PROJECTIVE AFFINE MOTION IN A PRF,-SPACE, II
A, KUMAR

The possibility of the existence of an infinitesima] special projective affine
motion in a PRF, -space is studied.

1. Introduction. Let us consider an n-dimensional affinely connected Fins-
ler space F, [}V equipped with 2n line elements (x, X7} (i = 1,2,...,n) and a fun-
damental metric function F(x, X} which is positively homogeneous of degree
one in its directional arguments. The fundamental metric tensor of the space
is given by

NP S N :
gu(x,x)ﬁzaa a; F2(x, %) (3; = 3/3h. (L.1)

Let us consider further a tensor field 7% (x, X} depending both upon positional
and directional arguments. The projective covariant derivative [7] of 7% (x, %)
with respect to x* is given by

Ty = 31 T — 3 THIy £ 4 THIM, — T4, 10, , (1.2)
where
. . : 1 . .
T, (x, X)EES Gy — (28767, + XG0 (1.3)
4+ D
are projective connection coefficients and satisfy the following equations :
a) Iy, = 9,1, b) Iy, Xt =0, ) Wiy = My, = IF,,;. (1.4)

The commutation formula involving the projective covariant derivative is given
by [7]:

2T = — 8- 1507 + 15 Qg — T, Qg (1.5)

where

'} The numbers in brackets refer to the references given at the end of the paper,
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Qe (6, X3 2 {@ Ty, — 1V, I + T30, } (1.6)

are called the curvature tensors and satisfy the following identities [*] in an
affinely connected space :

Qe an T Clisin + Lrorin = 0. (1.7)

Qi + Qi].fc}:_+ Qikh.i:Qr , _ (1.8)
a) Q= — i, b Qyuit=0% and o) Q= 0. (1.9

Let us consider an infinitesimal point transformation
=4V (x) dt, (1.10)

where v/ (x) is any vector field and dr is an infinitesimal point constant. The
Lie-derivatives of T%(x, ) and T, (x, X) are given by

£vT = T Vi — TV + Ty + 85, T%) Vi &¢ (1.11)
and
EvIyy, = Vign @ — Qi V' + Wi Vi ¥7 (1.12)
respectively.

The commutation formula involving the projective covariant derivative
and Lie-derivative for 1I, (x, X}is given by

(E VL) @y — EV ) oy = £vQTu + 2000, p £VITTy,. (L13)
If the curvature tensor @ (x, X} of the space satisfies the relation
Qi on = v Qi » (1.14)

where p_(x) is a non-zero covariant vector, such type of form is called a special
projective recurrent one with respect to p.. For brevity, we shall denote such
type of Finsler space by S-PRF,-space throughout this paper.

With respect to the infinitesimal point transformation {1.10), we have the
following well known theorem :

Theorem (1.1). In order that (1.10) be an infinitesimal special projective
affine motion in an F,, it is necessary and sufficient that Lie-derivative of I17,
with respect to (1.10} vanishes :

£V I, = Vigy @y — Qo V" + Wg Vi XY = 0. (1.15)

The above equation, of course, can be applied to the space F, under considera-
tion. The integrability condition of the equation (1.15) is given by
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| (£ I} ) — E VIT;) gy = 0, (1.16)
which in view of the equations (1.11) and (1.13) reduces to
Qi = Qi ¥ — Pt Vi + Qo Vo +
+ Ot Vi + @t ¥ oy + 85 Qe Viery X7 = 0. (1.17)

Iniroducing the recurrency definition (1.14) into the above equation, we
have

EvQ g = 1, v Qihf.rc = Qi Vf((s)) + O Vian T
+ Ok Vi T Qs Vo + 8 @i Vi X7 = 0. (1.18)

In the following, we shall study on the possibility of existence of such a
motion. Let us consider the definition (1.14) as a partial differential equation
with respect to Q7,,,, then we can take here a condition

0= (Q!hfk((s)) — K Qi}rfk) m¥y — (thfk Wm — B Qihffr) (O (] 19)

In view of the definition (1.14) and the commutation formula (1.5), this redu-
ces to

- (“5((.'11)) - “m((s))) Q!hfk - B‘Y Qi!;i!; QYlam xt 4+ QYhfk Qiﬂrsm -
- Qiﬂk Q% pom — Qih‘n’c Q7 o — Qiirf'\' Qe = 0. (1.20)

