. THE WAVE SOLUTIONS OF NON-SYMMETRIC UNIFIED FIELD
THEORIES OF EINSTEIN, BONNOR AND SCHRODINGER

K.B. LAL and MUSTAKEEM

As a sequel to a former paper of the authors, an attempt has been made

in the present paper to obtain the wave solutions of the field equations of

non-symimetric unified field theories of Einstein, Bonnor and Schrddinger
in the space-time represented by the metric”

ds? = — dx? —dyF — dz2? + dtT + 24 (2, t) dzdt + 2B (x, y) dxdy.

1. Introduction. Recently Lal and Mustakeem [']V have investigated the
wave solutions of the field equations of general relativity in a space-time, rep-
resented by the metric

ds? = — dx? — dy? — d2? | dt* - 2Adzdt - 2Bdxdy , 1.1

where A = A (z,t) and B = B(x,y). In this paper we have attempted to obtain
the wave solutions of the field equations of non-symmetric unified field theories
of Einstein, Bonnor and Schrédinger in the space-time (1.1).

The field equations of A.Einstein’s unified field theory [*] are
Bk = 8ig — 8y Uy — 81 T = 0, (1.2)
T,=T5,=0, (1.3)
a} Ry =T%, — Doy — Ta Iy + 9, T =0
b) (1) Ry = 05 (i) Ryg + Ry + Ruzy =0

v ¥ ¥

(1.4

where a comma followed by an index denotes ordinary partial differentiation
and the Latin indices take the vaules 1, 2, 3, 4. A bar (-} and a hook (v) under
two indices denote respectively symmetry and anti-symmetry between them.

Following the above notations the field equations of W.B. Bonnor [¥] are
given by (1.2}, (1,3) and

"} Numbers in brackets refer to the references at the end of the paper, b
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L5
b) (Riji + Ry + Rypp) -+ 0 (U + Ujpy + Uy, ) =0, (1-3)

¥ ¥ v v v ¥
where R;; is the Ricci tensor, p is an arhitrary real or imaginary constant and
U, is given by

ik

mn 1 mn

Uik =g 8" Eim Buk + _i_gv Eum 8ik - (16)
¥

Using similar notations the field equations of E.Schrédinger (Il P are
given by (1.2), (1.3) and

a) Ry+ hgiy=0,

. L (.7
b) (Ri; + Agin), + (R + hgi),y + Ry + hgy),; =0

where A is a non-vanishing constant,

2. Calcuiation of g;;, We have obtained ['] the (transverse-electro-mag-
netic wave solutions Fj; of the generalized Maxwell’s equations in the space-
time (1.1) which are given by

0 0 . — gy gy
— 0 0 Pl - [31 . .
Fy=t o . 0 ol @.1)
- 0’1 Pi 0 0

where p, and o are arbitrary functions of x, ¥ and z-#, which satisfy the con-
dition 9py/dx + 8o,/8y = 0.

In this section we shall determine the non-symmetric g, corresponding
to above F;;. Assume that

gy =gt gi="rhi+/i, 2.2)
. v
where gi; = hy; is the symmetric part coinciding with the metric tensor of the
Riemannian space-time defined by the iine element (1.1) and g; = f;; is the
v

anti-symmetric part of gy corresponding to electromagnetic field (2.1). Thus
using (1.1) and (2.2) g; can be put as

—1 B+1, Sis J1a
Y} — B —fin —1 Jas Sa4
(gu) —7 s U oatr (2.3)
—fu -t A *fzm 1

To connect the Fy; given by (2.1) with g;; we shail use the relation
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1 I
Fh:EﬁMV*gﬂ’(gzkﬂmn (2.4)

introduced by Tkeda [6], where gV is the contravariant tensor of g;; and
£, = + 1 or —1 according as , j, k, { have even or odd permutations. From
(2.1) we have I;, = Fj, = 0. Hence from (2.4) we get

g2 = g2, g¥ = g%, (2.5)

Calculating the contravariant components g'2, g2t , g™, 2% from (2.3) and
substituting into (2.5) we obtain the following equations :

S (14 A? _‘f324) +f34 (f13f24 '"ﬁ:;fﬂ) =0,

(1 - Bz.)fs*l +f122.f34 ~ /12 (sz,f;u ”‘f:-1f23) =0,
which on combining are reduced to (I — B? i + {1+ A"*\f.fz = 0, where
(L — B) > 0, showing that f;, = f;, = 0. Thus (2.3) becomes

—1 B Jis fia
B — 1 f23 f24

—fi3 — fa3 —1 A

*fm ‘f24 A 1

The determinant g formed from the above g;; is given by
g=— (1 + AU — B[4 + [~ f3+ T4+ Fiafor — NiaSos)
+24 (f::;fm +f23fi4) + 28 (f14f24 _10131023} -
+ 24B (fi3/ — S14S0) - 2.7
Assuming that fi, 5, — f1,/23 = 0. we have from (2.6)
ggl¥=—ggt=— B fo + ABfi:; —fis + A4S,
ggtt=—gg" =ABfy + Bfyy + ASis - Sas (2.8)
§8P = —gg= —fut+ Afyy — Bfiy + ABS,,
g8 =—ggP=Afp+fut ABfs+ Bf,.

