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A NOTE O N COMPACT CONVEX SETS W I T H EQUAL SUPPORT 
PROPERTY 

§. ALPAY' ) 

The background material for the following can be found in [ ']• I t is well 
known that a compact convex set X is a Choquet simplex if and oniy if 
each x in X has a unique a-maximal representing measure where a 
denotes the Choquet's ordering on the set M + {X). In this paper we 
study compact convex sets with a certain property, called the equal support 

property ["J. 

1. Preliminaries and notation. The expression "compact convex set" wi l l 
always refer to a non-empty compact convex subset of a locally convex Hausdorff 
linear space. We shall use the following symbols : 

Xe : the set of extreme points of X 

C(X) : the Banach space of continuous real-valued functions on X 

A(X) : the Banach space of continuous affine real-valued functions 
on X. 

We shall denote by M(X) the Banach space of all signed Radon measures on X, 
and by Mt

+(X) the w*-compact convex set of normalized positive Radon 
measures on X. 

A signed measure p. on X is said to be a boundary measure i f | p. | is maximal 
in Choquet's ordering of positive measures [*]. We say that a measure 
[i on X represents the point x of X (or x is the barycentre of (u)) i f 

f(x) = j f(y)d\i(y), for all feA(X). We will make use of Millman's converse 
x 

to the Krein-M illman theorem, henceforth referred to as MT, which 
states that X = conS implies that Xe e S. Mf wil l denote the set of repre­
senting measures for x which are supported by F i.e. vanish on X\F. 

1.1. Definition. A compact convex set X is said to have the equal support 
property (e.s.p) if, for each x in X any two a-maximal representing measures 

') I am indebted to Dr. F. Jcllett for introducing me to the theory of compact 
convex sets and for many helpful comments. 
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for x have the same support. The equal support property was first considered 
by Feinberg [ 3 ] and later by McDonald [ 2 ] . 

A compact convex set X is said to have the strong equal support property 
(s.e.s.p.) i f Xe is closed and X has (e.s.p.). We claim that X has s.e.s.p. i f and 
only i f for each xcX, all measures in M*e have the same support. 

The "only i f " part of the previous statement follows from the fact that i f 

supp ii^Xe, then u is a-maximal [ 4 , pp.26-27]. Suppose that z&Xe and that all 
measures in M/e have the same support. Let v be a-maximal measure with 

tz < v. Since all a-maximal measures are. supported by Xe [ 4 , p.30], i t follows 
that e2 = v. Thus, z e Xe [ 4 , p.27] (e2 — the Dirac measure at z). 

2, Some properties of compact coirvex' sets with e.s.p. We show that the class 
of compact convex sets with e.s.p. does not contain the infinite-dimensional 
symmetric convex sets as members and consequently are not closed in general 
under addition and convex combinations, a defect, shared with a(p)-polytopes 
of Phelps [ 5 j . ; 

2.1. Proposition. I f X i s an infinite dimensional centrally symmetric compact 
convex set then X cannot have the e.s.p. 

Proof. We assume that 0 is a centre of symmetry for X. Since xe Xc 

implies that —xeXe, each of the measures nx = y E ^ + - y is maximal 

and has the origin 0 as harycentre. ' ' 

Let y ^ xeXe; then \iy = + z_y is also a maximal measure with 

barycentre 0. I t is clear that \xy and nx have different supports. 

Remarks. Above fact makes i t easy to show that equal support property 
is not closed under many'of the operations which preserve the finite dimen­
sional polytopes. 

For, instance, i f S is a compact convex set let Kx = S, K2 = — S then 
con (K^uK) does not have the equal support property.. The same conclusion 
holds for Kt + K2. Similarly, although the set [—1, 1] R is a one dimensional 
simplex, the countable product of i t with itself (as.a subset of the countable 
product of lines) is centrally symmetric, hence does not have . the e.s.p. 

The next example shows that there exist compact convex sets with equal 
support property such that their intersection, does not have e.s.p. 
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2.2. Example. Let 11 be the space of absolutely summable real sequence 
x = M i > we let 

S = {x ; xn > 0 for each .n and Jlxn = 1} . 

We consider /, as the dual of the space c. I f all convergent real sequences 
y = (yj with yt l im yn. Under the vf*-topology defined on /, by c,,the set 
S is a compact simplex and i f 8f( is the sequence which equals 1 at n, 0 else­
where then Se = {S„} . 

Let 
_ / 1 1 J_ J 1_ 

\2~' 21 ' 2 3 ' 2 4 ' 2 5 ' 

so that x e iS. 

