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f . This paper describes the solutions of the field equations (spherically 
symmetric) of general relativity for ' neutron star models' of constant 
gravitational mass 'density. Physical interpretations of the results have also 

' '"' 1 been'mentioned where necessary-.' - * • . • 

1. Introduction. Much progress has been made towards the study of the 
•structure of static fluid spheres (including---massive spheres) [ 1 - 6 ] within the 
framework of gênerai relativity. Considerable attention has'-also been, paid to the 
study of equilibrium models for zero-temperature stars with very high density, 
the so called neutron stars [ 7 ] . This study is of academic interest white consi­
dering problems on gravitational collapse., For instance, one might find upper 
l imit MmajL for the mass of an equilibrium zero-temperature star of any density. 
I n that case., for a star which manages to lose all its angular momentum while 
retaining a mass in excess of A f m a X J drre'has'to' consider gravitational .-'collapse 
into relativistic regimes. Planetary structures in general relativity, particularly 
•of Mars, has recently been discussed'by the author. To'deal with sitch types of 
problems one usually recalls the well known Schwarzschild interior or exterior 
solutions which represënt the field'of à'fluid sphere of constant density p . 

The following is merely a short 'review pertaining to the equilibrium 
models for neutron stars of constant gravitational mass density H = pc2 + 3p. 
As Whittaker f 8 ] has pointed out, i t is this expression, rather than p , which 
governs the gravitational attraction of matter. The equation of state is assumed 
to be. [ 9 Jp =\ qp} where p and p,ai;e the pressure and energy density respectively 
and q is a constant. The value of q is 1 ¡3 for neutron star models, but it may 
be close to 1/13 when baryons are present. Recently, in one [ l D ] of his papers 
rj-io—i3j j-jjg a V j thor has made use of the concept of constant gravitational mass 
•density to study polytropic fluid spheres in general relativity. 
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n. Equations of Hydrostatic Equilibrium and the Desired Solutions, i n a 
static spherical coordinate system (ct, r, 9 , <f>) the space-time metric has the 
standard form : 

ds2 = a{r) dr2 + r2 da2 - b(r) c2 dt2 (1) 

and the time-independent gravitational equations reduce to 

abr dr r \ a / 

a2 r dr rL \ a j 

where X denotes the cosmical constant, the constant K is connected with the 
gravitational constant G by the equation Kc2 = 8TE G/C2 = 1.87 x 10~3 7 cm 
gm^.dil2 = dQ2 + sin 2 G d<f>2, and other symbols have their usual meanings. 
The equations of hydrostatic equilibrium in these coordinates are 

2 - ^ + 0 » « « + , ) - 1 - ^ = 0. (4) 
dr b dr 

and 

/

4 
Any2 p(y) dy = — nr3 < p(r) > (5) 

where M(r) is the total mass interior to r. 

Case (i). According to our assumptions 

pc 2 + 3p = H = constant; p = — p , (6) 

hence, the solution of (4) is obtained as 

f / - y P = a&, (7) 

where a is the constant of integration. Addition of (2) and (3) would give 

b dr a dr 

Making use of equations (6) and (7) in (8) and integrating, we obtain, after 
some simplifications, 
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1 - 5 2 r2 ' ^ 2 

where p is another constant of integration. Using the results of (7) and (9), we 
obtain from (2) : 

(1 - 52r2) r — + b = (J + (KH-2X) r2, (10) 
c/r 2 

the solution of which is given, by 

£ f 1 M 
b{r) = p 1 + L - — (1 - S2 r 2 ) 1 ' 2 sin" 1 5r + — (1 - 8 2 r2?'2, (11) 

( 5r ) r 

where M and Z ^== (KH — 2X)j are constants. I n order that b(r) be finite 

at the centre r = 0, M must vanish. 

Hence the foregoing expression becomes 

b{f)=$\\+L- — { \ - 5 2 r 2 ) " 2 sin" 1 hr\ . (LI ' ) 
( or ) 

By virtue of this equation, (9) reduces to 

a(r) = )(1 + L)(l - & r2) - Z, (5/-)"1 ^ — s i n - i 5 , . . 1 2 ) 
( r ) 

With the help of equations (7), ( I T ) and the second relation in (9), we 
obtain the expression for the density at a point distance r from the centre of the 
neutron star, in the form 

( d — 5 2 r2) ) 
Kp(r) = 3 }(X - 5 2) + Z5 - — sin" 1 8K . 

(a) Central density and pressure. Equation (13) yields the relation 

(13) 

(Kp\ = 3 {X + 5 2 (L - 1)} = y KH ~ 35 2 . (14) 

From the first equation in (6) and (14), we get the central value of the 
pressure : 

(Kp)Q = _ _1 {Kp)Q c2 = tfc2-^- (3c2 - 2) , (15) 
3 3 o 
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where the suffix 0 refers to the value evaluated at the. pentre. Equations (14) 
and (15) make it clear that for non-negative central values of pressure and 
density, we must have J ) 

25 2 < KH < 6 5 ? " °2 • . ' (16) 

(b) Fitting up the solution with Schwarzscliiid's exterior solution. We further 
observe that the gradient of p is negative which means that the pressure decreases 
as the radius of the star increases, and tends to zero 'as the boundary r = i\ is 
reached, where x t — hrl is the root of the equation . 