Combining (2.1), (2.4) and (2.8) we get the four equations

(gs) = (2.6)

— Bfy +ABfy, —fat+ Af, = V— go,, etc., which on solving give
fa=—fu=V=g L+ D~ Bo) | (L + )0 - B,

o= fu=V_—g( + A (e, — Bp) /(1 + 4) (1~ BY,

and we have g = — (1 - A9 (Il — B?). Substituting this value of g in (2.9)
we have

(2.9)
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fis= —fuu= (1 + A4 (o, — Bo)/ V= g = p (say),
Sy = = foa = (1 + A) (0, — Bp)/ \/— g = & (say),

where p and ¢ are functions of (z-#). Thus finally we have the mewic g;; as

—1 B g —p
B —1 g —0a
= 2.10
@r=| 0 g _] p (2.10)
P a A 1
3. Connections I'%;; corresponding to g;;. Let us put
Tk = p*u 3 g5, (3.1)

where p",-j = p'r‘j,' - I‘",-; and q",-j = — q"ﬁ = F",‘j. For the above
"‘ v

substitution the field equation (1.2) will givé 64 equations involving 24 ¢’s and
40 p’s.

Putting g ; r = E*;;, we have from (1.2) with { = j the following equations :
Bt — Bph + pdy — et = 0,
Eryy i — Bplyy -+ P+ 04 — 04%, =0, (3.2)
Efyg 1 — pqty 0G0 + PPy — Ap'y =0,
Efyoq'a o — Ay — Py =0.

Now putting gy ., + gy ;& = £%*, from (1.2) with i#/j and (2.10), we have

a2
Bl Ak

— B(p'w + 040 + 04 Pl ol@ — ) +

+ pl(¢% — ') =0,
E* P+ 1l — 0@l — P+ 9 — oq%y —
—Agly — Bghy =0,
E L p(@ e + Can — 04 — P+ Pl T odk — AP,
— Bpl =0, (3.3)

Byt i olghy, — s + %) — PPk — Plac + 00 + A0
+ Bply =0,

Byt io(@y + @ — 2% + Pl — Pt 0a e — AP,
— B, =0,
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o4

o k+
Byt

+ plg i3k - qlaurc) + (P — ) +P34k = P43k -

— A (PP + P.44k) =0.
Next putting gy, 2 — &7, = E;*, we have from (1.2) with is£7 and (2.10)
Ep* = By — 4%0 + @y — 9" F o (P — ) — 0% — ph0 =0,
ap

E 5 8? — p(plyy Pla — ')+ @ — gla, — 0Py —
— Ag* + Bg%, =0,

E g — aa;k — o(ph — Py + 1Y) — ¢l — 2l
+opry — AP+ Bay =0,

Byt 38% — (PP + Pax — Plad + P — 0% — 09" (3.4)
—Ag'y + Bgly =0,

By — ai:‘ — 0 (PP — Pl + P40 — ok — e+ o0

—Ag + Bgly =0,

Ey* ro@'y + pld + 0Py + PR — (P + ') —
— APy — ') = 0.

Following the methods of H. Takeno, M. Ikeda and S. Abe to solve the
above 64 equations we first express all p’sin terms of ¢’s and {g} by the for-
mula [7]

Ply= &+ @ o+ a5 S0 (3.5)
where {g_} are. the Christoffel symbols of the second kind formed from hij == iy

given by (1.1) and A is the conjugate contravariant tensor of %,,. The non-
vanishing independent components of {f} are

