

SYNTHESES OF NEW POLYSUBSTITUED DIHYDROFURANS MEDIATED BY MANGANESE(III) ACETATE

HAKAN ASLAN, FATMA EROĞLU AND MEHTAP ÖZGÜR

ABSTRACT. Efficient syntheses of new 4-(hydroxymethyl)-5,5-dimethyl-2-(thiophen-2-yl)-4,5-dihydrofuran-3-carbonitrile (**3a**) and 4-(hydroxymethyl)-5,5-dimethyl-2phenyl-4,5-dihydrofuran-3-carbonitrile (**3b**) were achieved via oxidative addition and cyclization reaction of 3-oxo-3-(thiophen-2-yl)propanenitrile (**1a**) and 3-oxo-3phenylpropanenitrile (**1b**) with 3-methylbut-2-en-1-ol (**2a**) in the presence of manganese(III) acetate. The structures of the compounds (**3a** and **3b**) were determined on the basis of spectral data (IR, NMR and MS). All spectral data are in good agreement with the proposed structures of compounds.

1. INTRODUCTION

Dihydrofurans are an important scaffold that occupies a prominent place in the organic syntheses, as they are present in biologically active synthetic molecules and in a wide variety of naturally occurring compounds [1,2]. Their syntheses by the radical cyclization reaction of active methylene compounds with unsaturated systems via transmetal salts (Mn^{3+} , Ce^{4+} , Cu^{2+}) is one of the best method [3-14]. Our research group was interested in preparing of dihydrofurans by manganese(III) acetate have shown antifungal and antibacterial activity [15,16] (Fig. 1).

FIGURE 1. The compounds have antimicrobial activity synthesized in our previous work.

2018 Ankara University Communications Faculty of Sciences University of Ankara Series B: Chemistry and Chemical Engineering

Received by the editors: November 11, 2017; Accepted: August 15, 2018.

Key word and phrases: Manganese(III) acetate, 3-Oxopropanenitrile, Unsaturated alcohol, Dihydrofuran, Radical Cyclization.

In continuation of our previous work, we have synthesized highly functionalized new dihydrofurans from the reaction of unsaturated alcohol with 3-oxopropanenitriles. Thus, we would like to report a biologically interesting dihydrofurans (3a and 3b) by the mediated of Mn(III) acetate in moderate yields. For this purpose, 3-oxo-3-(thiophen-2-yl)propanenitrile (1a) and 3-oxo-3-phenylpropanenitrile (1b) were used as active methylene compounds and 3-methylbut-2-en-1-ol (2a) were used as an unsaturated alcohol.

2. Materials And Methods

2.1. Physical measurements

Melting points were determined on a Gallencamp capillary melting point. IR spectra (KBr disc, CHCl₃) were obtained with a Matson 1000 FT-IR in the 400-4000 cm⁻¹ range with 4 cm⁻¹ resolution. ¹H NMR (400 MHz), and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Avance DPX-400 MHz and Varian Mercury-400 High performance Digital FT-NMR spectrophotometers. The mass spectra were measured on a Micromass UK LC/MS (APCI, 100-150 eV), and a Shimadzu GC-17A/GC-MS-QP5000 (EIMS, 70 eV) spectrophotometers. Thin layer chromatography (TLC) was performed on Merck aluminium-packed silica gel plates. Purification of products was performed by column chromatography on silica gel (Merck silica gel 60, 40-60 μ m) or preparative TLC on silica gel of Merck (PF254-366 nm).

2.2. Materials used for syntheses

3-Methylbut-2-en-1-ol (**2a**) is available as commercial product and used without further purification. Manganese(III) acetate dihydrate was used as a radical oxidant was obtained from the bipolar packed-bed reactor by electrochemical method in literature [17].

2.3. Syntheses

2.3.1. General Procedure for the syntheses of the new compounds (**3a** and **3b**)

A solution of $Mn(OAc)_3 2H_2O$ in glacial AcOH was heated under N₂ at 80 °C until it dissolved. Then a solution of a solution of **1a** or **1b** (2 mmol) and unsaturated alcohol **2a** (1 mmol) in 5 mL glacial AcOH was added to the mixture at 80 °C. The reaction was complete when the dark brown colour of the solution disappeared. H₂O was added to the mixture, which was extracted with CHCl₃ (3L20 mL). The combined organic layers were neutralized with saturated NaHCO₃ solution, washed with H₂O, dried over anhydrous Na₂SO₄, and evaporated to give an oil. The products were purified by cc on silica gel or preparative TLC on silica gel, eluating with hexane: AcOEt (2:1) mixtures.

