DECOMPOSITION OF CURVATURE TENSOR FIELD IN

 A RECURRENT KAEHLERIAN SPACEU.P. SINGH and A.K. SINGH

In the present paper the decomposition of the curvature tensor field $R_{i j k}{ }_{i j}$ of a recurrent Kaehlerian space in terms of a vector field and two tensor fields has been considered and several theorems about this decomposition have been investigated.

1. Introduction. An $n(=2 m)$ dimensional Kaehlesian space K^{n} is a Riemannian space which admits a tensor field $\phi_{i}{ }^{h}$ satisfying the conditions

$$
\begin{align*}
& \phi_{i}^{h} \phi_{l i}^{j}=-\delta_{i j}{ }^{1}, \tag{1.1}\\
& \phi_{i j}=-\phi_{i}{ }^{j} \quad\left(\phi_{i j}=\phi_{i}^{a} g_{a j}\right), \tag{1.2}
\end{align*}
$$

and

$$
\begin{equation*}
\phi_{i, j}=0 \tag{1.3}
\end{equation*}
$$

where the comma followed by an index denotes the operator of covariant differentiation with respect to the metric tensor $g_{i j}$ of the Riemannian space.

The Riemannian curvature tensor field is defined by

$$
R_{i j k}^{h} \xlongequal{\text { diff. }} \partial_{i}\left\{\begin{array}{l}
j h
\end{array}\right\}-\partial_{j}\left\{\begin{array}{c}
h i k
\end{array}\right\}+\left\{\begin{array}{l}
h i l
\end{array}\right\}\left\{\begin{array}{l}
i j k
\end{array}\right\}-\left\{\begin{array}{l}
h i \tag{1.4}\\
j i
\end{array}\right\}\{i k\}{ }^{2)} ;
$$

the Ricci tensor and scalar curvature are given by $R_{i j}=R^{a}{ }_{a i j}$ and $R=g^{i j} R_{i j}$ respectively.

It is well known that these tensors satisfy the identity $\left[{ }^{2}\right]^{3)}$

$$
\begin{equation*}
R_{i j k, a}^{a}=R_{j k, i}-R_{i k, j} \tag{1.5}
\end{equation*}
$$

The holomorphically projective curvature tensor $P^{h}{ }_{i j k}$ is defined by

[^0]\[

$$
\begin{equation*}
P^{h_{j j k}} \xlongequal{\text { def. }} R_{i j l_{k}}^{h^{\prime}}+\frac{1}{n+2}\left(R_{i k} \delta_{j}^{h}-R_{j k} \delta_{i}^{h}+S_{i k} \phi_{j}^{h}-S_{i k} \phi_{l}^{h}+2 S_{i j} \phi_{k}{ }^{h}\right) \tag{1.6}
\end{equation*}
$$

\]

where $S_{i j}=\phi_{i}{ }^{a} R_{a j}$.
The Bianchi identities in K^{n} are given by

$$
\begin{equation*}
R^{h_{j j k}}+R_{j k i}{ }_{j k i}+R_{k i j}^{h}=0 \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{i j k, a}^{h_{i j}}+R_{i k a, j}^{h_{i k}}+R_{i a j, k}^{h_{i j}}=0 \tag{1.8}
\end{equation*}
$$

A Kaehlerian space K^{n} is said to be Kaehlerian recurrent if its curvature tensor field satisfies the condition ([$\left.{ }^{3}\right]$)

$$
\begin{equation*}
R^{h_{i j k, a}}=\lambda_{a} R_{i_{i j k}} \tag{1.9}
\end{equation*}
$$

where λ_{a} is a non-zero recurrence vector field.
The following relations follow immediately from (1.9) :

$$
\begin{equation*}
R_{i j, a}=\lambda_{a} R_{i j} \tag{1.10}
\end{equation*}
$$

and

$$
R_{, a}=\lambda_{a} R
$$

In the present paper, we have considered the decomposition of curvature tenser field $R^{h_{i j}}$ in terms of a vector field and two tensor fields and several theorems have been investigated.
2. Decomposition of Curvature Tensor Fields $\mathbf{R}^{{ }_{i j}}{ }_{i k}$. We consider the decomposition of recurrent curvature tensor field $R^{h}{ }_{i j k}$ in the following form:

$$
\begin{equation*}
R^{h_{i j k}}=X_{i}^{h} \mathrm{v}^{l} \psi_{i j k} \tag{2.1}
\end{equation*}
$$

where v^{l} is a non-zero vector field and $X_{l}^{h}, \psi_{i j k}$ are two non-zero tensor fields such that

$$
\begin{equation*}
X_{i}^{h} \lambda_{h}=p_{l} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{h} \mathrm{v}^{h}=1 \tag{2.3}
\end{equation*}
$$

p_{l} is called decomposed vector field and this is a non-zero vector field.
We shall prove the following :

Theorem (2.1). Under the decomposition (2.1), the Bianchi identities for $R^{h}{ }_{i j k}$ take the form

$$
\begin{equation*}
\psi_{i j k}+\Psi_{j k i}+\psi_{k i j}=0, \quad \Psi_{i j k}=-\psi_{i k j} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{a} \psi_{i j k}+\lambda_{j} \psi_{i k a}+\lambda_{k} \psi_{i a j}=0 \tag{2.5}
\end{equation*}
$$

Proof. In view of equations (1.10), (1.11), (1.9) and (2.1), we obtain

$$
\begin{equation*}
X_{l}^{h} \vee^{l}\left(\Psi_{i j k}+\Psi_{j k i}+\Psi_{k i j}\right)=0 \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{l}^{h}{ }^{h} v^{l}\left(\lambda_{a} \psi_{i j k}+\lambda_{j} \psi_{i k a}+\lambda_{k} \psi_{i a j}\right)=0 \tag{2.7}
\end{equation*}
$$

The identities (2.4) and (2.5) follow immediately from these equations and the fact $X_{l}^{h} \mathrm{v}^{t} \neq 0$.

The following main theorems may be proved in the same way as it is proved in the recent paper [${ }^{5}$]:

Theorem (2.2). The vector field λ_{a} and the tensor field X_{l}^{h} given by equations (1.9) and (2.1) behave like recurrent vector and recurrent tensor fields and their recurrent forms are given by

$$
\begin{equation*}
\lambda_{a, m}=\mu_{m} \lambda_{a} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{l, m}^{h}=v_{m} X_{l}^{h} \tag{2.9}
\end{equation*}
$$

where μ_{m} and v_{m} are non-zero recurrence vector fields.
Theorem (2.3). Under the decomposition (2.1), the decomposed vector field p_{l} behaves like a recurrent vector field and its recurrent form is given by

$$
\begin{equation*}
p_{l, m}=\left(\mu_{m}+v_{m}\right) p_{l} . \tag{2.10}
\end{equation*}
$$

Now, we prove the following :
Theorem (2.4). Under the decomposition (2.1), the vector field v^{l} and the tensor field $\psi_{i j k}$ behave like recurrent vector and recurrent tensor fields.

Proof. Multiplying equation (2.5) by v^{a} and using relation (2.3), we obtain

$$
\begin{equation*}
\psi_{i j k}=\lambda_{k} \psi_{i j}-\lambda_{j} \Psi_{i k}, \tag{2.11}
\end{equation*}
$$

where $\psi_{i j k} \mathrm{v}^{k}=\psi_{i j}$ is a tensor field.

Therefore, the relation (2.1) takes the form

$$
\begin{equation*}
R_{i j k}^{h}=X_{l}^{h} v^{l}\left(\lambda_{k} \psi_{i j}-\lambda_{j} \psi_{i k}\right) \tag{2.12}
\end{equation*}
$$

Differentiating equation (2.12) covariantly with respect to x^{m} and using equations (1.9), (2.8), (2.9), (2.12), we get

$$
\begin{equation*}
\left(\lambda_{k} \psi_{i j}-\lambda_{j} \psi_{i k}\right) \mathrm{v}^{l}{ }_{, m}=\mathrm{v}^{l}\left\{v_{m}^{\prime}\left(\lambda_{j} \psi_{i k}-\lambda_{k} \psi_{i j}\right)+\mu_{m}\left(\lambda_{j} \psi_{i k}-\lambda_{k} \psi_{i j}\right)\right\} . \tag{2.13}
\end{equation*}
$$