If pn, denotes a gradient vector given byL By (0 = p (x)), (1.20) becomes
u

- aT Qikjk QTh'm Xt QYhfk Qi‘\’s;n - Ql"ﬂ.’c QTIrsm - Ql‘in’k Qstm -

= Qhpy Qheem = 0. (1.21)
The equations (1.18) and (1.21) show that if we can take
Viay = Qg 15 _ _ (1.22)
where t** is any suitable non-symmetric tensor, then
v =0, (1.23)
This is re-written also as '
| £vi, () = 0. (1.24)

2. Concurrent Field. Under a concurrent field we mean a field characteri-
zed by

Vigy = b8 (b = non-zero constant). @.1n

If there is a motion of the type




52 A KUMAR

fi = JCf + Vi (x) dt, VE(U)) — b Sfj (2.2)
we have
Vigy @ — Vian gy =0 (2.3)
or
Qi vi=10, 2.4

where we have used the equation (1.15).

Differentiating (2.4) projective covariantly with respect to x* and noting
the equations (1.14), (2.2) and (2.4) itself, we get

bQiirjk =0. (2‘5)

Hence the space becomes a flat one. Therefore, there does not exist a special
projective affine motion (2.2) in an S-PRF,-space.

3. Special Conmeircular Field, Under a special concircular field, we study
a vector field defined by

Vigy = Y(x) &, 3.1
where y(x) is an arbitrary non-zero scalar function. Let us consider a system
of motion of the following form :

#=A+ Vi) dt, Vigy=w(x)d. (3.2)
If it will be the case, then with the help of the last relation, we can see
Viup@n — Vi on = Va8 — Y8 (3.3)
which in view of the equation (1.5) reduces to
VI Qe = Wy 8% — Yy &, - (3.9

Differentiating this equation covariantly with respect to x™ and noting the equa-
tions (1.14), (3.2) and (3.4) itself, we obtain

YO i + Wiy 85 — Wion 8% = Y 85 — Y n 8% - (3.5
The above equation can also be written as
WO e = 85 Wen n) — P Vi) — Wiy o — Bom Vi) 8 (3.6)
Hence, if we take Wy ) = BV the last equation reduces to
Qim]'k =0. (37}

Hence, in order to avoid a case where the space be reduced to a flat P,, we have
to assume Wy )y & Ba¥@y- Lhis is to say, the gradient vector i, is not
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a recurrent with respect to p,. Under such an assumption, we can consider (3.2)
as uswal. However, unfortunately, if vig;; = w(x) 8/, w(x) vanishes identically
B

Consequently, for a y(x) s 0, there does not exist a special projective
affine motion of the form (3.2) in 5-PRF,.

4, Recurrent Field. If a vector vi(x) satisfies the condition
Vi = WAX) ¥, (4.1)

where y; denotes an arbitrary covariant vector, then the vector field spanned
by vi satisfying (4.1) is called a recurrent field. In this section, we shall study
the possibility of special projective affine motion of the form

& =Xt viG) d, Vi((j)) = Wj(x) v, 4.2)

If there exists such a motion in 8-PRF,_ first of all v¢ has to satisfy (1.15) ,hence
introducing (4.1) into (1.15), we get

Qin V" == Wy -+ VW) Vs 4.3)
where we have used (4.1) in the process of calculation. Since Q7;, is anti-symmet-
ric in j and k, multiplying the last equation by v* we obtain

WiV VE Wy vivE = O (4.42)
from which it follows that
Vi VE Wy vE = 0. (4.4b)
In view of the equations (1.14) and (4.1), differentiating (4.3) projectively with
respect to x, we get
Vi € V' Vi Va ¥V Vi ViV +
+ Wi Ve ()] vl + W Wk Vo vi = ([J'm + Wm) Qifkh vh * (45)
Contracting the above equation with respect to the indices i and & we obtain
W5 0) G Y Wi ey Vo V5 Wi Wi vE

+ WiV () vk + ViV W, vE = — QI'J’I (u'm 4 wm) vE. (46)

Again differentiating (4.4b) covariantly, with respect to x™ and using the equa-
tion (4.1), we get

