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This paper deals with the problem of determining thermal stresses in a 
long insulated cylinder in the vicinity of a penny-shaped ctack. The 

solution is obtained in terms of Dini series. 

1. Introduction. The concentration of high intensity stresses around a crack 
in elastic media has been the subject of many investigations in recent years 
mainly owing to its importance in Fracture Mechanics. For cylindrical bodies 
such isothermal problems were considered by Collins (1962), Sneddon et al. 
(1963) and more recently by Atsumi et al. (1972). Solutions for similar thermo
plastic problems were put forward by Das (1968, 69). All the above mentioned 
authors used the integral equation-technique to solve the problems. We propose 
to report here the solution in terms of Dini series, of a thermoelastic crack 
problem concerned with a long circular cylinder whose fraction-free curved 
surface is insulated. It may be noted that the Dual-series-equation-technique 
is much simpler than the Dual-integral equation-technique. 

2. Formulation of the Problem. Let us consider a circular cylinder of 
radius <<a,> having a penny-shaped crack of unit radius. We assume, for the pre
sent problem, that there is symmetry along the z-axis which is taken along the 
-axis of the cylinder. The problem of determining the stress-field in the cylinder 
O r g / ' i g i i , —oo < z < oo with a crack occupying the region r ~ 1, z = 0 
may then be considered as equivalent to that of finding the stresses in the 
semi-infinite cylinder 0 5 / - 5 f l , z & 0. The thermal and mechanical con
ditions are described as follows : 

T(r,0) =f(r), 0 ^ r < 1 (2.1) 

(2.2) 
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arz ( r , 0) = 0 , 0 ^ r ^ a (2.3) 

o„ (r, 0) = 0 , 0 ^ r < 1 (2.4) 

H z(r,0) = 0 f K r i f l (2.5) 
and 

= 0 , (2.6) 

<Jrz (a, z) = 0 , z ^ 0 (2.7) 

(a, z) = 0 , z ^ 0 (2.8) 

where /(;•) is a given function of r and T= T(i\ z) is the temperature at any 
point (r, z). 

3. Heat Conduction Problem. In the steady state and in the absence of 
heat sources the Fourier heat conduction equation is 

j W . + L * L + ? 2 T = 0 t 0 ^ r ^ a z ^ 0 . ( 3 < 1 ) 

dr2 r dr Bz? 

A solution of the equation (3.1) satisfying the condition (2.6) is taken in 
the form 

oo 

T{r, z) = 2 K'1 an J» (*-/> e~h'Z 02) 
n = l 

where {K,} is the sequence of positive roots of equation Jl (ka) — 0. Insertion 
of (3.2) into (2.1) and (2.2) yields the following dual series equations : 

ti = l 
oo 

2«„-MV' ) = 0 , K r ^ f l . (3.4) 
n =! 

To solve the above equations we assume 

'^o(V) = - - - - / 0 ^ r < l . (3.5) 
r dr J (f* — r2)1'2 

n = l r 

By employing the technique of finding the Dini-coefficients, we find 
i i 

- f Joir\n)dr-*- f 
•„) J dr J 

X^a2J2(aXn) J dr J (i2 - T 3 ) 1 ' 2 

0 r 
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An interchange of the order of integration and use of the results 

i i 

0 r 

1 

0 

[Ref. Srivastava (1964), p. 166] 
and 

lead to 

* , = 2 7 2 V , T f Si(t) cos (lnt)dt. (3.8) 

o 

Substituting (3.8) into (3.3), one gets 
C O I 

V K~l -r

0 (V) , r f, , , /" ft (0 cos (V) * =/(r) , 0 =g /• < 1. (3.9) 
«=i o 
Following Srivastava (1964), we have 

C O 

fl2 Z _ , / 2 h - I 

C O 

= f Ja (rx) /p (tx) xl+r dx + sin \ — (a - f ¡3 + r - 2v) j . 
J 7C ( 2 ) 

0 

CO 

• f ^^-LiryM.^y^dy (3.10) 
0 

and from Erdelyi (1954), 

j x"~s + Ja (rx) J, (tx) (tx) W dx 

1 (8-v) ' 

(r 2 - t2y-^H(r -t), (/• > 0, - 1 < v < 8). (3.11) 
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Hence 
C O 