IVW—=— BB/l —B)= B, {33} = A AJ(1 + A% = Ay,

11f
W= BIU—B)=n, =4 =
=T BIA=B) =y,  {i=—A/(+DH=—¢ (6

Gop = —BB/(1—B)= By, [h=AA/(1+ ) =4,
where By, B,, 4,, 4, stand for 8B/dx, 0B/0y, 04/3z, 3.4/t respectively.
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Inserting the relevant quantities in (3.5) with the help of (2.10) and (3.6)
we can express 40 p’s in terms of &;; and ¢%; as follows :
Plu = By + 2 Bp (qsu - q412) /(1 — B%,
PPu=p +2 plg?, — q412) f (1 — B%,
‘ p311 =2 p(qaﬂ - q413 — 4 Q'314 + 4 q414) / (1 + AZ) Fl

Pu=—20dqy —Agy+ @ — a1+ 4,

P = (Bo—p) (¢%, — q* /(1 — BY), p*,—(c — Bp) (¢*,, — ¢* ) )/(1 — BA,

Py = (00%, — 0¢h3 + pq' — pa'n) [ (1 + 4D — (3.7
— A(0g*, — g%, + pgy — pgha (L + 49,

Plo=— A{og*s — 0g* s + p0%; —pgtn) [ (1 + 45 —

— (0% — 0 g* + paPhy — pah) [ (1 + 4D,

...........................................................................

and the expressions for p*,, p*1, P*0. P% P00 DP*a3. P¥ay P, are omitted for
brevity’s sake.

On substituting the values of p’s in terms of ¢’s obtained from (3.7) in (3.2)
and (3.3) we find that 40 equations thus obtained are identically satisfied, while
on putting the values of p’s in (3.4) we have 24 equations in g’s as given below :

Ey gl Bl +eo {1+ D) (@ — ¢ + 0 — D, —
— D (L4 A — (L + A) (g, — 44
-+ (1;“ D (P — a9} A+ 49 =0,
E7iqh, — Ba'n + {1+ 4) (@ — q*)
+ {1 — D@y — g% [0+ 42 — po{(} + A (¢° — %)
F (= D% — g4 L+ 4H=0, (3.8)

(Siinilar 20 equations are omitted for bre\{it_:y’s sake).
EJ gt — A qh + {1+ Bo) (pg'y; + og?; + pqty, + og?)
+ (o + B) (pq'y, + 0% + pa'yy + 0¢%)} [ (1 — B =0,
Ey"iqhy + Aqh, + (o + Bo) (pg' )3 + og%; + pa'yy + 0g%y)
+ (o + Bo) (pq'2s + 04%3 + 042 + 0¢%} [ (1 — B =0.

Thus 24 ¢’s’as obtained from 24 simultaneous equations in (3.8} are given
by \
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1 g2 g3t 1 2 3 43
T~ 9~ dp=0y—=—¢u=—"9nn=qgn=4qy= -

=== = =g = =9", =0, (3.9
qlls = 9'114 = Bp‘ » 9123 = = 4124 = &V,
g2 = — g% = o, G = — g%, = BV,
, 2 2
where o == — (p 4 Bo) (; B Mi) /%(1 +i43—) (1 -+ 247 N
(1 + 4% (1+ 4% (1 + 43

(r e
(1+ 4%

2A4p? 2A40? 2Ap?
d g—= Bo)[1l +—F— 1 1
amd Bt ®(+0+A”/H_thﬁ)(+ﬂ+#J

ﬁ(3+_%ﬂ_ft
(1 + 4%

Then putting the values of ¢’s from (3.9) in (3.7) we get the values of p’s
in terms of 4, B and p,o as follows :

P4y [ Bu i3 0 0 1.
p*, [0 0 0 0 1,
Py [y Bv 0 0 L
P [0 0 0 0 1,
2l o 0 — (4 )My — (L~ A) Mp]
L (1 + 4% 1+ 4%
i I+AMu (1 —A)Mp |
kL.l 0 0 , (3.1
Pl ara  ara | OO
s 0 0 —(i-+Av —(1 —‘A)Lv" ,
i (1 + 4% 1+ 4%
T 0 Uty (—d)Iv |
B (I+ 4% a+4y
(2 (M + BLv) 2 (BMy + Lv) -
k A . ,
Pl 0 “ oy i—m v
[ 2 (My + Biv) 2 (BMuy 4+ Lv) i
k _ 4 ,
MTatm  am Y A _

where (pe + off) = I and (oo | off) = M..

Substituting the values of p’s and g’s from (3.10) and (3.9) respectively into
(3.1) we get the non-symmetric connections as follows :
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I‘"]] [Bp. " 0 0 1

Tk, [v By 0 0 !

rk%% [0 0 0 0 : I

I‘Icg; [0 0 0 0 1.

