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PROJECTIVE AFFINE MOTION IN A PRFn-SPACE, V
A, KUMAR

In this paper has been investigated in a PREn-space the existence of
projective affine motion characterized by

¥l=xi L oi(x)dt
and £uGij = 0 of several types,

1. INTRODUCTION

Let Fn [']Y be an n-dimensional affinely connected and non-flat Finsler
space equipped with symmetric Berwald’s connection coefficient %) (x,%).
The covariant derivative of any tensor field T} (x,X) with respect to x* in the
sense of Berwald is given by

Tfi(k) = ak TJ"E - am Tji Gmﬂc X"+ ]}s Gisn'c - Tsi Gsfi-: ' (11)
The commutation formula involving the Berwald’s covariant derivative is gi-
ven by [1:

2 Tij[(h) W= a'l’ Tfi HYSMC x* + Tjs Hl‘shk - Tsi Hsfhfc > 2,9 (12’)

where
By (6, %) 422 {3y, Gy — Gl Gl X+ Gy Gligy } (L.3)
is called Berwald’s curvature tensor and satisfies the following identities [1] :
Hiyye=—H'y, 1.4
Hiyy + Hiy + Hi.fdrj =0 : (1.5)
and ' ‘
Hip = Hy;. S (1.6)

Let us consider an infinitesimal point transformation

¥=x () dr, (1.7

) MNMumbers in brackets refer to the references at the end of the paper,

.24 [frk]l = Anlc — Al
9 9, ==9/9x% and ;= 3/dxt.
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where v (x) is any vector field and 4t is an infinitesimal point constant. In view
of the above point transformation and Berwald’s covariant derivative, the Lie
derivatives of T/ (x, X) and G'; (x, X) respectively are given by [’]:

£o Tj = Tigyv" — Tf gy + T ol 1+ 8, T /gy X° (1.8
and o ' '

£v Giffc = ﬂi(i) oy Hijfrit v + Gi&f'k vsﬁ’) x7, ) (1 9)
where Gi.ffk = és Gi}fc .

In an Fn if the Berwald’s curvature tensor field Hi i (x, X) satisfies the
relation

Hjhfk () — )“s Hl‘m‘k s (1.10)

where A, (x) is any covariant vector then the space is called projective recurrent
Finsler space of first order or PRFn-space. The present author has investiga-
ted in an PRFn-space the existence of projective affine motion characterized
by (1.7) and £, G, =0 of the following several types [*], [*], [%]:

(4) Contra-form characterized by v'; =0,
(B) Concurrent form defined by vl = a8/ (@ = const),
(C) Special concircular-form introduced by o'; = v (x)- &5,
(D) Projective recurrent-form characterized by o'y, = y; (x) o7,
(£) Concircular form satisfying the condition: v/ = o (x) §/ + y; (x) o
(y; = gradient vector).
-However, these types are contained, as a special case respectively in the
condition
vigy = o () &7 + y,(x) ¥, (1.11)

where o(x) means any function and w; denotes a certain covariant vector. The
vector field (v) defined by such a condition will be called a torse-forming field.
Then, as the most general case, in this paper, the author will discuss about the
projective affine motion of torse-forming form defined by

F = xl b o (), vigy= 0 ()8 b () v 1)

2. PROJECTIVE AFFINE MOTION AND THREE CASES

In what follows we shall assume the existence of projective affine motions
of torse-forming form (1.12), Then, we come to. assume two congditions ;-
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a) £20G =0 or b)) o=, — Gy v XY .1
that is the equation of projective affine motion and its integrability condition
£o Hipp = v* N Hp — Hopy o'y + Hig vy + Hiyy v, +
+ Hoy vy + 8, Hiyy vy £7 = 0. 2.2
From the latter part of (1.12), we can construct
Vi = Ok 67 F Wi V' + Wi (08 + v, v), 2.3)
where
’ G = Opy = 9, 7. 24
Introducing the latter part of (1.2) and (2.3) into the equation (2.1), we have
V" = W' + w0 o' + 0, 8/ -+ o w8 (2.5)

Transvecting the last formula by »* and using the fact that Hy,, o% 0" = 0,
we get