/ 0 ( V ) V ' C 0 S ( V ) - I-** 
« = 1 

J2

2(aXn) L • ' 2 ' 2 

H(r-t) 2 f Kt(ay) 
+ - / - -^ cosh (,ty)TQ(ry)dy. (3.12) 

o 

Now inverting the order of summation and integration in (3.9), we obtain, 
with the help of (3.12), 

r t co 

f / / ' ( 'L 2
 dt + f 8i<u)du-~- f 4 t ^ t c o s h ^ • 7 ° W * = A') • 

J (/-2 — t2)1'2 J n J Ii(ay) 
0 0 0 

Taking Abel's inversion, we obtain the following Fredholm integral equation 
for g,(0 : 

ft(0+ / gMKl(t,u)ihi = hl(0 (3.13) 

where 

and 

W

 2 d - f ™ dr (3.14) 
1 7t rff J (t2-r2V'2 

Kx(t, «) = — /* cosh (0») cosh (wy) dy . (3.15) 
%2 J I^ay) 

4. Thermoelastic Problem. Let \\j(r, z) be the thermoelastic displacement 
potential which satisfies the following equations [Nowacki (1962)] 

«, = <K, (4.1) 

<*u = 2n(<k// -S/ j iJUff) (4-2) 

^ = « 7 , m = i ± ^ 0 i , (4.3) 
1 - TJ 

u. being the displacement components, TJ the Poisson ratio, u, the modulus 
of rigidity and a, the coefficient of linear thermal expansion. 
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Equation (4.3) with (3.1) yields the biharmonic equation 
V4(Ji(r, z) = 0 . 

A solution of this equation is taken in the form 

4,0-, z) = - m (4.4) 

where an is given by (3.8). 

The complementary stresses and displacements for an isothermal elastic 
problem can be obtained from the following equations [Sneddon (1951)] 

_3_ 
dr 

d_ 

" Sz 

1 
«_ = — 

2u. 

u.. ~ — -

(I - T¡) V 2 X -

(2 - T]) W2X -

2(1 - T j ) V 2 X -

i d2x 

dlx~ 

d z \ 

d2x 
dz2 

(4.5) 

(4-6) 

(4.7) 

(4.8) 
2\L dr dz ' 

where X(r, z) is an axisymmetric biharmonic function and is defined suitably 
for this problem in the form 

(4.9) 
«= i 

Substituting (4.4) into (4.1) and (4.2), and (4.9) into (4.5)-(4.8), we have, 
by the principle of superposition, 

m 

n = l 

V 1 M i - 2 n - V ) e - ^ A ( V ) (4.10) 

m 

n = l 

(4.11) 
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<jrz = - muz ^ a„ e-*<z ^ ( V ) ~ 2VZ 2 X " h " J ^ ( 4 , 1 2 ) 

«==1 » = 1 

W = l 

It is clear from (4.12) that the condition (2.3) is automatically satisfied. 
The conditions (2.7) and (2.8) are also satisfied because %L , X2, ... , Xn are 
the roots of J,(Xa) = 0. The remaining conditions (2.4) and (2.5) lead to a 
pair of dual series equations : 

C O 

2 % » B " J ^ r ) = F { r ) ' 0 - r < 1 ( 4 - 1 4 ) 

C O 

2 'oCV) = ° ' K r ^ a (4.15) 
n = l 

in which 

TYl 

F(r) = -—f(r) and %„2BK = bn. (4.16) 

To solve the above equations we assume 
co 1 

K K JQ(Xnr) = f - 8-^— dt, [g{0) = 0] , 0 <; r < 1 , (4.17) 
J ( i 2 — r2)1'2 

n = l 

where 

B„ 1 2 = 
a1 J2

2(aX 
— f g(t) sin (Xnt) dt 
n) J 

t 
(4.18) 

Substituting (4.18) into (4.14) and using the results (3.7) and (3.10) one 
may obtain 
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1 

* gQ)Si0_± _J_(r , l ;a) + \/~- j gV)^Sl0_i, _t_(rtt;a)dt 
• ' 2 ' 2 V J ' ' 2' 2 

Q 

= F ( r ) , 0 ^ r < 1 . (4.19) 

By the use of (3.11) and (3.12), equation (4.19) may be rewritten as 
i 

(ty) dy 

= m + — 80) f -Kja>>!- Un>) cosh y dy . (4.20) 
o 

Taking Abel's inversion we obtain the Fredholm integral equation 

i / 
g'(t) + f L(utt)g\u)du^—^- f — ^ - - - . r f r + ^ O ) ^ ! ) (4.21) 

