpha_{1}\right)+\alpha \nu\left\{\left(B_{2}-B_{1}\right) \nu+\left(\mu_{2}-\mu_{1}\right)\right\}=0 .
\end{align*}
$$

Thus, the values of $g_{i j}$ given by (2.10) represent the wave solution of the strong field equation (1.4a) under the conditions (5.3) and (5.4). While the same $g_{i j}$ are the solutions of the weak field equations (1.4b) (i) and (1.4b) (ii) under the conditions (5.3) and (5.5) respectively.
6. Solutions of the Field Equations of Bonnor. The first two of the field equations of W.B. Bonnor's non-symmetric unified field theory [${ }^{3}$] are the same as the field equations (1.2) and (1.3) of Einstein's unified field theory. Hence their solutions in the space-time (1.1) shall be given by (2.10) and (4.1).

To find the solutions of the remaining two field equations, namely (1.5a) and (1.5b), we use the components of $R_{i j}$; the generalized Ricci tensor given by (5.2). The contravariant components $g^{i j}$ of the tensor $g_{i j}$ given by (2.10) can be shown to be as follows:
$\left(g^{i j}\right)=\frac{1}{m}\left[\begin{array}{llll}-\left(1+A^{2}+2 \sigma^{2} A\right) & -\left(1+A^{2}\right) B+2 A \rho \sigma & (1+A)(B \sigma+\rho) & (1-A)(B \sigma+\rho) \\ -\left(1+A^{2}\right) B+2 A \rho \sigma & -\left(1+A^{2}+2 A \rho^{2}\right) & (1+A)(B \rho+\sigma) & (1-A)(B \rho+\sigma) \\ -(1+A)(B \sigma+\rho) & -(1+A)(B \rho+\sigma) & -\left(1-B^{2}\right)+P & \left(1-B^{2}\right) A+P \\ -(1-A)(B \sigma+\rho) & -(1-A)(B \rho+\sigma) & \left(1-B^{2}\right) A+P & \left(1-B^{2}\right)+P\end{array}\right]$
where $m=\left(1+A^{2}\right)\left(1-B^{2}\right)$ and $P=2 B \rho \sigma+\rho^{2}+\sigma^{2}$.
Then substituting $g_{i j}$ and $g^{i j}$ from (2.10) and (6.1) into (1.6) we get the following components of $\dot{U}_{i k}$:

$$
\begin{align*}
& U_{11}=\frac{2 A}{m}\left\{2 B_{\rho}(B \rho+\sigma)+\left(\sigma^{2}-\rho^{2}\right)\right\}, \\
& U_{12}=U_{24}=-\frac{2 A}{m}\left\{B\left(\rho^{2}+\sigma^{2}\right)+2 \rho \sigma\right\}, \\
& U_{22}=\frac{2 A}{m}\left\{2 B \sigma(B \sigma+\rho)+\left(\rho^{2}-\sigma^{2}\right)\right\}, \\
& U_{13}=-U_{31}=-U_{14}=U_{41}=-2 \rho, \tag{6.2}\\
& U_{23}=-U_{32}=-U_{24}=U_{42}=-2 \sigma, \\
& U_{34}=U_{43}=\frac{2 P}{m}, \\
& U_{33}=-\frac{2\left(1-A+A^{2}\right) P}{m}, \quad U_{44}=-\frac{2\left(1+A+A^{2}\right) P}{m} .
\end{align*}
$$

Putting $R_{i j}$ from (5.2) and $U_{i k}$ from (6.2) into the field equation (1.5a) we find that it is satisfied if and only if

$$
\begin{gather*}
m A_{34}-\left(1-B^{2}\right) A A_{3} A_{4}+(3+2 A)\left(1+A^{2}\right)\left(\rho^{2}+\sigma^{2}\right)\left(1-B^{2}-2 B^{4}\right) p^{2}=0 \\
L=0, \quad M=0 . \tag{6.3}
\end{gather*}
$$

Using (5.2) and (6.2) into the field equation (1.5b), we arrive at the same equation (5.5) of section 5 . Therefore, (1.5 b) is satisfied if and only if (5.5) is satisfied.

Thus the wave solutions of the field equations of Bonnor's non-symmetric unified field theory for the space-time (1.1) are given by (2.10) under the conditions (4.1), (5.5) and (6.3).
7. Solution of Schrödinger's Field Equations. Here again the first two field equations of E. Schrödinger's non-symmetric unified field theory are same as the first two field equations of Einstein's or Bonnor's unified field equations, given in Section 1, which will again have the solution (2.10) under the condition (4.1). The remaining two field equations are (1.7a) and (1.7b).

On substituting from (5.2) and (2.10) into (1.7a) for $i j=11,22,12$ etc. we find that it is satisfied if and only if

$$
\begin{align*}
& A A_{3} A_{4}-A_{34}\left(1+A^{2}\right)+\lambda\left(1+A^{2}\right)^{2}=0, \quad L=0, \quad M=0 \\
& B^{2} B_{1} B_{2}+B B_{12}\left(1-B^{2}\right)+\lambda B\left(1-B^{2}\right)^{2}=0 \tag{7.1}
\end{align*}
$$

while the field equation (1.7b) is satisfied if (5.5) holds.
Thus the wave solutions of the field equations of Schrödinger's non-symmetric unified field theory for the space-time (1.1) are given by (2.10) under the conditions (4.1), (5.5) and (7.1).

REFERENCES

[${ }^{1}$] LAL, K.B. and MUSTAKEEM
[$\left.{ }^{2}\right]$ EINSTEIN, A.
[${ }^{3}$] BONNOR, W.B.
$\left[{ }^{4}\right]$ TAKENO, H .
[${ }^{5}$] SCHRÖDINGER, E. : : Space-time structure, Cambridge (1950). and ABE, S.
[${ }^{6}$] IKEDA, M. : On static solutions of Einstein's generalized theory of gravitation, I, Prog. Theor. Phys. 12 (1954), 17-30.
[?] TAKENO, H., IKEDA, M. . : On solutions of new field equations of Einstein and
: On wave solutions of the field equations of general relativity, Rendi-Conti, Vol. LVIII, No.1, Serie VIII (1975), 18-23.
: The meaning of relativity, Fifth ed. Revised, London, Appendix II (1951).
: The equations of motion in the non-symmetric unified field theory, Proc. of Royal Society, London, A 226 (1954), 266-377.
: On some generalized plane wave solutions of non-symmetric unified fjeld theories, \amalg. Tensor, N.S. 8 (1958), 71-78. those of Schrödinger, Prog. Theor. Phys. 6 (1951), 837-848.

DÉPARTMENT OF MATHEMATICS
UNIVERSITY OF GORAKHPUR
GORAKHPUR-273001 INDIA

$\ddot{\mathrm{O}} \mathrm{ZET}$

Yazarların daha önceki bir çalışmalarinın devamı olarak, bu çalışada

$$
d s^{2}=-d x^{2}-d y^{2}-d z^{2}+d t^{2}+2 A(z, t) d z d t+2 B(x, y) d x d y
$$

metriği ile verilen uzay-zamandaki Einstein, Bonnor ve Schrödinger'in nonsimetrik birleşik alan teorilerine ait alan denklemlerinin dalga çözümlerini bulma problemiyle uğraşlmıştır.