2.3.1.1. 4-(Hydroxymethyl)-5,5-dimethyl-2-(thiophen-2-yl)-4,5-dihydrofuran-3carbonitrile (**3a**)

Light yellow oil; yield 40 %; **IR** (ν_{max} , KBr): 3445 (OH), 3038 (Ar-H), 2965 (R-H), 2199 (CN). ¹H-NMR (CDCl₃), δ (ppm): 1.52 (3H, s, CH₃), 1.54 (3H, s, CH₃), 2.16 (1H, s, OH), 3.11 (1H, dd, J = 7.6; 4.8 Hz, CH), 3.83 (1H, dd, J = 11.2; 7.6 Hz, CH₂), 3.90 (1H, dd, J = 11.2, 4.8 Hz, CH₂), 7.12 (1H, dd, J = 5.2, 4.0 Hz, ArH), 7.50 (1H, dd, J = 5.2, 1.2 Hz, ArH), 7.84 (1H, dd, J = 4.0, 1.2 Hz, ArH). ¹³C NMR (CDCl₃), δ (ppm): 22.02 (CH₃), 29.51 (CH₃), 54.65 (C4), 61.38 (CH₂), 78.67 (C5), 90.95 (C3), 117.93 (CN), 128.22 (CH), 130.00 (CH), 130.29 (CH), 130.84 (C), 162.08 (C2). **LC/MS** m/z: (%): 236 (MH⁺, 100).

2.3.1.2. 4-(Hydroxymethyl)-5,5-dimethyl-2-phenyl-4,5-dihydrofuran-3-carbonitrile (**3b**)

Light yellow oil; yield 33 %; **IR** (ν_{max} , KBr): 3438 (OH), 3042 (Ar-H), 2972 (R-H), 2204 (CN). ¹H-NMR (CDCl₃), δ (ppm): 1.53 (3H, s, CH₃), 1.55 (3H, s, CH₃), 1.96 (1H, s, OH), 3.12 (1H, dd, J = 7.2; 4.4 Hz, CH), 3.85 (1H, dd, J = 11.2; 7.2 Hz, CH₂), 3.93 (1H, dd, J = 11.2, 4.4 Hz, CH₂), 7.41-7.48 (3H, m, ArH), 7.93-7.95 (2H, m, ArH). ¹³C NMR (CDCl₃), δ (ppm): 22.03 (CH₃), 29.58 (CH₃), 54.82 (C4), 61.38 (CH₂), 80.10 (C5), 89.90 (C3), 118.25 (CN), 127.44 (CH*2), 128.50 (C), 128.85 (CH*2), 131.72 (CH), 166.93 (C2). **GC/MS** m/z: (%): 229 (M⁺, 100).

HAKAN ASLAN, FATMA EROĞLU AND MEHTAP ÖZGÜR

3. Results And Discussion

First, the starting material 3-oxo-3-(thiophen-2-yl)propanenitrile (1a) and 3-oxo-3phenylpropanenitrile (1b) were synthesized according to the published procedure [18]. Then, the radical cyclization of 3-oxopropanenitriles (1a, b) with 3-methylbut-2-en-1-ol (2a) were performed in AcOH solution in the presence of manganese(III) acetate at 80 °C in 30 minutes under nitrogen atmosphere using 2:1:3 molar ratio (1: 2: $Mn(OAc)_3$, respectively) (Fig. 2). After the work-up procedure, dihydrofurans (3a and 3b) were purified by column chromatography or preparative TLC and characterized by IR, ¹H NMR, ¹³C NMR, and MS.

FIGURE 2. Reaction of 1a, b with 2a.

