ON WAVE SOLUTIONS OF GAUGE INVARIANT GENERALIZATION
OF FIELD THEORIES WITH ASYMMETRIC FUNDAMENTAL
TENSOR IN A GENERALIZED PERES SPACE-TIME

KRISHNA BIHARI LAL- AMIR ALI ANSARI

Lal and Pandey [*] " have investigated the solutions of non-symmetric

unified field theories in a generalized Peres space-time. In this paper we

have considered the gauge invariant generalization of Einstein’s field equa-

tions as given by Buchdahl ([*], [*]) in a generalized Peres space-time and
it has been found that under certain conditions the solutions exist.

1. Introduction. By combining the field theories of Weyl ['] and Einstein
[?], Buchdahl ([?] , [*] introduced another geometry based on an asymmetric
covariant tensor gy and covariant vector K, relating these to an asymmetric
linear connection IV, in such a way that the geometry could be regarded equiv-
alently as ’Gauge invariant generalization of Einstein’s theory’.

Buchdahl’s gauge invariant generalization of field theories ([*],[*]) are
based upon an asymmetric tensor g;; = hi; -+ fi; (where h;; is the symmetric
part of g;; which is coincident with the fundamental tensor of the metric space
and f;; is the skew-symmetric part of g;), a covariant vector k; and a linear con-
nection I, defined by

gully + gulhy — 8y =0 (k=28,=8/3x* , x*=x,p.21, (L]
gVl +guViy— 8y K =0, (12)
Ty = Liye — Vi, (1.3)
where L/, is the linear connection of Einstein’s non-symmetric theory [*. The
indices i, j, k take the values 1, 2, 3, 4; a comma (,) before an index i denotes

its partial differentiation with respect to x’. The simplest field equations based
upon this theory, as given by Buchdahl [*], are

"y Numbers in brackets refer to the references at the end of the paper,
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r=I;=0, (1.4)
v
k
Gy = Ny + Vi:‘.iik (K + Kp) + Ve Vi — 2 VR, K, =0, (1.5)
where
1
N:‘j = kaj,k +"2— (Lkngg,j + Lk,ﬂ-,f) + Lk” lej — Lk,-j L@ R (1_6)

and a semi-colon (;) denotes covariant differentiation with respect to
Liy. A7+, "—" or 0" sign below an index fixes the position of covariant index
k in connection as L', , L', , L', and a bar (—) and a hook (v) below the in-

dices denote the symmetry and skew symmetry respectively between those
indices. Tensor G;; and Nj; are the hermitian tensor of gauge invariant and
Einstein’s usual asymmetric theory respectively.

Lal and Pandey considered Einstein’s field equatlons in a generalized
Peres space-time [*], given by

ds = — Adx* — Bdy?* — (1 — EYdz®2 — 2E dzdt + (1 + E) dt?, (LN
where A= A(z,1),B= Bz 1), and E= E(x, %,z {).

The non-symmetric g;; [}] is given by

—4 0 — —p
0 —B o —0c

Bu= _p —¢ —-(-E —E| (18
P o —E (1+ E)

where p, ¢ are functions of x, y, z — 1.

The wave solutions of field equations of Buchdahl given by (1.1)-(1.5),
have been investigated earlier in a V,x ¥V, space-time by Lai and Khare [¢] and
in a cyiindrically symmetric space-time by Lai and Singh [?] and the solutions
have been found to exist under certain conditions. In this paper we propose to
consider the field equations (1.1)-(1.5) in the generalized Peres space-time (1.7)
with the assumptions

A=A@E—1),B=B@z—1). (1.9)

Equation (1.1) is the first equation of Einstein’s unified field theory and
it has been solved in [3]. In what follows, the components of L, are obtained
from those given in [*] by using (1.9), which together with ¥ & give connection
coefficients in gauge invariant theory.

2. Solution of the Field Equation (1.2). We shall use Hlavaty’s [®] method
to solve equation (1.2). Mishra [°] has proved that F%; can be put in the form
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V= Hey A Sk Uy, .10
where

Ukyy=21m ST il (0]

HEy = % WK ey -+ Ky — Koy, 2.3)

Sty = Ve =W (K'sy + 20U 1) . (2.4)

K = Ky + 2fu Hi' g : (2.52)

K= - s+ Kfiy— Kify. (2:5b)

Since f;; obtained from (1.8) are of class third in the sense of Hlavaty [%],
we have solution of (2.4) as