W Gy G ¥ T+ Wiy Yo Vo T+ Wi Wi VE
T W Wy YT WYY, VE =0 4.7

Compating the last equation with (4.6), we can find a remarkable result

?) See theorem 3 and its generalization in [*].
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oy W) Qv =0, (4.8)

fr(l).m which we can obtain
B = — W, or Qvi=0% (4.9)

For the first case, we have
= Vdt, vigy=—wv. (4.10)

In the following lines, we shall seek for a necessary and sufficient condition for
the existence of special projective affine motion (4.10). In order that (4.10) con-
struct a special projective affine motion, it is necessary and sufficient that (4.10)
setisfy (1.18). In order to find an essential condition for our purpose, let us in-
troduce (4.10) into the left hand side of (1.18). Then, we have

£V (6, X) = g1, v Qi + 0, @ vV — 0 Qo V0 — 1y Qe ¥V — 11y Qg v
£VQihf.fc = vi(p, Qihi.'c By Qihsk — P ij;}'.s)‘JF s Qi vi— Hep O gy v* “.11 .
=V (@ n + Crsinp T Crion) + Lo Vi — L V>

where we have unsed the equations (1.14) and (4.10). In an affinely connection
space the identity (1.7) takes the form

e Qihfk + oy Qihks + Qihsf U’fr =0. (412)
Therefore, in view of the above relation the equation (4.11) reduces to
EVQin = — Vo @i + V¥ iy @i - (4.13)

On the dther-hand, we have generally

Viga @ — Vo Low = Vi on ey — Vi wo - (4.14)

Hence, in order to get £v Qf,; = 0, in the present case it is necessary and suf-
ficient that

Vi Gnw — Yan oy = 0 (4.14b)

and in this case only (4.10) becomes a special projective affine motion of the
space. The relation (4.14b) is an integrability condition of the equation

(@ &) Vi) oy =0 ' (4.152)

where a(x) is a non-zero arbitrary function of x5 only. Consequently, in order
to get the special projective affine motion (4.10), it is necessary and sufficient
that (4.15a) be assumed. Introducing the form of (4.10) into (4.152), we obtain

%) We shall consider afterward the case where Q i v = 0, Sec §7.
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Vi(— a gy, — apyep e = 0. (4.16)
So neglecting non-zero v, we have
Paon = Ml — ety (o = agy | o). 4.17)
Therefore, we can now consider here a motion .
| =2V VG = — v, (S = WPy — agiy. . (418)

Conversely, if we have (4.18), from this form, we can obtain the ongmal form
(4.15a). :

If we are able to consider (4.14b) excepting for a scalar proportionality
o(x), that is, a; = O in place of (4.18), we get -

F=xitvdr , Vigy + v =0, Uy = g K- 4.19)
The last of the above equations shows that y; be a gradient :
1 :
Wy T Hey - 1= a(x). (4.20)

In this case, we have (v'pn)qy = v Gy — By1) =0, ie. v7p, = const.
Taking this constant to be zero, we obtain v'p, = 0 or £vp(x) == 0. Thus ,we
have : :

Theorem (4.1). An S-PRF -space is able to admit a specw.l projective
affine motion of recurrent forny:

#=x v, Vi((j); + v =20
with an additional equation (4.17) being assumed to be integrable.

Corollary (4.1). The S-PRF -space is able to have a special projective af-
fine motion of contra form '

P Vi) de Wiy g vi=09

with the conditions

A ey = Mk - B) Evp() =0 (4.21)
where p; = [y | 1

Such a motion has been introduced under the solvability of the characteris-
tic equation (4.17). However, (4.17) has actually a special solution p, = 0. Hence
the following existence theorem of a contramotion holds good.

1) This is re-written as (Uv?) gy = 0, so vi spans a contra field (except for a scalar
proportionality). In case of . = Const., we shall call such a field a contra field in the strict
sense. Under a contra-field, we understood a field of parallel contravariant vectors.
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Theorem (4.2). The space S-PRF,_ is able to have naturally a special pro-
jective affine motion of contra form in the strict sense 7 = x* + vi(x) dt, Vi, = 0.

Since py = 0 means that S-PRF, be a special projective symmetric Finsler
space [6], we have :

Theorem (4.3). In order that a S-PRF, -space admitting a special projective
affine motion of recurrent form of the type (4.18) be a special projective sym-
metric space, it is necessary and sufficient that the motion be taken to be a contra
form in the strict sense.