When the IR spectra of the compounds (**3a-b**) were examined, the OH $(v = 3440 \text{cm}^{-1})$ and CN $(v = 2200 \text{ cm}^{-1})$ peaks were observed. ¹H NMR spectra of the compounds are similar. Methyl group protons resonated at around 1.5 ppm. H4 proton and methylene (CH₂-OH) protons resonated at about 3.1 and 3.8-3.9 ppm, respectively. These methylene protons are diastereotopic and the coupling constant of these protons is ${}^{2}J_{\text{H-H}} 11.2$ Hz. These protons were coupled with H4 and exhibited dd signals. In the ${}^{13}\text{C}$ NMR spectra, CN groups resonated at 118 ppm (Table 1).

4. Conclusion

Manganese(III) acetate mediated radical addition-cyclization reactions of 3oxopropanenitriles (1a, b) and unsaturated alcohol (2a) were carried out. We have synthesized new 4-(hydroxymethyl)-5,5-dimethyl-2-(thiophen-2-yl)-4,5dihydrofuran-3-carbonitrile (3a) and 4-(hydroxymethyl)-5,5-dimethyl-2-phenyl-4,5dihydrofuran-3-carbonitrile (3b) compounds by 40% and 33%, respectively. The structures of 3a, b were identified by spectroscopic methods (IR, MS, ¹H NMR and ¹³C NMR). Besides, the products have the biological activity potential owing to the containing hydroxymethyl and cyano moiety.

			HO HO O 3a	Z))) b			
$\begin{array}{c} HO \\ H_{a} \\ H_{b} \\ H_{b} \end{array} \qquad \text{Atom numbers and groups} \end{array}$										
Ar 2 0 5	¹ H-NM	${\rm IR}~(\delta)$	¹³ C-NMR (δ)							
Compoun d	4	${ m CH_2} \ \left({ m H_a/H_b} ight)$	CH_3	2	3	4	5	$_{\rm CN}$	CH_2	CH_3
За	3.11	3.83/3.90	1.52 1.54	162.08	90.95	54.65	78.67	117.93	61.38	22.02 29.51
3b	3.12	3.85/3.93	$1.53 \\ 1.55$	166.93	89.90	54.82	80.10	118.25	61.38	22.03 29.58

TABLE 1. NMR chemical shifts of enumerated atoms and groups of 3a and 3b

ACKNOWLEDGEMENT. The authors are indebted to the Ankara University BAP (13B4240002) for financial support.

Özet

Mangan(III) asetat varlığında, 3-oksopropannitrillerin (1a ve 1b) doymamış alkol (2a) ile radikalik katılma ve halkalaşma reaksiyonu aracılığında yeni 4-hidroksimetil-5,5dimetil-2-tiyofen-2-il-4,5-dihidrofuran-3-karbonitril (3a) ve 4-hidroksimetil-5,5dimetil-2-fenil-4,5-dihidrofuran-3-karbonitril (3b) bileşiklerinin etkili sentezi gerçekleştirildi. Bileşiklerin yapısı, MS, FTIR, NMR teknikleri kullanılarak aydınlatıldı. Tüm spektroskopik veriler, önerilen bileşiklerin yapıları ile uyum içerisindedir.