Sty = Ky — 2y K e 1Y (2.6)
Using (1.8) in equations (2.3) and (2.5b), we get the components of H*;
(= H*%;)) and K;;; (= — K} as follows :
Hey K2, — KpA[2B, (K, A]2 — EA(K; + K)J2),
(K, A2 — EAGK, + K)iD],
HY, [ K\ B[24, K,/2, (—K;B(2 — EB(K; + K}/2),
(K,Bj2 — EB (K, + K)/], @7
COH - K (= B2, — Ky (1 — E)2B, (Kyj2 — KE[2 + E* (K; + K/2),
(K,/2 — K,E2 — K, E + E2(K, + K)/2)],
HY, [K (1 + E)/2, K, (1 4+ E)2,(K,[2 + K,E + K,E[2 + E* (K, + K)/[2),
(Ky/2 + KGE2 + B2 (K, + K)/2)],
HR, (K, 2, K[ 2,0,0],
similar expressions for H*, H*%,, H%,, H%,, H%, are omitted for brevity’s

sake, where k takes the values 1, 2, 3,4. And

Ky =— Ky =pK, Ky = — Kypp = ok, ,

Kyp = — o(Ky + E)2, Ky = — Kipp = Ky = — Ky = (0K + 0K))/2,
Ky = 0K, Ky = — (K, + KJ)/2, Ky = ak, (2.8)
Kigg = Ky = oKy — K3} [ 2, Ky = Ky = o(K, — K)J2,

Kipy = — Ky = 0K, — 0KD/2, Ky = — 0Ky,
Ky = — 0Kyf2. ‘ |
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Using equations (1.8), (2.7) and (2.8) in (2.5a), we find the values of
Ky (== — K') as follows :

K'y3 = — K’y = (0K,4/2B), K'ypp == — K'pyy = (0K B[24)

K= — K= @K;2 + pE (K, + K)/[2),

Ky = — Ky = (0K;3/2 4 0 E (K + KD/2),

K'iy = — K'ypa = (pK, 2 — pE (K, + K)/2) ,

K'yyy == — K'y3y = (— oK,J2 4 ¢E (K, + KJ)/2), 2.9
K'yyy = K'34y= (— pK, |24 — 0K,[2B),

K= — K= 0K, — pKy[2) , K'y3) = — K'pyy = (0K, — aK,[2),

K= —o(K; -+ K) 42, Ky, = — pB(K; + K))/2,
K3y = K3y = K'yp3 = K'j5, = 0.,
Substituting from equations (1.8) and (2.9) in (2.6) we find that the last term
on the right hand side of equation (2.6) is identically zero and equation (2.6)

reduces to :
Sk = KUKy (2.10)

Equation (2.2) reduces to
Uk =0 2.11)
with the help of equations (1.8), (2.9) and (2.10).

Thus we have solved equations (2.2), (2.3) and (2.4) in terms of g;; and K.
Using equations (2.7), (2.9), (2.10) and (2.11) in equation (2.1) we find the com-
ponents of V%, as follows :

Ve [K, /2, — K,A[2B, — (K,A[2 — EA (K5 + K)/2),
(KyA[2 — EA (K, + K)[2],

Viy[— KiB[24, K,[2, (— K3Bj2 — EB(K; + K)) [ 2),
(K,B/2 — EB (K, + K)/2)], (2.12)

Vis[— K (I — E)24, — K, (1 — E)j2B,(K;/2 — K E[2 4 E*(K; + KJ)/2).
(K4/2 - KaE/2 - KqE + E? (K3 - K4)/2] ’

Ve [Ki (1 + E)/24, K, (1 + E)[2B, (/2 + KE + K,E[2 + E* (K, + K)[2),

(K,/2 4 K Ej2 | E? (K3 + K)/2)], '
V"% [(K,/2 + o (K, - K)/2), (K,/27Fp (K; + Kp)/2), 0, 0],

similar expressions for F*,, V%, Vk,, Vk, Vk, are ommitted for brevity’s
3 S R T St

sake.
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Thus the solutions of equation (1.2) in the space-time (1.7) under the assump-
tion (1.9) are given by (2.12).

3. Tensors G;; and Nj;. The gauge invariant Einstein tensor G;; as given
by Buchdahl [*], is
ml

Gij = Ny — (K + Kjy — 2K.L5) — 2V K+ V0, + Ly
— Ly + VT Vtmf (3.1)

e m
V% — L™y Viy—

and N, the Einstein tensor of Einstein’s usual asymmetric theory with L as
lincar connection, is given by

1 m I}
Ny=—Ihy, + ?(Llﬂ.f + L) + Ly L7y — L I (G2

To calculate G; and Ny more easily we find out LJ; as follows :
Li;=Lh; =0, L= — Ll;=(d4/24 | Bj2B). (3.3)

Using (3.3) and the components of L¥; from [°] in view of (1.9) in (3.2), we
get the components of &;; as follows :