Multiplying this equation by v^{a}, we obtain

$$
\begin{equation*}
\left(\lambda_{k} \Psi_{i j}-\lambda_{j} \psi_{i k}\right) \mathrm{v}^{a} \mathrm{v}^{l},_{, m}=\mathrm{v}^{l} \mathrm{v}^{a}\left\{v_{m}\left(\lambda_{j} \psi_{i k}-\lambda_{k} \psi_{i j}\right)+\mu_{m}\left(\lambda_{j} \psi_{i k}-\lambda_{k} \psi_{i j}\right)\right\}, \tag{2.14}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\mathrm{v}^{a} \mathrm{v}^{l}{ }_{, m}=\mathrm{v}^{l} \mathrm{v}^{a},{ }_{m} . \tag{2.15}
\end{equation*}
$$

Since $\mathrm{v}^{l} \neq 0$, there exists a proportional non-zero vector field π_{m} such that

$$
\begin{equation*}
\mathrm{v}^{l}, m=\pi_{m} \mathrm{v}^{l} . \tag{2.16}
\end{equation*}
$$

Therefore, v^{l} is recurrent vector field.
Further, differentiating equation (2.1) covariantly with respect to x^{m} and using equations (1.9), (2.1), (2.8), (2.9) and (2.11), we obtain

$$
\begin{equation*}
\psi_{i j k, m}=\left(\lambda_{m}-v_{m}-\pi_{m}\right) \psi_{i j_{k}} . \tag{2.17}
\end{equation*}
$$

Hence, $\psi_{i j_{k}}$ is a recurrent tensor field.
If $v_{m}+\pi_{m} \neq 0$, we have
Corollary (2.1). Under the decomposition (2.1), the vector field $X_{l}^{h} v^{l}$ is recurrent with the recurrence vector field ($v_{m}+\pi_{m}{ }^{1}$.

Proof. Differentiating the vector field $X_{l}^{h} \mathrm{v}^{l}$ covariantly with respect to x^{m} and using equations (2.9) and (2.16), we get the proof.

On the other hand, if $v_{m}+\pi_{m}=0$, we have
Corollary (2.2). Under the decomposition (2.1), $\psi_{i j k}$ will be recurrent with the same recurrence vector λ_{m} as the curvature tensor field $R^{h}{ }_{i j k}$.

Proof. The proof follows immediately from equation (2.17).
Theorem (2.5). Under the decomposition (2.1), the vector field v^{t} and tensor fields $R^{h_{i j k}}, R_{i j}, \Psi_{i j k}$ satisfy the relations

$$
\begin{equation*}
\lambda_{h} R_{i j k}^{h} \doteq \lambda_{i} R_{j_{k}}-\lambda_{j} R_{i k}=p_{l} \mathrm{v}^{l} \Psi_{i j k} \tag{2.18}
\end{equation*}
$$

Proof. With the help of equations (1.5); (1.9) and (1.10) we obtain

$$
\begin{equation*}
\lambda_{h} R_{i j_{k}}^{h}=\lambda_{i} R_{j_{k}}-\lambda_{j} R_{i k} \tag{2.19}
\end{equation*}
$$

Multiplying equation (2.1) by λ_{h} and using relation (2.2), we obtain

$$
\begin{equation*}
\lambda_{h} R_{i j_{k}}=p_{l} \mathrm{v}^{l} \Psi_{i j k} \tag{2.20}
\end{equation*}
$$

From equations (2.19) and (2.20), we get the relations (2.18).
Theorem (2.6). Under the decomposition (2.1), the curvature tensor $R^{h}{ }_{i j k}$ and holomorphically projective curvature tensor fields are equal iff

$$
\begin{equation*}
\delta_{j}^{h} \Psi_{i k}-\delta_{i}^{h} \psi_{j_{k}}+\Psi_{a k}\left(\phi_{j}^{h} \phi_{i}^{a}-\phi_{i}^{h} \phi_{j}^{a}\right)+2 \phi_{k}^{h} \phi_{i}^{a} \Psi_{a j}=0 \tag{2.21}
\end{equation*}
$$