WiV o+ iy ook oo, 8 v - oy == 0. (2.6)
For the non-zero property of the vector »'(») the last relation reduces to
Wiy ¥ A Wi W vt - oy = 0, @7
where we have used the relation [9] :
fp0(x) =0 or g,v"=0. 2.8)
Equating the indices i and k& of the formula (2.5), we obtain
Higpn o = W59 V" + W, W v + 0, + oy 2.9
Introducing (2.7) into the above relation, we find
Huyvh=mw—Doy; 4+ o;. o . (2.10)

Differentiating covariantly the above formula with respect to x* and taking
care of the equations (1.10) and the latter part of (1.12), we have

(s + A Hiypvt + o Hyyy = (n — D) (0, ¥+ o Wi) + 059 @.11)
Substituting (2.10) into the left-hand side of the above equation, we get
W, +2) {tr—Doy;+ o} + o Hye = — Do, ¥, + 0V y) + 059 (2.12)

Transvecting the above formula by v* and noting the equations (2.7), (2.8) and
(2.10), we obtain
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b

—Doy; v, v+ A v+ 20) + o5 (W, v - A o5 + 26) = 0. (2.13)

Now, again transvecting the formula (2.13) by »/ and using the equation (2.8),
we find

n— Doy’ Qy,v* + A, v° + 20) = 0. (2.14)

Consequently, it is seen from (2.14} that in order to discuss the possibility of
torse-forming projective affine motion in an PRFn-space it is necessary to in-
vestigate the three cases for n = 2 :

a}y ¢=0, b) ywo/=0 and ¢} 2y, v+ A v*+ 20 =0 (2.15)

3. THE CASE OF ¢ =0

In view of this case the projective affine motion (1.12) under considera-
tion is degenerated into

¥ =l 4 o () dt, vy =y (x) o G.1y

But the above case has been already discussed deeply by the author in the
papers [°] and [7] .This is projective recurrent affine motion form.

4. THE CASE OF vy, o —

Differentiating covariantly (2.5} with respect to x™ and taking notice of
the equations (1.10) and the latter part of (1.12), we have

v + W, Hiygh + 0 Hyo = Wi (o + Vi oy + Vi Vi 2+
F Vi Vi ¥ WV Vo + 0 Wi 8 05 V8 + o B 4.1y
Contracting the above formula with respect to the indices 7 and j we get
Qo+ ¥,) Hlig v + @ Hiyy = Wigo @' + Viw ¥ oo + Yien Vet +
+ W W iy + S Ve t 0 Vi F 0 Gy 4.2

where we have used the fact that
‘ljh vh = 0. (43)

With the help of the above formula we can deduce

Wi ¥+ W, o = 0, ' ' (4.9

Again diffel‘entiating covariantly the last formula with respect to x” and using
the latter part of (1.12) we find
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Wy () () ot + wh (s} vh(m} + Yy D] 'vh(s) + wh (O’ Ssh + Wy vh) ) — 0 (45)
or o ‘
Vi o vt + Y ”h(m) -+ Yiim Vs 0 + oW, () + T Vs + v, wh Uh(m) =0, (46)

where we have used (2.4) and (4.3).

Now, introducing the equation (4.6) into the right-hand side of the
formula (4.2), we obtain

()\‘m + “"’m) Hiikh ! + GHiikni = RO ) (47)

Commutating the last relation with respect to the indices & and m and using
the fact that ¢, = 0,4, we have

(A‘m _]L ‘l"m) Hi"kft ﬂk + a Hifkm =hay (o) * (48)
The above formula can also be re-written as
20 Hiy, = Qv+ W) Hi o — (0, ) Higg o, 4.9)

Transvecting the last result by »” and using the fact that K, v*o" = 0,
we get

(20 + \, ") H, v =0, (4.10)
where we have used (4.3).
Hence, we have two cases to be discussed :
CH,vP =10 4.11)
and

20 + A, v" =0. (4.12)

PROJECTIVE AFFINE MOTION GIVEN BY (4.11)

