PROJECTIVE AFFINE MOTION IN A PRFn-SPACE, V

A. KUMAR

In this paper has been investigated in a PRFn-space the existence of projective affine motion characterized by

$$
\bar{x}^{i}=x^{i}+v^{i}(x) d t
$$

and $£ u G^{i}{ }_{j k}=0$ of several types.

1. INTRODUCTION

Let $F n\left[{ }^{1}\right]^{1)}$ be an n-dimensional affinely connected and non-flat Finsler space equipped with symmetric Berwald's connection coefficient $G_{j k}^{i}(x, \dot{x})$. The covariant derivative of any tensor field $T_{j}^{i}(x, \dot{x})$ with respect to x^{k} in the sense of Berwald is given by

$$
\begin{equation*}
T_{j(k)}^{i}=\partial_{k} T_{j}^{i}-\dot{\partial}_{m} T_{j}^{i} G_{\gamma k}^{m} \dot{x}^{\gamma}+T_{j}^{s} G_{s k}^{i}-T_{s}^{i} G_{j k}^{s} \tag{1.1}
\end{equation*}
$$

The commutation formula involving the Berwald's covariant derivative is given by [$\left.{ }^{1}\right]$:

$$
\begin{equation*}
2 T_{\mathrm{jI}(h)(k) \mathrm{]}}=-\dot{\partial}_{\gamma} T_{j}^{i} H_{s h k}^{\gamma} \dot{x}^{s}+T_{j}^{s} H_{s h k}^{i}-T_{s}^{i} H_{j h k}^{s}{ }^{2), 3)} \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{h j k}^{i}(x, \dot{x}) \xlongequal{\text { def. }} 2\left\{\partial_{[k} G_{j l h}^{i}-G_{\gamma h[j}^{i} G_{k] s}^{\gamma} \dot{x}^{s}+G_{h[j}^{\gamma} G_{k] \gamma}^{i}\right\} \tag{1.3}
\end{equation*}
$$

is called Berwald's curvature tensor and satisfies the following identities [${ }^{1}$]:

$$
\begin{align*}
& H_{h j k}^{i}=-H_{h k j}^{i} \tag{1.4}\\
& H_{h j k}^{i}+H_{j k h}^{i}+H_{k h j}^{i}=0 \tag{1.5}
\end{align*}
$$

and

$$
\begin{equation*}
H_{h j i}^{i}=H_{h j} \tag{1.6}
\end{equation*}
$$

Let us consider an infinitesimal point transformation

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+v^{i}(x) d t \tag{1.7}
\end{equation*}
$$

[^0]where $v^{i}(x)$ is any vector field and $d t$ is an infinitesimal point constant. In view of the above point transformation and Berwald's covariant derivative, the Lie derivatives of $T_{j}^{i}(x, \dot{x})$ and $G_{j_{k}}^{i}(x, \dot{x})$ respectively are given by [$\left.{ }^{2}\right]$:
\[

$$
\begin{equation*}
£_{v} T_{j}^{i}=T_{j(h)}^{i} v^{h}-T_{j}^{h} v_{(h)}^{i}+T_{h}^{i} v_{(j)}^{h}+\dot{\partial}_{h} T_{j}^{i} v_{(s)}^{h} \dot{x}^{s} \tag{1.8}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
£_{v} G_{j k}^{i}=v_{(j)(k)}^{i}-H_{j k h}^{i} v^{h}+G_{s j k}^{i} v_{(\gamma)}^{s} \dot{x}^{\gamma} \tag{1.9}
\end{equation*}
$$

where $G_{s j k}^{i} \equiv \dot{\partial}_{s} G_{j_{k}}^{i}$.
In an Fn if the Berwald's curvature tensor field $H_{h j k}^{i}(x, \dot{x})$ satisfies the relation

$$
\begin{equation*}
H_{h j k}^{i}(s)=\lambda_{s} H_{h j k}^{i}, \tag{1.10}
\end{equation*}
$$

where $\lambda_{s}(x)$ is any covariant vector then the space is called projective recurrent Finsler space of first order or PRFn-space. The present author has investigated in an PRFn-space the existence of projective affine motion characterized by (1.7) and $£_{v} G^{i}{ }_{j k}=0$ of the following several types [$\left.{ }^{4}\right]$, [5], [$\left.{ }^{[}\right]$:
(A) Contra-form characterized by $v^{i}{ }_{(j)}=0$,
(B) Concurrent form defined by $v_{(i)}^{i}=a \delta_{j}^{i} \quad(a=$ const.),
(C) Special concircular-form introduced by $v_{(j)}^{i}=\psi(x) \cdot \delta_{j}{ }^{i}$,
(D) Projective recurrent-form characterized by $v_{(j)}^{i}=\Psi_{j}(x) v^{i}$,
(E) Concircular form satisfying the condition: $v_{(j)}^{i}=\sigma(x) \delta_{j}^{i}+\psi_{j}(x) v^{i}$ ($\Psi_{i}=$ gradient vector).