N,=Ny=Nj,=~N; =0,
Ny=—-N,=0w+PNy=—Ny=09,w— P, 3.9
Ny——Npy= 8w+ QNy—~Ng—aw—Q;
Ny=M+R(1—E), |
N,=—M+ER, (3.5)
Ny,=M—R({+E),
where

w=1(3,+3)E P=(0,.p/4+ @,,p+3,0)/28B—pR),

Q= (8,,6/B+ (3,0 + 3,,0)/24 — oR), R=(3, + 3) w/2,

M =424 — (A]24): + BJ2B — (B/2BY ~ (3,p/4)* — (3,0/B)* —

— (@,p + 8,0)%/24B — (4/24 + B/2B) w2 — 3, Ef24 — §,,E/2B +

+ (2/4) 30/0x + (2/B) aBjay ,

o =(p/A) d,p + (5/2B)(3,p + 0,0),

B = (@/B) 8,0 + (0/24) (3,0 + 3,0)-

Using (2.12), (3.3) and the components of £¥; from [5] in equation (3.1),
we get the components of G;; as follows :

d F¥

T L T L S e e L I N T T
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Gy = 2(Ky),— A (K, + KYA T K2A2B + EA (K, +KR/2 AR 2 K2)j2 —
— BA (Ky+K/AB—p* (K, | K)/2H(K, [2),— (K, A[2B) ,— (K, A[2),, —
— (EA (K, + K)/2),, + (K,A/2),—(EA (KK, » '
Gy = AK,),~BK, | K)/4+K2BJ24| EB(Ky+ K.Y 2+ BIK2 K72 —
— AB (K,+K)/AA—02(K;+ K)[24H(K,[2) ,— (K, Bf24),,—(K; B[2) 5 —
— (EB(Ky+K)[2) 4 (K,B2) ,—(EBK,+K)/2)., , (3.6)
G‘;, = — (K1/2),, —(K,/2),,—(@,p—0,0) (K, + K)/2— K\ K, /2 —
— po(Ky+ K2 (0(K;+ K /2),1 7 (p(K3+ K )/2),,
Gy = Nyy—2K,) s — K22+ K E(Ky+K)—K,(4/24+ B/2B) —
—(K,9,E+ K3, E+2K9,Ey—(K, + K)o E —
—E((K),s H(Ky),, +2(K) )/ 2+ T +J,+ 1,

similar expressions for G, , Gi‘; » Gy, Gy, G§% , G

44 are omitted for the sake
3i 41 42

of brevity, where

T, = (4/24 + B/2B) ((K; — K )/2 + E(K, + K)/2) — K2E[24 — K2E[2B —
— EX2(K, + K [2+H(EK,[24),, + (EK,[2B) , + (EXK, + K)/2) 5 +
+ (B2 (K, + KD/2),, + KG/2) 5 + (K2, —
— ((pK,[4Y + (oK,/BY + pokK, K,/AB)/[2,
J, = — (K [24),, — (K,/2B) , + K}[24 + K;*/2B,
Ty, — oK, 9,0/4B + 0K, 3,0/AB—(3,0+3,0) 7K,/24B — (3,0+ 0,0) pK,/24B —
— K (pd,0/4 +0(3,p + 8,0)/2B) — K, (03,0 /B + p(3,0 1 9,0)/24) ,

similar expressions for Ty, Ty, Ty, Jy Ty s Tops Tias Ty gy Jazs Jyq AT Omitted
for brevity sake. ‘

A single and double overhead bar (—) denote the partial differentiation
with respect to (z-f) once and twice respectively.

4. Solution of the Field Eguation (1.4). Using the components of L*; from
[F] and ¥*; from (2.12) in equation (1.4), we find that when i{ = 1, 2, equation
T = 0 gives
¥

K -+ K,—0, @.1)

while when = 3,4 equation 1V;=20 gives
v -
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— @K,B + oK) + Bap+ 43,0 — 0. (4.2)

Thus (4.1) and (4.2) are necessary conditions in order that the gauge inva-
riant generalized second field equations be satisfied in a generalized Peres
space-time,

5. Solution of equation (1.5). Using equation (4.1} in (3.6), equation (1.5)
yields

— AK )+ KP2BI2AH(K, (2} —(K,A4[2B) s~ (K A[2) 34-(K,4/2) 4=0,
= 2K~ KP*B2A+(K[2) ,— (K B[24) 1~ (K, B/2) 3 1 (K, B[2) 4= 0, G.1)
— (K2, — (K2, — K, Ky/2 =0,