In such a case, from {2.1), we have

Yo 00 =0 o @13
Thus, by virtue of the equations (2.3) and {4.13), we can get
no,+ Yt + oy, =0, 4.19)
In view of the equations {1.12) and (4.3), the last formula takes the form
noy =y, (@8 + v, )+ oy, =0 (4.15)

or
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g, = 0. . .16)

Then, we shall have proved y; = 0. In what follows we shall always use (4.3)
and (4.16). From the formula (2.3), we can get

Yoy =0+ Winmd + noy;. : .17
By virtue of (4.3), the equation (2.7) takes the form ‘
T = — W vt 4.18)

Introducing the last result into the right-hand side of the formula (4.17), we
obtain

Yoo =0—1Daoy, 1 o (4.19)
But, with the help of the equation (4.16), the last relation reduces to
Y= @ — Doy, . (4.20)

From the equations (2.1) and (4.11), we can construct
Yy oy = Hlgy v = 0. (4.21)

Therefore, commutating the formula (4.20) with respect to the indices j and
i and using the equations (1.2) and (4.21), we have

(n — 1) Ty = — il H’Is_;,-. (422)

Differentiating covariantly the above formula with respect to x™ and taking
notice of the equations (1.10), the latter part of (1.12) and (4.16) we get

— Qo F W) H 0 By = (1= 1) 0 W - 4.23)
With the help of the equations (4.22) and (4.23), we can obtain
A+ V)= Doy, — o Hpy=(n— 1) 0 Wy 4.24)

Now, transvecting the above result by +/ and taking care of the equation (1.4)
and (4.3), we find ' '

O Hipgyt? = (0 — 1) 0 W 07 ' (4.25)
In view of the equation (2.1), the last formula takes the form
o Vym =@ — 1) oW v (4.26)
or
Vimn=0—DV;mv, - @.27)

where we have neglected the non-vanishing o (x).

Introducing (4.20) into the left-hand side of the above result, we have-
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(n - 1) oV, = (H - I)Wj i) vl - (428)

or

oV, = V; () vj - (wl vi) G}y vy 'vj(m) = — wj (0' Smj + ‘[’rm 'vj) =—0oVv, (429)
or :

20y, = 0. (4.30)

Hence, by virtue of ¢ # 0, we get v, = 0. This completes the proof of desired
property. Thus, in this case the equation (1.12) becomes

X =x 4+ @, vy =08f (o= const). 4.31)

This is a concurrent form and such a motion is unable to exist in a general
PRFn-space. This fact was shown by the author in the paper [% ..

2. PROJECTIVE AFFINE MOTION GIVEN BY (4.12)
_From the equations (1.12) and (4.3) we can .conclude _
Vi ¥+ W ¥, v+ oy, = 0. (432
Subtracting the last formula with (2.7), we have

Vi oy o' = W ot ‘ 7 (433)

By virtue of the equations (1.4) and (1.6), the formula (2.10) can be re-written
as .

— Hyvt=@m— Doy, +o,. (4.34)

Differentiating covariantly with respect to x°and using the equations (1.10)
and the latter part of (1.12), we get

— WM Hy Y — oy =0 —D{ovi b oyigt o (439)

Commutating the above formula with respect to the indices j and s and taking
care of the fact that (v, = o, ), We obtain

- (ws + }\'S‘) Hf.ﬁ ‘Ub - O-H_fs - (ﬂ - 1) (c‘s Wy + ] ‘{"J (J)) -
= (W F A H v —cH;—(n— Do v, + 0w, ;). (4.36)

Now, transvecting the above formula by o/ and remembering the relations (2.8)
and (4.3), we find
— (Y, + A) Hy v/ ot — e Hj vl —(n— Doy =
s

=— M H vV —cHgv —(n— Doy, . Y (%
By virtue of (4.33) and the hypothesis (4.12), the above equation reduces to
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— (W, + Ay Hyviv' — o H vl = cH v, (4.38)
In view of the equations (1.2), (2.1), (2.3}, (2.8) and (4.3), we can deduce ;

— Hyv/oh = — Hj v oh = — (v () — @) " =
= — (o 87 vy — (o 4 v, )] v =

i EGh + Wisy V° + Wy, (IIG' + W ) — I’Iﬁ'h] vk =
= — Y P = (Y, Y, 7 ) vt = 0, . (4.39)