J % dt J ( r — r 2 ) " 2 

0 0 

where 

L(u, t) = — f K ^ a y \ cosh (ty) cosh (uy) dy . (4.22) 
n 2 J Ifay) 

o 
Applying the method of integration by parts to the integral in the left hand 

side of (4.21), one gets 
1 co 

g'{t)~ f \-% f y K ^ y ] cosh (ty)ÚTÜx (ay) dy 
Ix(ay) 

o o 

g(u) du 

2 d r rJXr) ^ 

% dt J 0 2 - / - 2 ) V 2 
0 

Integrating (4.23) with respect to f, we are lead to the equation 
1 

g(t)- f K(u,t)g(u)du = h(t) (4.24) 

where 

and 

K(u, t) = — [ - ^ ' ^ sinh (ty) sinh (uy) dy (4.25) 
T C 2 J Ijfay) 

o 
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rF(r) 
2 - f 
is J 

(4.26) 

5. Determination of Stress Intensity Factor. The normal stress on the 
plane of the crack is given by 

OO C O 

<y„(r, 0) = - mu. 2 a„ V 1 UKr) 2 1 L 2 J ° ( X / ) ' 

For 

/ • > l , > anx~* J0(\nr) = 
1 

/ St(t) 
(r2 - t2)1'2 

1 
— f gi(t)dt. 
1Z J n - 1 

. /" ^ ^ c o s h - ( ^ ) / 0 ( r y ) ^ 
J h(ay) 

and 
C O 

2 K M - - M [ j ^ r + 1 / W U' y ) C°sh ' *] + 

+ f _ ^ L _ dt + — f g'(t) dt f K j a y ) - I0(ry) cosh (iy) ^ 

_ / - ^ f l - a - l s i i ) r . » / 0 W c o s h ^ y 

+ — f S'(t)dt f ^^-I,(ry)cosh(ty)dy 

Therefore, the stress intensity factor N is given by 

N = lim (r~\f2 (aj^0 



E F F E C T OF T H E PRE SE NCE OF A C R A C K 43 

R E F E R E N C E S 

['] ATSUMI, A., WATANABE, K, 

H COLLINS, W.D. 
Is] DAS, U.R. 

[4] DAS, B.R. 

[ s] E R D E L Y 1 , A. 

[9] NOWACKI, W. 
[7] SNEDDON, I.N., TAîT, R.J. 

[8] SNEDDON, I.N., W E L C H , J,T. 

[9] SNEDDON, I.N. 

[10] SRIVASTAVA, R.P. 

["] SRIVASTAVA, R.P. 

Long circular cylinder having an infinite row of 
penny-shaped cracks, Int. J . Eng. Sci., 10 (1972), 159. 
Proc. Edii). Math. Soc. (2), 13 (1962), 69. 
Thermal stresses in a long cylinder containing 
a penny-shaped crack, Int. J. Eng. Sci., 6 (1968), 
497. 
A note on thermal stresses in a long circular cylin
der containing a penny-shaped crack, Int. J. Eng. 
Sci., 7 (1969), 867. 
Tables of integral transforms, Vol. 2, New York, 
McGraw-Hill, p.48, (1954). 
Thermoelasticity, Pergamon Press, p.45, (1962). 
The effect of a penny shaped crack on the distri
bution of stress in a long circular cylinder, Int. 
J.Eng. Sci., 1 (1963), 391. 
A note on the distribution of stress in a cylinder 
containing a penny shaped crack, Int. J. Eng. 
Sci., 1 (1963), 411. 
Fourier Transforms, McGraw-Hill, New York, 
p.505, (1951). 
Dual reries relations - I I , Dual relations involving 
Dini series, Proc. Roy. Soc. Eding. A, 66 (1964), 161. 
Dual series relations-I, Dual relations involving 
Fourier Bessel series, Proc. Roy. Soc. Eding. A, 
66 (1964), 150. 

INDIAN INSTITUTE O F T E C H N O L O G Y , 
GORAKHPUR, 
INDIA 

Ö Z E T 

Bu çalışmada yalıtılmış bir uzun silindirdeki penny şeklinde bir çatlak civarındaki ısı 
streslerini belirleme problemi ele alınmış olup, çözüm Dinİ serisi cinsinden elde edilmiştir. 