- : — A+ A Mu —(1— A4 My

T* '
n | B - At 4 (1 + 4 ]
b (1 4 A Mp. (1 — A) My,

I‘R o — ]
u| B a” 1+ 1+ ) ]
Ty |av Bv U+ Ly = (1= 4 Lv] ]
5 1+ 4% (1+ 49
re [_ N g (1 + A) Ly (1 — A) Ly ] ,

1+ 4% (14 4%
(3.11)
- —(+HOMp —(1—4)Mu
I‘J‘c . —

n | —Bo ot (14 4% (1 + 4% }
Iy, [ av —fv T . _A)Lv"
] (1 + A% (1 + 42

w | (1+ 4) Mp (1 — 4) Mp.
1% ,
a B i (1 + 4 1+ A
1, [y By (1 + Ay Lv (1 — Ay Ly ,
] (1 + 4% (1 + 4%
P, £2 (My + BLv) 2(BMpu —|—2Lv) Ay ¥ i ,
L B (1 — B% :
r*,, 2(Mp + BLv) 2(BMu | Lv) p A 1.
(1 — B a— 8 ]

4, Solution of the Secoud Field Equation (1.3). lnserting relevant quan-

tities in (1.3) we find that out of the four equations I'*,, = 0 equations for t= 1
v

and ¢ — 2 are identically satisfied while equations for # = 3 and r = 4 are satis-
fied when the following relation holds : '

p+v=0. 4.1)

Thus (4.1) is a necessary condition in order that the Einstein’s second field
equation in the space-time (1.1) be satisfied.
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5. Solutions of the Field Equations (1.4). To solve the field. equations (1.4)
- we shall first calculate the components of the generalized Ricci tensor by the
formula
Rij = T%s — Ty — Doy T -+ T, T (5.1)
Substituting the values of I'); from (3.11) into (5.1) we get the following
components of the generalized Ricci tensor :

AAPM > 2Ap (BMp - L)

24
R, =, + By + Y )y —

-+ 4% (1 + 4% (1 + 4%
- 24 442 I2v* 2 Av (Mu + BLy)
R, — Buv + — (Lv), — —
AT T P T e T a
44> LMpv
Ry, Bp), — —
— (B, l~W+(1+AZ)( i)z (A | A%
24 442 LMpv
RZJ. (BV)l — UV + — (1 A?-) (L\))l — m—;)?—
. 1 — M
Ryy = @), + o), —~ 0 — Bapv — MNp — (((Tip)p;) -
[ — A) My
( (1 4 A7) ) ’
SRy = — @y — (ap) + (0 — B)opy —
— MNy — (M) — (U;%L) , (5.2)
(1 + 43 1+ 4% j,

Ry, = (av)y +(Bv), - (1 — B)apv —
(1 — A) Ly (1 — A)Lv
(1 + 47 ) *( (1 + 49 )
Ry =—"(av), — @Bv), + 1 — Byauv +
{1 JFA)WJEIX) n (L—Eﬂ A)Lv)
(1 + 4% (I + 4%
Ryy=—@w; — (pyp + 0 —Bapy - MSu + 0,
Ry =@+ @)y — (0 — Bapy + MSu+ @,
Ry, = —(av), — (BV), + (1 — B)opv — LNy — W,
Rp= (@) + @V, (U Bopy + LSV + W,
Ry + (Ad)y = Ryy +A)y = ¢ — T — AH,

— LNv — (

—f—LSvHL(
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Ry, =1, + ApY + I+ H+ 2T,
R44:_¢’3%A¢¢+I‘“H+2T:

where
N AQ =D A+ Ay o AU DY (L — Ay
(1 -+ 4% ’ (1 + 47 ’
Q’_((l +A)Mp) n ((1 +ALA{E) o= ((1 —{—A)Lv) n
(1 + 4% 1+ 4% 1+ 45 /,
(d—ALy
( (1 + 4% )

4 (MY2 + 2BML pv - 123}
(1 —BY (1 +4%

B{MLL2+(L+M)Buv+Lv1}+ My + BLy BMyu + Ly
) -8y ( (- B

=2+ v+ 2apy, H=

T =

Now substituting the values of R from (5.2) into (1.4a) and using (4.1),.
we find that it is satisfied if and only if

po b 5B =0, ca+pB =0, Ay — Add, [ (1 + A7) =0, (5.3)
o +oa, +8; +8,=0. G.4)
Next putiing R;; from (5.2) into (1.4b) (/) and using (4.1) we see that it is
satisfied if the relation (5.3) holds, while equation (1.4b) {i/), for the same values:
of Ry, is satisfied if and only if
Bs + B9 {(B), — By} +2B(B” — B) /(1 — B} + BBy + By + oy + tlpg) —
Bylays + ayy + By B0 =0, : 5.5
alvyy + gt b 2oy b B v, - (g o) v+ 2 (e, 4 B vs + 28y, 4+ 20,y
+ it + 2Bv) (vy — v =+ vl + Bv) (o, —a) + av {{B, — Bl)y + {u, — 1)} =0.
Thus, the values of g;; given by (2.10) represent the wave solution of the
strong field equation (1.4a) under the conditions (5.3} and {5.4). While the same

g are the solutions of the weak field equations {1.4b) (/) and (1.4b) (zz) under
the conditions (5.3) and (5.5 respectwely