Define ^ = S — x and let S2 = x — S = ~ Sl . Both 5, and 5 2 are 

simplexes and 5, n S2 is centrally symmetric. For n > 1 ^ (5„ — Sj) 

is in n S2 so 5, n 5 2 can not have e.s.p. by proposition 2.1. 

The following example is essentially due to Phelps [«5] and shows • that 
a(fJ)-poIy topes and compact convex sets with equal support property are distinct 
generalizations of finite dimensional simplexes. 

2.3. Example. Consider the compact convex set S of example 2.2. De­
fine / on S by 

f(x) - x2 + x3 - xA - xs. 

Then / is continuous and affine. Therefore K — S n f^1 (0) is a p-polytope. 
Furthermore, the map $ : S K defined by 

4>(x) = (x, , j (x2 + JC4), y (x 3 + xs), y (x 2 + x5), -i- (x 3 + x 4 ) , x 6 , *7.... j 
is a continuous affine surjection, so K is an a-polytope. We note that 

are distinct extreme points of K. 

' 1 1 1 1 n „ . \ 1 . , . 1 . , , 
0 ' " > W ' V °' °' ••• = "T ( e > + e ^ = T ( ^ + e4>-4 4 4 4 / 2 2 
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I f — ^, + — zu - u, and u 2 = — ^ + — then u, and u 2 are 

maximal probability measures with barycentre x and they clearly have distinct 
supports. Therefore K does not have the e.s.p. 

We continue by analysing the concept of a closed face of a compact con­
vex set with e.s.p. 

2.4. Definition. Let X be a compact convex set then a convex subset 
F of X is said to be face i f Xx1 + (1 — X) x2 e F implies xi , x2 e F where 
x,eX{i= 1, 2), 0 < X < 1. 

2.5. Proposition. Let J be a compact convex set with e.s.p. then every 
closed, face of X also has the e.s.p. 

Proof. This is immediate from the fact that i f F is a closed face of X and 
i f ue MV

+(X) with barycentre in F, then supp (u) i= F and that the maximal 
measures in (F) extend to maximal in M\+ (X). 

I f {Xa} is an arbitrary family of compact convex sets and i f the cartesian 
product Iia Xa has e.s.p. then each X a has e.s.p. I t is clear from the definition 
of a face that a face of a face is a face, and so, i f Fis a face of the convex set X, 
a point x of X is in Fe i f and only i f xe Xc. For compact convex sets with the 
s.e.s.p. we have the following satisfactory situation. 

2.6. Proposition. Let X be a compact convex set with s.e.s.p. Then 

(i) a closed convex subset F of X is a face of X i f and only i f Fe ^ Xe. 

(ii) i f F is a face of X then F is also a face of X. 

Proof. (/') follows from [ 2 , theorem 1,8].'Alien's proof for Bauer simplex 
is valid for (//) p , theorem II.7.19]. 

Remarks. By an example due to Alfsen [ 6 ] we know that (ii) is inexact 
for compact convex sets with e.s.p. 

Remarks. Among compact convex sets with e.s.p. simplexes are known 
to satisfy the first part of proposition 2.6. (cf. Jellet) f 7 ] . Although (7) can 
easily be shown to hold for metrizable compact convex sets with e.s.p. we 
don't know whether this is true for the general case. 

I t is also not known whether compact convex sets with equal support 
property (or with s.e.s.p.) have the following properties : 
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(1) A closed Gs face is exposed. 

(2) A continuous affine function defined a closed face can be extended 
continuously to the whole convex set. 

I n the following using a technique first introduced by Asimov [ 8 ] we show 
that every Gs extreme point in a compact convex set with e.s.p. is in fact 
exposed. 

Let Fbe a closed face of X and let [F] be the linear subspace (not necessarily 
closed) spanned by F in A(X)*. Let AF(X) denote {fe A(X) : / = 0 on F} . 
We call F is exposed in the w*-topology on X i f there exists an feAF{X) 
such that f(x) > 0 for all xeX\F. 

2.7. Definition. Let 0 be an extreme point of the compact convex set 
X and let p be the Minkowski functional of X. Let a be a real number 
and n a positive integer such that a g: 1 and n > 1. 

We say that X is (a ,«) - additive at 0 i f p(x}) + • • •+ p(x„) ct ,pC*j + - - - + - 0 
for any X j xneX. Call X is a-additive at 0 i f X is (a, ra)-additive for all n. 

We say that X is a-conical at 0 i f there exists a (not necessarily continuous) 
linear functional/ on [X] such that 0 < / < a o n l a n d xeX implies xef(x) X. 

