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A NOTE ON COMPACT CONVEX SETS WITiI EQUAL SUPPORT
PROPERTY

S. ALPAY"Y

The background material for the following can be found in [f]. Tt is well

known that a compact convex set X is a Choquet simplex if and only if

each x in X has a unique a-maximal representing measure where «

denotes the Choquet’s ordering on the set M7*(X). In this paper we

study compact convex sets with a certain property, called the equal support
property {*1.

1. Preliminaries and mnotation. The expression ‘“‘compact convex set” will
always refer to a non-empty compact convex subset of a locally convex Hausdorff
linear space. We shall use the following symbols :

X, : the set of extreme points of X
C(X) : the Banach space of continuous real-valued functions on X
A(X) : the Banach space of continuous affine real-valued functions
on &X.

We shall denote by M(X) the Banach space of all signed Radon measures on X,
and by M, *(X) the w*-compact convex set of normalized positive Radon
measures on X.

A signed measure p on X is said to be a boundary measure if |p| is maximal
in Choquet’s ordering of positive measures [!]. We say that a measure
p on X represents the point x of X (or x is the barycentre of (n)) if

Jx) = f J() du(y), for all fe A(X). We will make use of Millman’s converse
X

to the Krein-Millman theorem, henceforth referred to as’ M7, which

states that X = GonsS implies that X, = §. M,F will denote the set of repre-
senting measures for x which are supported by F ie. vanish on X\ F.

1.1. Definition. A compact convex set X is said to have the equal support
property {(e.s.p) if, for each x in X any two a-maximal representing measures

) T am indebted to Dr. F. Jellett for introducing me to the theory of compact
convex sets and for many helpful comments. ‘ :
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for x have the same support. The equal support property was first considered
by Feinterg [*] and later by McDonald [3].

A compact convex set X is said to have the strong equal support property
(s.e.s.p.) if X, is closed and X has (e.s.p.). We claim that X has s.e.s.p. il and

only if for each xe X, all measures in Mx’@ have the same support.

The “only if” part of the prévious statement follows from the fact that if
supp p<X,, then p is e-maximal [, pp.26-27]. Suppose that ze X, and that all
measures in M have the same support. Let v be g-maximal measure with

e, < v. Since all g-maximal measures are. supported by X, [*, p.30], it follows
that g, = ». Thus, ze X, [% p.27] (g, = the Dirac measure at z).

2. Some preperties of compact convex sets with e.s.p. We show that the class
of compact convex sets with e.s.p. does not contain the infinite-dimensional
symmetric convex sets as members and consequently are not closed in general
under addition and convex combinations, a defect.shared with a(B)-polytopes
of Phelps [5]. .

2.1. Proposition. If X is an infinite dimensional centrally symmetric compact
convex set then X cannot have the e.s.p. '

Proof. We assume that 0 is a centre of symmetry for X. Since xe X,
N 1
implies that —xc X, , each of the measures u, — —-¢, + 7 Ee) is maximal

and has the origin 0 as harycentre.

1 ) .- o
5 By +&_, is also a maximal measure with

barycentre 0. It is clear that j, and y, have differént supporis.

Let y#xeX,; then p,=

Remarks. Above fact makes it‘easy. to show that equal suppdrf property
is not closed under many of the operations which Ppreserve the finite dimen-
sional pontopes

_For instance, if Sisa compact convex set let K S, K, = — .8 then
con (K,UK )} does not have the equal support property The same conclusion
holds for K, + K,. Similarly, although the set [—1, 1] R is a one dimensional
simplex, the countable product. of it with itself (as.a subset of the countable
product of lines) is centrally symmetric, hence does not have the - e.s.p.

The next example shows that there exist compact convex sets with equal
support property such that their intersection.does not have e.s.p.
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2.2. Example. Let /; be the space of absolutely summable real sequence
x=1(x),, we let

S={x:x,=0 for each » and Zx, =1} .

no—

We consider [, as the dual of the space c¢. If all convergent real sequences
y=(y) with y, = lim y,. Under the w*-topology defined on /; by ¢, the set
Sis a compadt Simplex and if &, is the sequence which equals 1 at #, 0 else-
where then S, = {3,} .