5. Some Essentia? Conditions. Let us discuss the characteristic differen-
tial equation (4.17) of the defining vector p, for the recurrent affine motion.
The integrability condition of this equation is given by

(aoy — Baly + &)y — My — By Hs + gy = 0 (CRY
which by virtue of the commutation formula (1.5) reduces to
By @7 = (e — o) M )
ie.
o @his = (= oy + ety 1y, - (5.3)

If we take the arbitrary o, as a gradient vector being equal to zero or p, then
the last two equations reduce to

ty 0Ty = 0. (.4
But in such case the integrability conditon (4.17) becomes
Hiw = Baly OF Hyy =0 (5.9)
and (5.4) holds identically.

The equation (4.18) is equivalent to the system of (4.10) and (4.153), i.e,
to that of (4.10) and

ay Vi + Vi = 0- (4.15b)
Introducing the value of Vi sy from (1.15) into the above equation, we get
o Vi = — Qe V¥ + Wapy Vi X7 - (5.6)

In view of the equation (4.10), the last relation can be written like
Ly, o v = O v, (5.7

Transvecting this equation by v/ and noting the relation 07, ; v/v* = 0 we obtain
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o; vV =0 or fva(x)=0. (5.8)

Since "u, and v are non-zero, the sbove equation shows that o(x) is a Lie-
invariant one.

‘Contracting the equation (5.7) with respect to the indices i and j and using
(5.8), we get : o

0= Uy (ZjVj = Q,.J‘ri_\- V= — th v > (59)

0, v=0. £ (5.10)
In an affinely connected space the Bianchi identity (1.7) reducss to
@iy T Dsestin + Qlasican == 0 - (5.11)

Contracting the above equation with respect to the mndices 7 and £ and using
the relation (1.9), we get

Quicsn — Lusty = — Ly (5.12)
which in view of the definition (1.14) reduces to
Wi Qs = — 1. Qi + 1, Oy - (5.13)
Comparing this equation with (5.3), we obtain
s (Qpy — il = (@ — 1) - (5.14)
Multiplying this equation by v* and summing over s, we get
v (O — 1ya) =0, (5.15)

where we have used £va(x) =0 and (5.10). Hence if S-PRF -space admits the
special projective affine motion of the recurrent form (4.18), we have

Qi = ey or HevT =10, ' (5.16)
Furthermore, let us study the integrability condition of vigy + p;vi = 0.
From (vigy + 1) oy — Vg + e Van = 0, we get
Ve = Vi Wy + Man) (5.17)

where we have used the equations (1.5) and (4.18). The last relation can also
‘be written like

VI =V (— w1y djpk) . ~(5.18)
In view of the equaticn (1.9a) multiplying the identity (1.8) by v#, we get
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VEQh = — @l v + O v (5.19)

Introducirg (5.7) into the left hand side of this equation, we obtain (5.18), i.e.
the integrability condition (5.18) holds identically.

6. Discussion on the vector. We have assumed the existence of a gradient
vector e; derived from an arbitrary function ex) satisfying (4.15a) and in-the
course of discussion of the integrability conditions of (4.17), we have taken up
the following two cases :

a) o= 0, b) o= y;, (61)

but we have still remained to prove whether these are possible or not.

Differentiating (1.15) projective covariantly with respect to x*, and using
the equations (4.18), we get

Vi @y = = Wy @ VP + 0, O, vP = 0. (6.2

Again, differentiating projectively (4.15b) with respect to x* and the equation
(4.17b) itself, we obtain

Wy Vi (ygey — o) = 0. (6.3)

Consequently if the S-PRF,-space admits a special projective affine motion of
the form (4.18) the above equaticn reduces to

Gy — oy, = 0 (6.4
for a non-zero v and y,,.