However, these types are contained, as a special case respectively in the condition

$$
\begin{equation*}
v_{(j)}^{i}=\sigma(x) \delta_{j}^{i}+\Psi_{j}(x) v^{i}, \tag{1.11}
\end{equation*}
$$

where $\sigma(x)$ means any function and ψ_{j} denotes a certain covariant vector. The vector field (v^{i}) defined by such a condition will be called a torse-forming field. Then, as the most general case, in this paper, the author will discuss about the projective affine motion of torse-forming form defined by

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+v^{i}(x) d t, v_{(j)}^{i}=\sigma(x) \delta_{j}^{i}+\psi_{j}(x) v^{i} \tag{1.12}
\end{equation*}
$$

2. PROJECTIVE AFFINE MOTION AND THREE CASES

In what follows we shall assume the existence of projective affine motions of torse-forming form (1.12). Then, we come to assume two conditions:
a) $£_{v} G_{j k}^{i}=0 \quad$ or \quad b) $v_{(j)(k)}^{i}=H_{j k h}^{i} v^{h}-G_{s j_{k}}^{i} v_{(r)}^{s} \dot{x}^{\gamma}$
that is the equation of projective affine motion and its integrability condition

$$
\begin{align*}
£_{v} H_{h i k_{k}}^{i} & =v^{s} \lambda_{s} H_{h i k}^{i}-H_{h i_{k}} v_{(s)}^{i}+H_{s i k}^{i} v_{(h)}^{s}+H_{h s k}^{i} v_{(j)}^{s}+ \\
& +H_{h i s}^{i} v_{(k)}^{s}+\dot{\partial}_{s} H_{h j k}^{i} v_{(\gamma)}^{s} \dot{x}^{\gamma}=0 . \tag{2.2}
\end{align*}
$$

From the latter part of (1.12), we can construct

$$
\begin{equation*}
v_{(j)(k)}^{i}=\sigma_{k} \delta_{j}^{i}+\psi_{j(k)} v^{i}+\psi_{j}\left(\sigma \delta_{k}^{i}+\psi_{k} v^{i}\right), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{k}=\sigma_{(k)}=\partial_{k} \sigma \tag{2.4}
\end{equation*}
$$

Introducing the latter part of (1.2) and (2.3) into the equation (2.1), we have

$$
\begin{equation*}
\not \Psi_{j k h}^{i} v^{h}=\psi_{\left.j k_{k}\right)} v^{i}+\psi_{j} \psi_{k} v^{i}+\sigma_{k} \delta_{j}^{i}+\sigma \psi_{j} \delta_{k}^{i} . \tag{2.5}
\end{equation*}
$$

Transvecting the last formula by v^{k} and using the fact that $H_{j_{k h}} v^{k} v^{h}=0$, we get

$$
\begin{equation*}
\psi_{j(k)} v^{i} v^{k}+\psi_{j} \psi_{k} v^{i} v^{k}+\sigma_{k} \delta_{j}^{i} v^{k}+\sigma \psi_{j} v^{i}=0 . \tag{2.6}
\end{equation*}
$$

For the non-zero property of the vector $v^{i}(x)$ the last relation reduces to

$$
\begin{equation*}
\psi_{j(k)} v^{k}+\psi_{j} \psi_{k} v^{k}+\sigma \psi_{j}=0 \tag{2.7}
\end{equation*}
$$

where we have used the relation $\left[{ }^{6}\right]$:

$$
\begin{equation*}
f_{v} \sigma(x)=0 \quad \text { or } \quad \sigma_{h} v^{h}=0 \tag{2.8}
\end{equation*}
$$

Equating the indices i and k of the formula (2.5), we obtain

$$
\begin{equation*}
H_{j i j h}^{i} v^{h}=\psi_{j(k)} v^{k}+\psi_{j} \psi_{k} v^{k}+\sigma_{j}+n \sigma \psi_{j} . \tag{2.9}
\end{equation*}
$$

Introducing (2.7) into the above relation, we find

$$
\begin{equation*}
H_{j i h}^{i} v^{h}=(n-1) \sigma \psi_{j}+\sigma_{j} \tag{2.10}
\end{equation*}
$$

Differentiating covariantly the above formula with respect to x^{s} and taking care of the equations (1.10) and the latter part of (1.12), we have

$$
\begin{equation*}
\left(\psi_{s}+\lambda_{s}\right) H_{j i h}^{i_{j i}} v^{h}+\sigma H_{j i s}^{i_{i s}}=(n-1)\left(\sigma_{s} \psi_{j}+\sigma \psi_{j(s)}\right)+\sigma_{j(s)} . \tag{2.11}
\end{equation*}
$$