As the following result of Asimov [ 8J shows, i f a = 1 then all of the above 
properties are equivalent. 

2.8. Lemma. I f X is a-conical at 0 then X is a-additive at 0. I f X is 
•a-additive at 0 then X is a2-conical at 0. 

2.9. Lemma. Let X be a compact convex set with 0 as an extreme point 
and let p be the Minkowski functional of X I f xeX then p(x) = 1 i f and 
•only i f every probability measure on X representing x has mass zero at {0}. 

Proof. Suppose \ix represents x ^ 0 and u ({0}) = a > 0 . Then 
(fix — a £o) / (1 ~ a ) * s a probability measure on X representing x / (1 — a). 
Thus xi(l ~a)eX [l , p. 13] and p(x) ^ 1 - a < 1. Conversely i f p(x) < 1 
then x — ay (a < 1). 

Let (.L be a probability measure representing y. Then (I—a) E 0 + ayi represents 
X and has positive mass at {0} . 

: 2.10. Proposition!. A compact convex set X with e.s.p. is 1-conical at 
each extreme point. 
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Proof. We assume 0 is in Xe and show that X is 1-conical at 0 . By-
lemma 2.8 it suffices to show X is 1-additive at 0 , or equivalently the set 
{x : p(x) = 1} is convex. 

Suppose z = Xx + (1 — X) y where p(x) = 1 = p(y) and 0 < X < L 

Suppose p(z) — a < 1 and let w = — e X Let u. , , and u w be maximal 

probability measures on X representing x, y, w respectively. 

I f u t = X\ix + (1 — X) \xy and u 2 = (1 — a) E 0 + au1(, then |x, and u 2 are 
maximal measures representing z. The fact that \xx ({0}) = 0 (lemma 2.9) 
clearly implies that supp (u,) is different from supp (\i2). A contradiction. 

2.11. Corollary. Every G5 - extreme point x of X is exposed. 

Proof. As X is 1-conical at x, i t follows from a result of Asimov p , prop. 
2.4] that AX(X) is approximately 1-directed. The corollary follows by virtue 
of [ 8 , theorem 2.1]. 

Remarks. I t is well-known that a compact convex set X is a Bauer 
simplex i f and only i f for every continuous convex function / on X, the upper 

envelope, p . I I , 4.1] is continuous and affine. I n [ 9 ] , Lima studies compact 
A 

convex sets with the property that / is merely continuous for every continuous 
convex function, and calls such sets as CE-compact convex sets. We note that 
using a characterization of compact convex sets with s.e.s.p. as facial quotients 
of Bauer simplexes [ l 0 ] i t is easy to see that every compact convex set with 
s.e.s.p. is a CE-compact convex. 

3. The Structure Topology. Let Z be a simplex. Effros f11, p. 117] has 
defined a topology for Ze called the structure topology. McDonald [ 2 ] 
extended Effros' definition to a larger class of compact convex sets. For 
the rest of this section £F{X) wi l l denote the collection of closed faces of X. 

Let {FnXe: Fe ^(X)}. Note that O, Xe e $ ? x and that the intersection 
of any sub-collection of iFx is in . Suppose X has the e.s.p. Consider F, 
F'e^iX). By theorem 1.4 of [ 2 ] conv ( F U F ' ) G ^ ( X ) and it is easy to see 
that (Fn Xe) u (Fr n Xe) = Xe n conv ( F u F ' ) . I t follows that the union o f 
any finite sub-collection of 3FX is in x • 

Thus, tFx is the collection of closed sets for a topology on Xe, whenever X 
has e.s.p. 

3.1. Definition. I f 3?K ^ s closed under finite unions, then the topology 
on Xe for which $FX is the collection of closed sets will be called the structure 
topology. 
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3.2. T H E O R E M . The following are equivalent : 

(0 The structure topology exists on Xe. 

(ii) conv ( F u F ' ) e ^ O T for all F,F'e^(X). 

(Hi) conv ( F u F ' ) = F v F' 

(iv) J ^ ( X ) is a distributive lattice. 

Proof. See theorem 3.2. in [ 2 ] . 

Remarks. We note that when the structure topology is defined on Xe, 
structurally closed sets are of the form F — Te, for some Te^(X), but the 
•Converse need not hold. 

Effros [ n ] has shown that the structure space need not be locally compact. He 
conjectures that i f X is metrizable then the properties of local compactness, first 
•countability and second countability are equivalent for the structure space of 
X. I n [ l 2 ] i t has been shown that this is indeed the case for Simplexes. For 
x e X, we take T(x) to be the minimal element of J ^ ( X ) which contains x. 