This is characteristic equation of oafx) introduced by (4.15a). The integra-
bility condition of this equation is given by

%y Q% = 0. (6.5)

Thus, we have to assume (6.4) and (6.5) in our discussion of special projective
affine motion. At this moment we can now discuss the case (6.1a), (6.1b) and
{5.16). At first (6.4) has a solution a;=0, and therefore, the case (6.la) is.
always possible. Secondly, if &; == j;, the equation (6.4) takes the form

Hiey = Whe (6.6)
On the other hand, in this case, we get from (4.17)
Baen = 0. (6.7)

Hence from (6.6), we obtain ;= 0. Hence a non-special projective symmetric
S-PRFE, (i.e. O s = 0) can not admit the case (6.1b) and when it is the case
S-PRF, must be a special’ projective symmetric space.
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Thus, we can see that the case of «;= 0 is able to admit a contra motion
in a general 3-PRF -space, but the case «; = p; is unable to consider in a gene-
ral S-PRF,. Accordingly, if we treat only a general non-symmetric space, we
have to regard a; as a vector being not equal to p;.

We shall now study the case (5.16). At first we shall discuss the latter :
pov =0 (0. (6.8)

Since we have always £va(x) = 0 or a v* = 0, we may consider a special case
such that p; is proportional to a; for a non-zero and non-constant & = g(x), i.e.

m=cpy. | 6.9)
In such a case, (4.17) takes the following form :

oy = (I — &), 1. ' (6.10)
With the help of the last equation, we can obtain

e — Ry = 0, (6.11)

that is, p, becomes a gradient vector. Then, let us determine the concrete form
of p,. In this case the integrability condition of (4.17) becomes

Q% = 0. (6.12)

On the other hand the deformed equation of (4.17) showed by (6.10) gives us
its integrability condition of the form

Hs @i = (Wi &y — My €y Wy, - 6.13)

Consequently p; must satisfy

Hi= Aegy (A = A(x) : suitable function) . (6.14)
Substituting ¢ = g1, inte the equation (6.4) and noting (4.17), we obtain
Empy = (£ — 1) g1, . (6.15)
Hence, we can see A = ; , consequently
(e — 1)

O 2
s T = — —gm T €ty (6.16
1] T — 1) T T )

that is p; denotes certainly a gradient. Furthermore, being

%) ‘When € = Const., from (4.17) and (6.4), we get €= 1/2 or p.; = 0. These yield tri-
vial cases, so we except the case € = Const.
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1 1 - :
He=—+« —. Ly . (6.17)
E ¢

Equating the two values of (i, from the equations (6.16) and (6.17), we get

1 1
B = — Oy - 6.18
2 ] e = % (6.18)

We can find especially at last g == %(I + &?).

- 7. The Condition Q,; v/ —9 and Iategrability of Q,;=p,e; In §4 in
order to find the form of the motion of the form (4.2) we have derived the condi-
tions (4.9). Here the latter condition has been excepted from our study. However,
as we can see from (5.10), from the former condition the latter condition always
follows. Hence the first condition is a special one of the second condition.

We shall now try to study only the form
v* ers = 0 * (7'1)

In this case, we shall show that we can associate naturally this exceptional case
itself with our present theory. in fact, if (7.1} will be the case, differentiating it

-projective covariantly with respect to x™, we get

‘ (l’lm + wm) Qirs YS = 0 2 ) (72)
where we have used (1.14) and (4.18).

From (7.2), we can conclude that the quantity inside the bracket can be
taken quite arbitrary. So we can put

Hin + Yo = 0 OI'. Y =™ " Hpy - (73)
In view of the above result the recurrent condition (4.1) becomes
Vigy + v =0. (7.4

In this way, we can associate the case (7.1) with our stand point. Now, the integ-
rability condition of :

th = l’lh & or aQIxJ' = l’lh Ldn (75)
will be calculated and proved with case. That is, at first we make
(Haen %am -+ Moy e — Criten — ol @) =0 (7.6)
Introducing the equation (6.4) into the last relation, we get

Mty @iy T Mg (@ @ T @og o) — W o oy — op o, = 0. .7
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Interchanging the indices / and s in the above equation, we get a similar equation.
Substracting this equation from (7.7), we get the integrability condition of the
form :

ey (aen — Pake oo by) — Quay — Hali + ey gy = 0. (7.8)

But in order to get the present motion, we have assumed (4.17), hence above
condition holds identically, That is, (7.5) is completely integrable.
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OZET

Bu calismada bir PRF, uzaymda 6zel bir infinitezimal projektif afin ha-
reketin varlig: aragtirilmaktadir,