Proof. Equation (1.6) may be expressed in the form

$$
\begin{equation*}
P_{i j k}^{h}=R_{i j k}^{h}+D_{i j k}^{h} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{i j k}^{h}=\frac{1}{n+2}\left(R_{i k} \delta_{j}^{h}-R_{j k} \delta_{i}^{h}+S_{i k} \phi_{j}^{h}-S_{j k} \phi_{i}^{h}+2 S_{i j} \phi_{k}^{h}\right) \tag{2.22a}
\end{equation*}
$$

Contracting indices h and k in (2.1), we obtain

$$
\begin{equation*}
R_{i j}=X_{l}^{k} v^{l} \Psi_{i j k} \tag{2.23}
\end{equation*}
$$

With the help of equation (2.23), we have

$$
\begin{equation*}
S_{i j}=\phi_{i}^{a} R_{a j}=\phi_{i}^{a} X_{l}^{r} v^{t} \psi_{a j r} \tag{2.24}
\end{equation*}
$$

Making use of equations (2.23) and (2.24) in (2.22a), we obtain

$$
\begin{align*}
D_{i j k}^{h}=\frac{X_{l}^{r} V^{l}}{n+2}\left\{\psi_{i k r} \delta_{j}^{h}\right. & -\Psi_{j k r} \delta_{i}^{h}+\psi_{a k r}\left(\phi_{j}^{h} \phi_{i}^{a}-\phi_{i}^{h} \phi_{j}^{a}\right)+ \\
& \left.+2 \phi_{k}^{h} \phi_{i}^{a} \psi_{a j r}\right\} \tag{2.25}
\end{align*}
$$

From equation (2.22a), it is clear that $P_{i j_{k}}=R_{i{ }_{i k}}$, iff $D_{i j_{k}}=0$, which in view of equation (2.25) becomes

$$
\begin{equation*}
\psi_{i k r} \delta_{j}^{h}-\psi_{j_{k r}} \delta_{i}^{h}+\psi_{a k r}\left(\phi_{j}^{h} \phi_{i}^{a}-\phi_{i}^{h} \phi_{i}^{a}\right)+2 \phi_{k}^{h} \phi_{i}^{a} \Psi_{a j r}=0 \tag{2.26}
\end{equation*}
$$

Multiplying this equation by v^{r} and using the relation

$$
\psi_{i j_{k}} \mathrm{v}^{k}=\psi_{i j}
$$

we have the required equation.
[1] TAKANO, K. Decomposition of curvature tensor in a recurrent space, Tensor (N.S.), Vol. 18, No. 3 (1967), pp. 343-347.
[] TACHIBANA, S. : On the Bochner curvature tensor, Nat. Sci. Rep., Ochanomizu Univ. ,18(1) (1967), pp. 15-19.
[${ }^{3}$] LAL, K.B. and : On Kaehlerian spaces with recurrent Bochner curvature, AcSINGH, S.S. cademia Nazionale Dei Lincei, Series VIII, Vol. LI, No. 3-4 (1971), pp. 214-220.
[${ }^{+}$] YANO, K. : Differential geometry on complex and almost complex spaces, Pergamon Press (1965).
[] SINGH, U.P. and : On decomposition of recurrent curvature tensor fields in a SINGH, A.K. Kaehlerian space (To appear).

DEPARTMENT•OF MATHEMATICS
UNIVERSITY OF GORAKHPUR
GORAKHPUR, INDIA

Ö Z E T

Bu çalışmada bir tekrarlamalı Kaehler uzayınun $R^{h_{i j k}}$ eğrilik tansörù alanının bir vektör alanı ile iki tansör alanı cinsinden ayrılış formülü ele alınarak bu ayrılışa dair bazı teoremler araştırılmıştır.

[^0]: 1) All Latin indices run over the range from 1 to n .
 ${ }^{\text {2) }} \partial_{i}=j / \partial x^{i}$, where $\left\{x^{i}\right\}$ denotes real local coordinates.
 ${ }^{3)}$ Numbers in square brackets refer to the references at the end of the paper.