{3c 2 (X - S2) - KH} x, - 3 c 2 1 | ^ KH - xj (1 - x , 2 V'
1

 sin~' x, j. (17) 

A t this point we may replace our interior solution by the Schwarzschild's 
exterior solution 

4 W = 1 = 1 , J . x ^ . . . . ( 1 8 ) 

a(r) r 3 

Further, for the exterior solution a(r) and b(r) must be continuous, and 
ab = 1. I n view of this, we obtain from (7) (on putting p = 0 under the 
conditions stated below eqn. (16)) 

2m 1 , H HK$ 
1 - - - - - - = - p - , (19) 

r 2 3 a ; 2 8 2 

P + 5 2 r2 - 1 (20) 

respectively. Equations. (19) and (20) determine ,the value of m :. , . .. 
m = [iA (3HK - 21) 8 2 - 3/^2 (HK - 28')] . (21) 

Physical interpretation of the parameter HK/2&2, in terms of central pressure 
and density can be given by the following equation 

H K

 = 6 . 3 (Kp\ + (Kp)0 c2  

2 5 2 l8(Kp)0-4(Kp)0(\-^-^ 

Clearly, m can remain 'positive only when'' 

0 This may be taken as.an improvement over the author's previous results 2o-<LKFf^35'! 

(communicated) as obtained for a fluid sphere -without introducing, .in: (6) the specified 
equation of slate p — 1/3 p . 
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1 HfC 

— Xr 2 + -(1 - S 2 r . 2 ) < - l , ; (23) 
3 2S2 ' 

(c) The speed of sound at the centre. As an. example of the physical appli­
cation of our results contained in (14) and (15), we may obtain the ratio of the 
speed of sound to that of light, at the centre of the neutron star, ?s follows : 

Using the equation of state (p — p/3) and the energy density relation 
8 = pc2, we get an expression v s

2 / c 4 for the ratio of the speed of sound vs to 
that of light c : 

_ V = 3R_ = J _P_ . 
c* qe c2 p 

In terms of central density and pressure this becomes 

V 2 \ 1 Ktl (2 - 3c2) - f 65 2 c 2 

(24) 

• (25) 
c2 Jp 3 3 KH ~ 682 

Obviously, therefore, 

for [KHU, -,-25 2 , - (a) 

and ,(26) 
65 2 c2 f\ 2 \ 

for [KHU.=— 2 . ( ^ - 0 . (b) 

Case (ii). p = p / 13. This does not require a detailed discussion, and 
therefore, we shall confine ourselves to point out only some modified equations 
of the foregoing case (;'}. Tn this case, equations, corresponding to (7), (13), (14), 
(15), (16). (17), (22), are-given, respectively, by 

G - 2 p = lb, - . . . . (7') 
13 , 

Kp(r) = 13 {(X - 82) + L 5 2 (Sr)~ ( (1 - 8 2 r1)"2 s-'n^1 8r} , '" (13') 

(ATp)0 = 13 {X + 8 2 (L - 1)} == 13 | - 82j , (14') 

(Kp\ = ~ j 1352 c2 ~ K H ^ J- c 2 ~ 'jj > 0 5 ' ) 

•282 < A7/ .< 2 6 5 2 c * , (16') 
~ 1 3 c 2 - 2 . 
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{13c2 (X - 5 2) - KH] x, - 13c2 j ^ - KH - xj ( I - x ^ ) ' / 2 sin" 1 x , | (17') 

and 

#/C _ 3(Kp)Q + (*p) 0 c2 

25 3 

39(KP)0-2(Kp\ ¡1 c2j 

(22') 

The expression for the velocity of sound, at the centre, similar to (25), is 
obtained as 

v. s

2 \ 1 KH (2 - 13c*) + 26 5 2 c2_ 
c2 / 0 3 13 (JOT - 252) 

and we find that the two limiting values for the ratio ( v r

2 / c 2 ) 0 -one tending to 
infinity and the other to zero (as in 26 (a) and 26 (b))- with restriction to the 
inequality (30), again occur, for the simple reason that we have used a similar 
equation of state (p = p / 13) under adiabatic approximations. 
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Ö Z E T 

B u çal ışmada sabit graviiasyon kütlesi yoğunluklu nötron yıldızları model­
lerinin genel relativitedeki (küresel simetriyi haiz) alan denklemleri anlatıl­
makta ve gerekli olan yerlerde sonuçların fiziksel y o ı u m l a n verilmektedir. 