Let

o ft o111
27927 937 97 g8 T

Define S, =S5 —x and let S;,=x —§= —S5,. Both 'S, and S8, are
6, —d)

so that xe S.

simplexes and S§; N S, is centrally symmetric. For » > 1 Snit

is in 5NS, s05,NS, can not have e.s.p. by proposition 2.1.
The following example is essentially due to Phelps [?] and shows. that

afB)-polytopes and compact convex sets with equal support property are distinct
generalizations of finite dimensional simplexes. :

2.3, Example. Consider the compact convex set S of example 2.2. De-
fine f on § by

SO =x,+x, —x, — X5
Then f is continuous and affine. Therefore K =.§ N fi1(0) is a B-polytope.
Furthermore, the map ¢ : 5 - K defined by
1 1 1 1
Gb(x) == (xl » 5‘ (x2 + xat) ) -E_(Jﬁ + xs) 3 ?(xz + xs) B '2—(-)53 +X4) s Xg s Xy ,)

is a continuyous affine surjection, so K is an a-polytope. We note that

1 1 ‘
31:_2—(52+84)9 92:';(83_{_85)

| B 1 .
_‘33:?(52‘!‘55): 94:3(33+54)

are distinct extreme points of K,

1 1 1 1 1 1.
= 09_3'—:4_,“—“,0,0,‘... :—e-}—e _—— e+e .
" ( 4 4 4 4 ) 2(1 2 2(3 o
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1 1. I3 1
If —e + — &, = and = —e¢, + — ¢, then p, and p, are
5 e 3 H, b, 5 e 5 o ny H,
maximal probability measures with barycentre x and they clearly have distinct
supports. Therefore K does not have the e.s.p.

We continue by analysing the concept of a closed face of a compact con-
vex set with e.s.p. '

2.4. Definition, Let X be a compact convex set then g convex subset
F of X is said to be face if Ax; L+ (1 — ?L) x,e F implies x,, x,6 F where
neX(@=12), 0<r <,

2.5. Proposition. Let X be a compact convex set with e.s.p. then every
closed face of X also has the e.s.p.

Proof. This is immediate from the fact that if Fis a closed face of X and
if pe M *(X) with barycentre in F, then supp (@) < ¥ and that the maximal
measures in M;T (F) extend to maximal in M,* (X).

If {X,} is an arbitrary family of compact convex sets and if the cartesian
product II, X, has e.s.p. then each X, has e.s.p. It is clear from the definition
of a face that a face of a face is a face, and so, if Fis a face of the convex set X,
apoint x of X isin F, if and only if xe X,. For compact convex sets with the
s.e.s.p. we have the following satisfactory situation.

2.6. Proposition. Let X be a compact convex set with s.e.s.p. Then
(/) . a closed convex subset F of X is a face of X if and only if F, < X, .
() if F is a face of X then F is also a face of X.

Proof. (i) follows from [2, theorem 1.8] Alfen’s proof for Bauver simplex
is valid for (i) [\, theorem IL7.19].

Remarks. By an example due to Alfsen [S] we know that (i) is inexact
for compact convex sets with e.s.p.

Remarks. Among compact convex sets with e.s.p. simplexes are known
to satisfy the first part of proposition 2.6. (cf. Jellet) [’]. Although (i) can
easily be shown to hold for metrizable compact convex sets w1th e.5.p. we
don’'t know whether this is true for the general case.

It is also not known whether compact convex sets with .equal support
property (or with s.es.p.) have the following properties :
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(1) A closed G, face is exposed.

(2) A continuous affine function defined a closed face can be extended
continuously to the whole convex set,

In the following using a technique first introduced by Asimov[?] we show
that every G, extreme point in a compact convex set with e.s.p. is in fact
exposed.

Let Fbe a closed face of X and Iet [F] be the linear subspace (not necessarily
closed) spanned by F in A(X)*. Let Ax(X) denote {fe A(X): f=0 on F}.
We call F is exposed in the w*-topology on X if there exists an fie AX)
such that f(x) > 0 for all xe A\ F.

2.7. Definition. Let 0 be an extreme point of the compact convex set
X and let p be the Minkowski functional of X, Let o be a real number
and n a positive integer such that o = 1 and n > 1.