References

- M. Mondal and U. Bora, Recent advances in manganese(III) acetate mediated organic synthesis. RSC Advances, 3 (2013) 18716-18754
- [2] D. Ergüntürk, M. B. Gürdere, Y. Budak and M. Ceylan, Synthesis, characterization, and investigations of antimicrobial activity of 6,6-dimethyl-3aryl-3',4',6,7-tetrahydro-1'H,3H-spiro[benzofuran-2,2'-naphthalene]-1',4(5H)dione. Synthetic Communications, 47/16 (2017) 1501–1506.
- [3] A. S. Demir, and M. Emrullahoğlu, Manganese(III) acetate: A versatile reagent in organic chemistry. Current Organic Synthesis, 4/3 (2007) 223-237.
- [4] H. Nishino, Manganese(III)-based peroxidation of alkenes to heterocycles. Springer: Berlin, 6 (2006) 39-76.
- [5] H. Aslan, D. A. Akpınar, A. Öktemer, M. Yakut, and A. Alagöz, Synthesis of dihydropyrans and dihydrofurans via radical cyclization of unsaturated alcohols and 1,3-dicarbonyl compounds. Helvetica Chimica Acta, 97/5 (2014) 652-663.
- [6] G. Bar, A. F. Parsons, and B. Thomas, Manganese(III) acetate mediated radical reactions leading to araliopsine and related quinoline alkaloids. Tetrahedron, 57/22 (2001) 4719-4728.
- [7] H. Nishino, R. Kumabe, R. Hamada, and M. Yakut, Mn(III)-based reaction of alkenes with quinolinones. Formation of peroxyquinolinones and quinolinerelated derivatives. Tetrahedron, 70/7 (2014) 1437-1450.
- [8] M. Yılmaz, E. V. Burgaz, M. Yakut, and E. Biçer, Synthesis of 4,5-dihydrofuran-3-carbonitrile derivatives with electron-rich alkenes in the presence of manganese(III) acetate. Journal of the Chinese Chemical Society, 61/10 (2014) 1101-1107.
- [9] M. Yılmaz, M. Yakut, and A. T. Pekel, Synthesis of 2,3-dihydro-4H-furo[3,2c]chromen-4-ones and 2,3-dihydronaphtho[2,3-b]furan-4,9-diones by the radical cyclizations of hydroxyenones with electron rich alkenes using manganese(III) acetate. Synthetic Communications, 38/6 (2008) 914-927.
- [10] H. Aslan, A. Oktemer, H. Dal, and T. Hokelek, Synthesis of ferrocene substituted dihydrofuran derivatives via manganese(III) acetate mediated radical additioncyclization reactions. Tetrahedron, 73/51 (2017) 7223-7232.
- [11] M. Yilmaz, N. Uzunalioglu, M. Yakut, and A.T. Pekel, Oxidative cyclications of 3-oxopropanenitriles mediated manganese(III) acetate with 2-thienyl substituted alkenes. Turkish Journal of Chemistry, 32/4 (2008) 411-422.
- [12] M. Özgür, M. Yılmaz and A. T. Pekel, Manganese(III) acetate mediated synthesis of new angular and linear dihydrofuroquinolinones. Communications Faculty of Science University of Ankara Series B, 59/1.2 (2017) 1-11.

- [13] R. Çalışkan, N. Nohut, Ö. Yılmaz, E. Sahin, and M. Balci, Unusual manganese(III)-mediated oxidative free-radical additions of Meldrum s acid and dimethyl malonate to benzonorbornadiene and oxabenzonorbornadiene. Tetrahedron, 73/4 (2017) 291-297.
- [14] O. Alagöz, M. Yılmaz, A. T. Pekel, C. Graiff, and R. Maggi, Synthesis of dihydrofuro- and C-alkenylated naphthoquinones catalyzed by manganese(III) acetate, RSC Advances, 4 (2014) 14644.
- [15] E. Loğoğlu, M. Yılmaz, H. Katircioğlu, M. Yakut, and S. Mercan, Synthesis and biological activity studies of furan derivatives. Medicinal Chemistry Research, 19/5 (2010) 490-497.
- [16] E. Sarı, H. Aslan, Ş. Dadı, A. Öktemer, E. Loğoğlu, Biological activity studies of some synthesized novel furan and pyran derivatives. Gazi University Journal of Science, 30/4 (2017) 49-55.
- [17] A. Güvenç, A. T. Pekel, and M. Koçkar, The experimental optimization of the electrosynthesis of manganese(III) acetate in a bipolar packed-bed reactor. Chemical Engineering Journal, 99/3 (2004) 257-263.
- [18] E. V. Burgaz, M. Yılmaz, and A. Oktemer, Radical cyclizations of conjugated esters and amides with 3-oxopropanenitriles mediated by manganese(III) acetate. ARKIVOC, ii (2011) 363-376.

Current Address: HAKAN ASLAN: Department of Chemistry, Sinop University, 57000 Sinop, TURKEY E-mail Address: hakaslan@gmail.com ORCID: https://orcid.org/0000-0002-5268-7196

Current Address: FATMA EROĞLU: Department of Chemistry, Ankara University, 06100 Ankara, TURKEY E-mail Address: fatmaeroglu6@gmail.com ORCID: https://orcid.org/0000-0002-7510-8855

Current Address: MEHTAP ÖZGÜR (Corresponding author): Department of Chemistry, Ankara University, 06100 Ankara, TURKEY E-mail Address: mehtapyakut@gmail.com ORCID: https://orcid.org/0000-0002-6237-8522 HAKAN ASLAN, FATMA ERO**ğ**lu and mehtap özgür