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LARMOR RADIUS -
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Thermal-convective instability of a stellar atmosphere is considered to
include finite Larmor radius effect in the presence of a uniform vertical
magnetic field. The effect of a uniform rotation is also included. It is found
that the criterion for monotonic instability is the same as in the absence
or presence of these two effects. The growth rates of instability are discussed.

1. Introduction. Defouw [!] has termed the thermal-convective instability as
the convective instability of a thermally unstable atmosphere and has gene-
ralized the Schwarzschild criterion for convection to include departures from,
adiabatic motion,

Defouw ['] has given a criterion that a stellar atmosphere will be unstable
if

b= _E,‘l_ (Ly —pal) + K k2 <0, ()

I3

where L is the energy lost minus the energy gained per gram per second and
o.p, K, &k, Ly, L, denote respectively the coefficient of thermal expansion, the
density, the coefficient of thermometric conductivity, the wave number of the
perturbation, the partial derivative of L with respect to 7' and the partial deri-
vative of L with respect to p, both evaluated in the equilibrium state. C, s the
specific heat at constant pressure. In general the instability due to inequality
(1) may be either oscillatory or monotonic.

The criterion for instability (I) has been found to be unchanged by the pre-
sence of a uniform rotation and a uniform magnetic field, separately by Defouw
['] and simultanecusly by Bhatia [?].

In the above studies the Larmor radii of the charged particles (clectrons
and protons) are assumed zero. In many astrophysical situations such as the
solar corona, interplanetary and intersteflar plasmas, it is known that the

75




76 R.C. SHARMA - KIRTI PRAKASH

approximation (zero Larmor radius) is not valid. The effect of the finiteness of
the ion Larmor radius, which exhibits itself in the form of a magnetic viscosity
in the fluid equations, on plasma instabilities have been studied by Rosenbluth
et al [5] and Roberts and Taylor [*].

It is, therefore, interesting to study the modification, if any, in the criteri-
on for instability when the effecis due to rotation and finite Larmor radius are
included in the thermal-convective instability of a stellar aimosphere.

2. Formulation of the problem. Let us consider an infinite horizontal layer

which is in a siate of uniform rotation ﬂ(o, 0, 1), acted on by a vertical mag-

netic Tield H(O 0, H) and gravity force g(o, o, — g). This layer is heaied from
below such that a steady temperature gradient B(—— %T_) is maintained.

z
Let
—— - -
8P, 6p,qu, v, w) and h(h,, h, h)
denote the perturbations in stress tensor E’T density p, velocity and magnetic field
H respectively; g, v and v denote respectively, the gravitational acceleration,

the kinematic viscosity and the resistivity. Then the linearized hydromagnetic
perturbation equations are :

aq - . 5 - 1 — — — - -
pE———-—VBP%—va q—I-4—(Vxh)xH+2p{q><ﬂ)+g5p, {2)
T
V.q=0, V.h=0, G
—l; —n — >
%z(H.V)qunVZh. @
The first law of thermodynamics can be written as
Ci{:_LJr T_|_£_d_p-l (5
dt p pt dt

where K, C,, T, ¢t and p denote the thermal conductivity, the specific heat at
consiant volume, the temperature, the time and the pressure respectively.

The linearized perturbation form of equation (5), following Defouw [!], is

O (L~ par) 8 — KV — — (p+ i) W, ©
daf C, ¢

where 0 is the perturbation in temperature. In obtaining (6), use has been made
of the Boussinesq equation of state

Sp = — apl. 0]
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For the vertical magnetic field H {0,0,#1), the stress tensor components & P,
taking into account finite ion gyration, have the components (Sharma [°]:

au ' du av
oF 5p—p\)(——+ )6Px —SPx—pv( -w—),
Lay  ox v ax 3y
8P, = 8P, = — 2pv, (a" +al’) 5P,, = 5p + pv, —+ﬂ), ®
d ay \dy  ax
ow ou :
8P, =38P, = 2py, (— + —) 3P, = dp
d oz
In equations (R), 8p is the perturbation in scalar part of the pressure and
oy, — NT
0 4y '

where vy is the ion-gyration frequency, while N and T denote respectively, the
number density and temperature of the jons. We consider the case in which both
the boundaries are free and the medium adjoining the fluid is nonconducting.
The boundary conditions appropriate for the problem are (Chandrasekhar [*]) :

w =0 , 6=20,
©
2z
v _ o ,Hai)_:o‘
3z dz

E =0 and h is continuous with an external vacuum field. Here p and & denote,
respectively, the z-components of vorticity and current density.

3. Dispersion refation and discussion. Analyzing in terms of normal modes,
we seck solutions whose dependence on space and time coordinates is of the
form _

exp ik, x + ik, y+ nt]sinkz, (10
where &, is an integral multiple of = divided by thickness of the fluid layer,
E(=\k2+ k2t k7?) is the wave number of the perturbation and # is the
growth rate. :

From equations (2)-(4), (6) and (8), we have :

2 2,

2 iy mgaf 00 T v, 20 H B gy
of ax? ay dz 4nh g9z

+ »ﬂ(vz— 3 ) L n

3z%) 9z
2

0 _yyp o2 A 3§~vo(v2—3—a— LN (12)
ot A 4ntp oz 0z2) Bz




78 : R.C. SHARMA - KIRTI PRAKASH

O g2 4 g, - (13)
-or . -9z . :
B _m O g, | | (14)
at oz
9+ [L (Ly — pal) + K]cz:l 0=— ({3 + i) Y (15)
CP C!’