We let ®(x) = Xen T(x) for each X. 

We say that the structure topology satisfies condition (*) i f the following holds: 

(*) I f a sequence {xn} £ Xe converges to x, then all the cluster points of 
{xn} (with respect to structure topology) lie in 0(x) . 

The following Theorem was given in [ n ] : 

3.3. T H E O R E M . Suppose X is a metrizable compact convex set satis­
fying (*). Then the following are equivalent for a fixed xeXe: 

(/) The s-topology is first-countable at x. 

(ii) " " " locally compact at x. 

(in) " " " locally sequentially compact at x. 

Further, i f the s-topology is first countable for each x in Xe, then it is second 
•countable. I n the following we show that a compact convex set with equal sup­
port property satisfies (*) for the structure topology. 

3.4. Proposition. I f X is a metrizable compact convex set with e.s.p. then 
X has property (*). 

Proof. Let {xn} be a sequence in Xe converging to x. Suppose {x$} is a 
subnet of .{x,} structurally converging to z in Xa. We want to show z is 
i n Tix). Suppose the contrary. Then for some integer N, n > N, xn # z. Let 
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R = {xn : n > N) U T (x). Then R is a closed subset of X. Suppose for a 
moment that the closed convex hull F of R is a face of X. Then z is not an 
element of F, for otherwise it would be an extreme point of F and hence an 
element of R by MT. A contradiction. So Xe \ F is a neighborhood of z in 
the structure topology. Since { x p } is structurally convergent to z, eventually 
{ x j is not in F. But { x g } is a subnet of {x„} and {x„} is eventually in R. 
A contradiction. I t now remains to show F = conv R is a face of X Suppose 
that peF, and that p = 'kpi-\- (1 — ^) ^ 2 where /i (-e X(Y = 1,2) and 0 < X < 1. 

Let ^ be maximal probability measures on X with barycentres /?. respectively. 
Then v = Xvl + (1 — A.) u 2 is a maximal measure with barycentre p. I t suffices 
to show supp (v) c since then supp (vt) c and as F is closed and convex 
this would imply that p; e F. Since R is compact, by integral form of the KM 
theorem there exists a probability measure |x on X such that supp (u) c J? 
which represents /?. We can find a maximal probability measure vQ representing 
the point p such that \i < vQ. As X is metrizable, by a Theorem of Cartier 

p.27] vQ is a dilation of n . i.e., there exists a map X->XX defined u-almost 
everywhere on X with values in (X) satisfying 

(0 X->Xx(f) is measurable for every fe C R ( X ) , 

(») »o ( / ) = / ^ (f)d i 1 (*) f ° r e v e r y / e c * 

( « 0 Xx represents x for u-almost all x in X. 

Consider the closed set R. Let xe R then x is either in x„ for some n> N 
or x e T ( 4 I f x = x„ then Xx= e as xne Xe [\ 1.2.4.]. I f xeT(x) then 
supp (?^) £ r ( x ) . Therefore supp (Xx) e i? for all xe.K. 

Suppose / e C R ( X ) such that supp ( / ) n i? = O then ^ ( / ) = 0 for all x 
in R. 

Since supp (u) £ i?, we have from (/7) that vQ ( / ) = 0. Thus supp (v0) c: 7?. 

As X has e.s.p. it follows that supp v ^ R. Therefore we can conclude that i f 
X is a metrizable compact convex set with e.s.p. then first countability, local 
compactness and local sequential compactness are equivalent at a point x o f 
the extreme boundary by virtue of Gleits theorem. 

3.5. Corollary. Suppose X is a metrizable compact convex set with 
e.s.p. and J? is a structurally compact subset of Xe. Suppose a e A(X), a > 0 
and a(r) > 0 for all r in R. Then there exists an E > 0 such that a(r) > E 
for all r in R. 
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Proof. I f not, then for each positive integer n, choose rlt in R such that 
a(r„) < Ijn. Choose a subsequence {rm} which converges to y in X. Then 
a(y) ™ l im a(rn) = 0. Choose a subnet { r j of {rm} which structurally con­
verges to some x in R. By the proposition x is in T(y). As a(y) = 0 we can 
easily deduce that. a (T(y)) = 0. In particular a(x) = 0. A contradiction. 
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Ö Z E T 

Bu çalışmada, eşit destek özeliği denilen bir özeliği taşıyan kompakt, 
konveks cümleler İncelenmektedir. 