6. Solutions of the Field Equations of Bomnor. The first two of the field
equations of W.B, Bonnor’s non-symmetric unified field theory [*] are the same
as the Tield equations (1.2) and (1.3) of Einstein’s unified field theory. Hence
their solutions in the space-time (1.1) shall be given by (2.10) and (4.1).
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To find the solutions of the remaining two field equations, namely .(1.5a)
and (1.5b), we use the components of R, the generalized "Ricci tensor: given
by (5.2). The contravariant components gV of the tensor g,j given by (2. 10) can
be shown to be as follows :

—(1 -+ A% 25%4) —(1+A4%) B 24pc (1--A4) (Borer) (l—A) (Bcr~l--p)

(g,.j):ﬁL —(1+A)B|24ps —(1+-4% + 2407 (I+4) (Bpto) (14} (Bpta)
m | —(1+Ay(Botp) —(1+4)(Bpta) —(1—BY+P (1—BHA+P
—(1—A (Bo+p) —(1—4) (Bp+o) (1—8H4+P (1—B)+P

(6.1)
where m = (1 + A%} (1 — BY) and P =2 Bpo + p? 1 o?.

Then substituting gi; and gff from (2,10} and (6.1) into (1.6) we get the fol-
lowing components of U,,

24 )
U,= . {(2Bp (Bp +- 6) + (o2 — p?)},
24
Uy = U,y = — —{B@* 1+ ¢?) -+ 2po},
i

24
Uy = - {2Bo (Bo + p) + (¢ — oD},

l'].13 [ — US[ = — UH = Uy = — 2p, (6.2)
Uyy=—Uy=— w=Uy= —10,
2P '
U34:U43:_’
I
‘2(1 — A+ AP : 2(1—I~A+A2)P
Ugg:—' m ’ U442:_ m T

Putting R;; from (5.2) and U, from (6. 2) into the field equation (L.5a) we
find that it is satisfied if and only if

md,, — (1 — B) A d,d, + 3+ 24) (1 + A7) (p* +.00) (1 — B> — 2B p2 — 0,
L=0, M=0. o ' (6.3)

Using (5.2} and (6.2} into the field equation (1.5b), we arrive at the same equ-
ation (5.5} of section 5. Therefore, (1.5b) is satisfied if and only if (5.5) is satis-
fied. ' ,
Thus the wave solutions of the field equations of Bonnor’s non-symmetric
. unified field theory for the space-time (1.1} are given by (2.10) under the con-
ditions (4.1), (5.5) and (6.3).
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v

i it Sblut_ion of Schiddinger’s Field Equations.. Here .again the. first two. field
equations..of E. Schrodinger’s non-symmetric unified field theory are same as
the first two field equations of Einstein’s .or Bonnor’s unified field equations,
given in Section 1, which will again have the solution (2.10) under the con-
dition (4.1}. The remaining two field equations are (1.7a} and (1.7b).
On substituting from (5.2) and (2.10) into (1.7a) for ij = L1, 22, 12 etc. we

find that it is Satlsfled lf and only if

AAdy— A4, (1 + A4+ A 4 477 =0, L—O M =0,

B*BB,+ BB,(l — B)+\B(l — B2 =0,
while the field equation (1.7b) is satisfied if (5.5) holds.

(7.1

Thus the wave solutions of the field equations of Schrédinger’s non-symmet-
ric unified field theory for the space-time (1.1} are given by (2.10) under the con-
ditions (4.1), (5.5} and (7.1).
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‘Yazarlarin daha nceli bir calismalarinin devamu olarak, bu ¢aligmada
ds? = — dx? — dy? — dz¥ 4 dt* 24 (z, 1} dzdt + 2B (x,)) dxdy
" metrigi ile verilen uzay- zamandaki Einstein, Bonnor ve Schrédinger’in non-

" simetrik birlesik alan tecrilerine ait alan denklemlerinin dalga. gozumlenm
bulma problemiyle ugragilmgtir.:’