Nyy = 24K + K22+ K, (4/24 + Bj2B) +
+ (K,0,E + K; 3,E + 2K, 3,E)/2 +
+EWKY:; +E)a+2(K)D2—T — ) — Ty,

Ny, = 2(K)4 + K22 — K, (4/24 + B[2B) —
— (K39,E + K, 0,E + 2K, 9,E)/2 — . 5.2)
— E((K3)a + (K)s +2(Kp3)f2 — T — 3 — 1oy,
Ny = (K3/2)0 + (K,/2)5 + K3 K2 + E(K3)s — (K ,a)j2 +
+ (Ks a.f — K4 B,E)/Z e le - Tzz’ + Jzz’ »
Ny = (Ky/2), + (Kyf2)s + K K f2 + E((K3) s — (K))/2 +
+ (K 0.E — K, 3,E)2 Ty +J) — Ty + ',
Nlasl = (K\/D 3+ (/D + K, K32+ (K, [2) 3t 0K, /2) 40— T, F 5,
Nyg = (K3 2 F (K200 K, K2 0Ky 2025 @R )+ T 2T, .

Ngg = (K3/2) 5-H(Ky /D 2+ K, K, 220 (0K, 2) 320 (0 Ky 24— T, F 3,
Noy = U2t (KefD 2+ Ky Ky 260Ky [2) s+ (0 Ka[2) 4+ Ty 2y

Here dashed T's and J;’s are the corresponding values of 7;’s and J’s un-
der the condition (4.1).

There are various possibilities under which . the solution of field equation
(1.5) may be considered. However in this paper we shall consider the solution
in the case when

K=K, =0 | (5.4)

and
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K, = — K, = K(z,1). ' (5.5

Here (5.5) is not assumed but is implied by the condition (4.1). Using (5.4)
and (5.5), equation (5.1) yields

(KA); + (KA, =0,

(5.6)
(KB); + (KB)4 = 0.
Equation (5.6) gives
(K + (K)4 =0, 6.7
which implies that
K=-—-K(@z—1 (5.8)
i.e. K is a function of (z — 1).
Further using (5.4) and (5.8) in (5.2) and (5.3), we get
N;; = — Nyy = ~ Ny = Ny, = K - K2 — Kw(2 (59
and
Nis = Ny = Ny 5= Ny 5= Nyy 7= Nyy = Nyy = Npp = 0 (5.10)
respectively.

Equating the expressions for the same components of N;; from (3.4), (3.5)
and (5.9), (5.10), we find that

M+RA—E) =K1 K}2— K@, 1 03)E2,
M—RE=K+K}2—K(@,+2) E2, G.11)
M—R(1+E) =K+ K*2—K@,+23)E]2

and
aw+P=0 g w—P=0,
(5.12)
aw+@g=0 3Jgw—0=0.
Simplifying (5.11), we get
®,+a)w=0, (5.13)
Aj24 — (A]24) + B)2B — (B/2BY* — (3,p/4)* — (3,5/B)* —
— 0,0 + 8,0)*2AB — (4[24 -1 B[2B) w2 - 3, E[24 — (5.14)

— 8,,E12B + (2/4) 8,0 1 (2/B) 3,8 = K + K22 — Kw/2.
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Equation (5.12) implies that 3 w == 0, P =0 and 3,w =0, Q =0 i.e.

a) (9,-+8)a,E=0,

(5.15)
b) (@, +3)3,E=0

and |
8) 3,0/A + (8,0 + 8,,0)/2 B — 0(3, + 8)w — O,
b) 8,,0/B+ (3,.0 + 8,,0)2 4 —a (8, +8)w=0.

Integrating (5.13), (5.15) a), b) we find that the form of E is given by

or E=@+y+2hz-0+7CnNfHE—D (5.17)

E=fx,yz—0D+z,—1.
Using equation (4.2) and (5.13), equation (5.16) is further simplified as

axxP/A + any/B =0 3
8,.0/4 -+ 9,,0/B=0.

Thus K, given by K, =K, =0 and K; = — K, = K(z — ), the g; given
by (1.8) along with the equations (5.14), (5.17) and (5.18) can be said to con-
stitute the wave solutions of Buchdahl’s field equations in the generalized Peres
space-time.

When K, = K, =0 and K, = — K, = K(z — ¢), then all the components
of the skew symmetric Fiy = 9K,/ax! — 9K,/9x', defined in [3] reduce to zero,
thereby showing that g;; may be associated with the electromagnetic field

i :

(5.16)

(5.18)

tensor in the Buchdahl’s gauge invariant theory.
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OZET

Bu galismada Buchdahl tarafindan verilen, Einstein alan denklemlerinin
Olgiyil sabit bmakan bir genel]egtiri]mesi incelenmektedir.
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