We say that X is (a,#) - additive at 0 if p(x,) +...4+ p(x,) a = p (x;+...+x)
for any x,,...,x,e X. Call X is w-additive at 0 if X is (u, n)-additive for all ».

We say that X is u-conical at 0 if there exists a (not necessarily continuous)
linear functional  on [X] such that 0 < f < o on X and x € X implies x € f(x) X.

As the following result of Asimov [¥] shows, if @=1 then all of the above
properties are eguivalent,

2.8. Lemma. If X is a-conical at 0 then X is c-additive at 0., If X is
g-additive at 0 then X is o®-conical at 0.

2.9, Lemma. Let X be a compact convex set with 0 as an extreme point
and let p be the Minkowski functional of X If xe X then p(x) =1 if and
only if every probability measure on X representing x has mass zero at {0}.

Proof, . Suppose u, represents x #0 and p({0})=a > 0. Then
{u, — ag) /(1 —a) is a probability measure on X representing x /(1 — a).
Thus x/(l —@yecX ['; p. 13] and p(x) =1 —a < 1. Conversely if p(x) <1
then x = ay (a < 1). .

Let 1 be a probability measure representing y. Then (1—a) g, |- ap represents
X and has positive mass at {0} .

.2.10. Proposition. A compact convex set X with e.s.p. is l-conical at
each extreme point.
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i

Proof. We assume 0 isin X, and show that X is l-conical at 0. By
lemma 2.8 it suffices to show X is l-additive at 0, or equivalently the set
{x: p(x) = 1} is convex.

Suppose z=1Ax+ (1 —A)y where p(x)=1=p() and 0 <A <L
Suppose p(z) =a < 1 and let w = % €eX Let p,, 1, and p, be maximal
probability measures on X representing x, y, w respectively.

If py=2ap, + (0 —Myu, and p, = (1 —a)g, + apn,, then p; and p, are
maximal measures rtepresenting z. The fact that p, ({0}) =0 (lemma 2.9)
clearly implies that supp (p,) is different from supp (g,). A contradiction.

2.11. Corollary. Every G, -extreme point x of X is exposed.

Proof. As X is l-conical at x, it follows from a result of Asimov [3, prop.
2.4] that 4, (X) is approximately 1-directed. The corollary follows by virtue
of [% theorem 2.1].

Remarks. It is well-known that a compact convex set X i a Bauer
simplex if and only if for every continuous convex function f on X, the upper

envelope; f [%, p.JI, 4.17 is continuous and affine. In [*], Lima studies compact

convex sets with the property that f is merely continuous for every continuous
convex function, and calls such sets as CE-compact convex sets. We note that
using a characterization of compact convex sets with s.e.s.p. as facial quotients
of Bauer simplexes [!°] it is easy to see that every compact convex set with
s.e.s.p. is a CE-compact convex. ‘

3. The Structure Topology. ILet Z be a simplex. Effros [, p. 117] has
defined a topology for Z, called the structure topology. McDonald [7]
extended Effros’ definition to a larger class of compact convex sets. For
the rest of this section & (X) will denote the collection of closed faces of X

Let Fx={FNX,: Fe #(X)}. Note that @, X, € &  and that the intersection
of any sub-collection of % is in %, . Suppose X has the e.s.p. Consider F,
F'e #(X). By theorem 1.4 of [*] conv (FUF)e %(X) and it is easy to see
that (FN X) U (F' N X)) = X, N conv (FUF’). It follows that the union of
any finite sub-collection of &, is in &, .

Thus, &y is the collection of closed sets for a topology on X, , whenever X
has e.s.p. : "

3.1. Definition. If %, is closed under finite unions, then the topology
on X, for which & is the collection of closed sets will be called the structure

topology.
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3.2. THEOREM. The following are equivalent :

(@) The structure topology exists on X,.

@) conv (FUF)e(X) for all F,F’ e (X).
(i) conv (FUF)=FvF’ ” ” ”
vy F(X) is a distributive lattice.

Proof. See theorem 3.2. in [?].

Remarks. We note that when the structure topology is defined on X,
structurally closed sets are of the form F = T,, for some Te #(X), but the
converse need not hold. ' o

Effros ['1] has shown that the structure space need not be locally compact. He
conjectures that if X is metrizable then the properties of local compactness, first
countability and second countability are equivalent for the sfructure space of
X. In ['?] it has been shown that this is indeed the case for Simplexes. For
Xxe X, we take T(x) to be the minimal element of 27 (X) which contains x.