Eliminating 0, &, /i, and p from equations (11)-(15) and using (10), we ob-
tain the dispersion relation ‘
w4 At 4 A £ AR+ A+ 4, =0, (16)
where
A =D+ 20+ 7,
k.

. - . 2 .
,43—2k21)(v+n)+k‘*(v2+4vn+n2)+2k}V2+1“([3+—(‘?)+ﬁA2,

2
» k

A, =2 (+ 2T (B + Ci) 4 K DO+ dvn + 1942k 2 2D+ 2k (v 4 1)+
P
2

2622 V(v A+ )+ = A2 (D + 2nkY), (17

k
k2
A =222 VD (y+7;) T2 D (v + )+ T (B+ %) 0 (+2v) v 2 ko4
¢
+TI (|3 + (}i) EEVE4 2ok k2 V2 kA VY + i 2 A2 (02 + 2D),
o p . o . )

A= Gk 4 2 VY2 VD kDT (B Bl 1 e 2D,
. 13
2 2 2
_ gkl TR e M 420 1 v, (2 — 3K2).
k> 4rp

r

Setting v =1 =0 in equation (16), as the effects of viscosity and resisti-
vity are negligible in many cases of astrophysical interest, the dispersion relation
reduces to :

i . 2 o
n + Dn* + [Ekf V24 I‘(ﬁ + %) 4 1;:_ QO + v, k¥ — 3;622)2] PEE
2

P

2 ——___ )
+D {21‘:; v f_z QQ vy i = 3k,2)2J w2t kP2 [r ( B+ _é{i_) k2 Vz] -
i : ’ p/

+k1VID=0. ' (18)
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When D < 0 ie., when inequality (1) is satisfied, the constant term in equa-
tion (18) is negative, This means that the equation (18) has positive real root,
leading to monotonie instability. The criterion for instability, therefore, is the
same even if the rotation and finite Larmor radius effects are included on
thermal-convective instability of a stellar atmosphere,

We shall now discuss the dispersion relation (18) in some detail. Let us re-
gard D to be small and solve the dispersion relation in order to study the nature
of instability and growth raies in case of instability. Puiting

n=mn, +nD

in Eq. (18) and negleciing terms involving powers of D higher than the first, we
get the following equations determining n, and n, -

cos?

o [n04 + PA2 (2fJr 1+ )n02 F Pt +f)] —0, (19

2
' + P A (2f+ g;_ﬂ___) n? + P2 A4 f2
no=— QO
! cos? @ ‘
Sng“—l—SPAz(Zf—]—l—i— )noz—i—PzA‘f(l + )
From Eq. (19), we have
n, =0, 1)
2 .
2 (%) =— [l +2/)P + cos? 0 F P2+ 2P (1 + 2f)cos? 6 -+ cost 6],
(22).
‘where
T(B+%‘g") I
R S A N s
P o= yp N Yoty cos @, (23)
P, f and A2 are all positive.
Corresponding to n, = 0,
no=— —f— (24)
L+ f

The modes (21) and (24) correspond to the growing mode with growth raie
-given by

ne—d p—— !
L+/ r(p+&)
I+ icszip

Thus, when D<0, as k_ and H increase, growih rate increases whereas as
temperature gradient increases growth rate decreases.
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In the equation {22), the expression within the square root sign is positive.
Therefore all the four values of », are purely imaginary occurring in conjugate
pairs so that we have the oscillatory instability when D — 0. The frequencies
of these oscillations depend on k,, k, A, F, P, 0 i.e. magnetic field, temperature
gradient, rotation, finite Larmor radius and wave numbers. '

And

A= (— ) E (25,26)

E= P[P+cosﬂ 8T VP 2Pl +2/) cos? @ +cos* 8]
F=[(1—f—2 2P + cos*0(2 + 3 F) P +cos*B—I[cos®0 + P(f + 1)}V P+ 2P(1 + 2} cos?8+cos*0]
the frequency n, with the negative sign corresponding to the value of ng2 given

by upper sign in Eq, (22) and the frequency n, with the positive sign correspond-
ing to the values of n, given by lower sign in Eq. (22).
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OZET

Bu ¢aligmada bir yildiz atmosferinin termik konvektivitesi dengesizligi, bir
diizgtin diigey manyetik alandaki sonlu Larmor yarigapi etkisi gdzdniine
almarak incelenmektedir. Aymi zamanda diizgiin bir dénme etkisi de gdzo-
niine alinmaktadir. Monoton dengesizlik kriterinin, adi gecen iki etkinin
varliginda veya yoklupunda ayn: oldugu saptanmakta ve dengesizligin biyii-
me oranlarl incelenmektedir.