Thus, introducing the last result into the left-hand side of the formula (4.38)
and neglecting the non-zero o (x), we have

(Hy+H)v=0 (o #0) (4.40)

Differentiating the above formula covariantly with respect to x™ and taking
notice of the equations (1.10), (1.12) and (4.40) itself, we get

H,,+ H, . (4.41)

On the other hand contracting the Bianchi’s identity (1.5) for the Berwald’s cur-
vature tensor H'y;, (x, X) with respect to the indices { and %, we obtain

H ihj:‘ + H ijm +H iim'- (4.42)
By virtue of the above identity and (1,6), we find
2HY, + Hiyy =0, (4.43)
From the last formula, we can also have
QHy, + Hiyy) v/ = 0. (4.44)
In view of the equations (2.1 b) and (2.3), we can construct
Hipvl = — v/ Hy = vy — Vo =01 — Doy, 0y (4.45)

Nexi, introducing the above result into (4.44), we get

2 (n - 1) (0' lljfr M ﬂ'h) + ?i(r') (fr)‘: 0 ' (446)
or _ .
2@ — D @w,— o)+ e+ ¢ vy, =0, (4.47)
Thus, we obtain ‘
Y, = _(i:__?‘_)_ O . M (8, log ), (4.48)

_,2{11—1) o'_z(n—l) .

namely, we have found- at last that y, denotes a gradient vector. In this way,
in the present case, we could find that the motion (1.12) under consideration
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be a concircular projective affine motion. Such a motion has been investigated
in detail by the author in [¢].

5. THE CASE OF \,v* + 2y, v |- 26 — 0

In this case the equation (2.13) can be written as

oW, At 20)=0. . (5.1

So, we have two cases:
;=0 or e« (x)= non-zero const., (5.2)
Voo M 420 —0. .3)

But in view of the case (2.15 ¢), the condition (5.3) reduces to
| Yo' =0 . (X
and such a case has been discussed in §4. So, we except this case.

Thus in what follows, we shall study the possibility of projective affine
motion under (5.2). By virtue of this case the formula (2.12) becomes

(=D y;(y, + 0+ Hiyy = (= Dy, (5.5
where we have neglected the non-zero a(x).”
With the help of the last equation we get the following commutation equality;
(=) Wi (W, A M) H == 1)y, (WA M) — Hiy = = 1) (Wi, (5.6)
From the identity (1.5) we ¢an deduce

Hiy— Hi, — H, =0, | .7

iis
Thus by virtue of the above 1dent1ty the formula (5.6) takes the form
Hiy = (ﬂ — 1) Wi — Vo — 1y Ay + \lfs 7\' Ny (5.8)
Introducmg the latter part of (1 12) into the equation (2. 2), we have
(Us)vs + 20) Hiyj — W, v By + W, v Hsjk + Vv g + W v Hy, = 0. (5.9)
Now, contracting the above formula with respect to the indices 7 and # we get
(@ N, + 20) By + W08 Hipy + wy vof HYpy = 0. {5.10)

On the other hand, introducing (5.8) into the left-hand side of the above
equality and neglecting (2 — 1) # 0, we obtain
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(0 s +20) (Wi — Vit Wi MW M)V, 08 (W — Wiy — Ws bW ) +
W W — Wey — Wi ke T W R) =0 ' (5.11)
Now, introducing the hypothesis (2.15 c) into the above formula, we find
= 29,0 Wiy — Watn — Wi e F W A)) W0 (Wagy — Vi = We i+ Wi A+
+ Ve v (‘l’j(s) VW VY )\‘s + Vs }‘J) =0 ' ’ R ' (5‘12)
After little simplification, the above relation can also be re-written as
W v L — 2 (Wi — Vi) + Vi b — W M W50 (Wegy — W) +
_ + W 7 Wiy — Vo) =0. (5.13)
In view of the equation (2.7) the last formula yields
W v [— 2 (Wigo — Wien) + Wi de — Wi Ml + W50 Wy — Wi 0 Wy —
— V(=W — W) H W (— Wy o) =0 (5.19
or
v, 0 [— 2 (Wigy — Wao) + W5 e = Wi MJ 05 (0 W0 — Wi W) = 0. (5.15)
Transvecting the above formula by- vk and taking C:arehf (2.7); we have
W 0 (Ween ¥ — W 85 0)) — Wy W, v o o % cWiy, =0, (5-16)
From the above result, neglecting the non-vanishing term w,v%, we get
Vit v — Yy ”k()\-j‘{“l’j) .‘;‘?'1}’1.'";0- o Gan
Now, subtracting the formula 27 with_ the last e_quation, we ob_tain
"l’k(f) 'Uk — ‘pf(k) ’vk_ l’j \I!k ph +‘|’Jl'k 'Dk: 0, - (5.18)
where we have used the hypothesis (2.15 c).
The above formula can also be re-written as
Wiy — Viw —ll'j Y+ Ay \ij =0 (5.-19)
Comparing the last relation with (5.8), we find |