We let ®(x) = X, N T(x) for each X.
We say that the structure topology satisfies condition (*) if the following holds:

(*) If a sequence {x,} < X, converges to x, then all the cluster points of
{x,} (with respect to structure topology) lie in ®(x).

The following Theorem was given in [P’]:

3.3. THEOREM. Suppose X is a metrizable compact convex set satis-
fying (¥). Then the following are equivalent for a fixed xe X, :

(/) The s-topology is first-countable at x.
@ ” ” locally compact at x.

Gy ” ” locally sequennally compact at x.

Further, if the s-topology is first countable for each x in X, then it is second
countable, In the following we show that a compact convex set with equal sup-
port property satisfies (*) for the structure topology ‘

34. Proposition. If X is a metrizable compact convex seét with e.s.p. then
X has property (¥).

Proof. Let {x,} be a sequence in X, converging to x. Suppose {x,} is a
subnet of {x,} structurally converging to z in X,. We want to show z is
in T(x). Suppose the contrary, Then for some integer N, n > N, x, 5 z. Let
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R={x,:n>N}UT(). Then R is a closed subset of X. Suppose for a
moment that the closed convex hull F of R is a face of X, Then z is not an
element of F, for otherwise it would be an extreme point of F and hence an
element of R by MT. A contradiction. So X, \ F is a neighborhood of z in
the structure topology. Since {x,} is structurally convergent to z, eventually
{xz} is not in F. But {x,} is a subnet of {x,} and {x} is eventually in R.
A contradiction. It now remains to show F = conv R is a face of X Suppose
that pe F, and that p = A p; + (1 — X)) p, where p,e X¥({=1,2) and 0 < A < L.

Let », be maximal probability measures on X with barycentres p, respectively.
Then v = kv, + (1 — ) v, is a maximal measure with barycentre p. It suffices
to show supp (v) < F, since then supp (v) © F, and as F is closed and convex
this would imply that p,e F. Since R is compact, by integral form of the KM
theorem -there exists a probability measure p on X such that supp () < R
which represents p. We can find a maximal probability measure v, representing
the point p such that p <wv,. As X is metrizable, by a Theorem of Cartier
[}, p.27] v, is a dilation of . ie., there exists a map X — X, defined y-almost
everywhere on X with values in M+ (X) satisfying

@ X - i f) is measurable for every fe Cr(X),
(i) v ()= [h()dp(x) for every fe Cr(X),

(iii) A, represents x for y-almost all x in X.

Consider the closed set R. Let x& R then x is either in x, for some # > N
or xeT(x). If x=ux, then A, =¢, as x,eX, [,124] I xeT(x) then
supp (A,) € T(x). Therefore supp (A,) < R for all xe R

Suppose fe Cp(X) such that supp (f) N R =@ then »,(f) = 0 for all »
in R, :

Since supp (1) < R, we have from (i) that », (/) = 0. Thus supp (v)) = R.

As X has es.p. it follows that supp v © R. Therefore we can conclude that if
X is a metrizable compact convex set with'.e.s.p. then first countability, local
compactness and local sequential compactness are equivalent at a point x of
the extreme boundary by virtue of Gleits theorem.

3.5. Corollary. Suppose X is a metrizable compact convex set with
e.s.p. and R is a structurally compact subset of X, : Suppose ac A(X), a > 0
and a(#) > O for all rin R. Then there exists an £ > 0 such that a(r) > &
for all » in R, : '
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Proof. If not, then for each positive integer », choose r, in R such that
a(r,) < I/n. Choose a subsequence {r_,} which converges to y in X. Then
a(y) = lim a(r,) = 0. Choose a subnet {r,} of {r,} which structurally con-
verges to some x in R. By the proposition x is in T(y). As a(y) =0 we can
easily deduce that.a (7'(y)) = 0. In particular a(x) = 0. A contradiction.
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OZET

Bu ¢alismada, esit destek &zeligi denilen bir Ozeligi tagtyan kompakt,
konveks ciimleler incelenmektedir.