iy wl=0 T s
or ' : ‘ v : .
V=0 or ne,+ W v ey Fwiy e =0 ¢ (5.2D)

or 7 . .
BT+ Wiy vy (0‘ 8! +.\I{;_?’{) =0.. o (5-22)

Since ¢ = const. therefore the above formula reduces te
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(v, ¥}y =0 or w;vf= const., (5.23)
where we have used the latter part of (1.12). The last result can also be
Te-written as
Yeen ¥+ v (@85 4 w08 = 0. (5.249)
‘Comparing the above equation with (2.7), we find
W P = Wy 6 (5.25)
Introducing the above relation in (5.18), we have
MWevt = k. (526)

Since o and y, v* denotes a non-zero constant respectively, so from the hypoth-
esis (2.15 ¢), we obtain

A, v¥ = const. (5.27)
From (5.26) we can put
Br =avy;, (5.28)
where
a) § = y, v = non-zero const. and b) o = A, v = const. ~ (5.29)

Differentiating covariantly (5.20) by x™ and taking care of the equatlons (1.10),
(1.12) and (5.20) itself, we get

‘ g H,.=0. (5.30)
For the non-vanishing property of the function o(x) the last forrﬁula yields
Hi, =0, (53D

By virtue of thé last formula and the fact that n—1# 0 the relation (5. 8)
takes the form

Wiy — Wty — Wik + W b= 0. - (5.32)

From (5.28), we can deduce

B (Xf(m) - )\'m(f)) =& (‘Pj(m) - Wm(f) ) (533)
In view of the equation (5.32), the above result reduces to
B Oy — M) = Bys A — W, ). (5.34)

"With the help of (5.28) the above formula becomes
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Bt — M) =B XA, —BX, 4 =0 (5.35)
or T ‘ . : e
Mjtmy = Py = 0. T (5.36)
Thus; we can say that L; is 'a gradient vector.
By virtue of (5.36) the formula (5.33) takes 'the form
& (Wit — Vup) = 0. (5.37)
Thus, from (5.28) and (5.37), we can consider the two cases : .

i) The case of & = 0. In this case we have A; = 0. Therefore from the
fundamental definition (1.1¢), we can say that the space under consideration
becomes - symmetric (i:o. H, ;.= 0). :

i) The case of o # 0. In this case from (5.37), we can find
Witm) = Wm.(f) (5 38)

Hence the transformation (1.7) characterized by (1.12) becomes one of the
concircular form, ‘

From all the discussions above we can state ;

. Thearem 5.1, If a general PRFn-space admits a projective affine motion
of torse—fonmng form, the follow;ng three cases occur :

1. The case of o _0 In this case, the mot;on is degenerated into a
recurrent motion (r = 2).

2. The case of y,vv=0 and l vs—}— 20 = 0. In this case only one
projective affine motion of concircular form may bé considered nz3).

3. The case of M, v* + 2y o* 427 = 0. In this case the motion must be a
special one satisfying o — const. and - furthermore we can regard the space
reduces to a symmetric space or the motion can be degenerated into concircular
motion (# = 2).
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INDIA

ODZET

Bu calismada, bir PRFn uzayinda

= x¥ + vi(x) dt

ve fuGi jkzo ile karakterize edilen gesitli tiplerdeki projektif afin

hareketin varligr incelenmektedir.