Substituting (2.10) into the left-hand side of the above equation, we get
$\left(\psi_{s}+\lambda_{s}\right)\left\{(n-1) \sigma \psi_{j}+\sigma_{j}\right\}+\sigma H_{j i s}^{i}=(n-1)\left(\sigma_{s} \psi_{j}+\sigma \psi_{j(s)}\right)+\sigma_{j(s)}$.
Transvecting the above formula by v^{s} and noting the equations (2.7), (2.8) and (2.10), we obtain

$$
\begin{equation*}
(n-1) \sigma \Psi_{j}\left(2 \psi_{s} v^{s}+\lambda_{s} v^{s}+2 \sigma\right)+\sigma_{j}\left(\psi_{s} v^{s}+\lambda_{s} v^{s}+2 \sigma\right)=0 . \tag{2.13}
\end{equation*}
$$

Now, again transvecting the formula (2.13) by v^{j} and using the equation (2.8), we find

$$
\begin{equation*}
(n-1) \sigma \psi_{j} v^{j}\left(2 \psi_{s} v^{s}+\lambda_{s} v^{s}+2 \sigma\right)=0 . \tag{2.14}
\end{equation*}
$$

Consequently, it is seen from (2.14) that in order to discuss the possibility of torse-forming projective affine motion in an PRFn-space it is necessary to investigate the three cases for $n \geqslant 2$:
a) $\sigma=0$,
b) $\psi_{j} v^{j}=0$ and
c) $2 \psi_{s} v^{s}+\lambda_{s} v^{s}+2 \sigma=0$.

3. THE CASE OF $\sigma=0$

In view of this case the projective affine motion (1.12) under consideration is degenerated into

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+v^{i}(x) d t, v_{(j)}^{i}=\psi_{j}(x) v^{i} . \tag{3.1}
\end{equation*}
$$

But the above case has been already discussed deeply by the author in the papers [${ }^{5}$] and [${ }^{7}$]. This is projective recurrent affine motion form.

4. THE CASE OF $\psi_{s} v^{s}=0$

Differentiating covariantly (2.5) with respect to x^{m} and taking notice of the equations (1.10) and the latter part of (1.12), we have

$$
\begin{align*}
& \left(\lambda_{m}+\psi_{m}\right) H_{j k h}^{i} v^{h}+\sigma H_{j k m}^{i_{k m}}=\psi_{j(k)(m)} v^{i}+\psi_{j(k)} v^{i}{ }_{(m)}+\psi_{j(m)} \psi_{k} v^{i}+ \\
& +\psi_{j} \psi_{k(m)} v^{i}+\psi_{j} \psi_{k} v_{(m)}^{i}+\sigma \psi_{j(m)} \delta_{k}^{i}+\sigma_{m} \psi_{j} \delta_{k}^{i}+\sigma_{k(m)} \delta_{j}^{l} . \tag{4.1}
\end{align*}
$$

Contracting the above formula with respect to the indices i and j we get

$$
\begin{gather*}
\left(\lambda_{m}+\psi_{m}\right) H_{i k h}^{i_{i}} v^{h}+\sigma H_{i k m}^{i_{k m}}=\psi_{i(k)(m)} v^{i}+\psi_{i(k)} v^{i}(m)+\psi_{i(m)} \psi_{k} v^{i}+ \\
+\psi_{i} \psi_{k} v_{(m)}^{i}+\sigma \psi_{k(m)}+\sigma_{m} \psi_{k}+n \sigma_{k(m)} \tag{4.2}
\end{gather*}
$$

where we have used the fact that

$$
\begin{equation*}
\psi_{h} v^{h}=0 . \tag{4.3}
\end{equation*}
$$

With the help of the above formula we can deduce

$$
\begin{equation*}
\psi_{h(s)} v^{h}+\psi_{h} v_{(s)}^{h}=0 \tag{4.4}
\end{equation*}
$$

Again differentiating covariantly the last formula with respect to x^{m} and using the latter part of (1.12) we find

$$
\begin{equation*}
\Psi_{h(s)(m)} v^{h}+\psi_{h(s)} v_{(m)}^{h}+\psi_{h(m)} v_{(s)}^{h}+\psi_{h}\left(\sigma \delta_{s}^{h}+\psi_{h} v^{h}\right)_{(m)}=0 \tag{4.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\psi_{h(G)(m)} v^{h}+\psi_{h(s)} v_{(m)}^{h}+\psi_{h(m)} \psi_{s} v^{h}+\sigma \psi_{s(m)}+\sigma_{m} \psi_{s}+\psi_{s} \psi_{h} v_{(m)}^{h}=0, \tag{4.6}
\end{equation*}
$$ where we have used (2.4) and (4.3).

Now, introducing the equation (4.6) into the right-hand side of the formula (4.2), we obtain

$$
\begin{equation*}
\left(\lambda_{m}+\psi_{m}\right) H_{i k h} v^{h}+\sigma H_{i k m}^{i_{i k}}=n \sigma_{k(m)} . \tag{4.7}
\end{equation*}
$$

Commutating the last relation with respect to the indices k and m and using the fact that $\sigma_{k(m)}=\sigma_{m(k)}$, we have

$$
\begin{equation*}
\left(\lambda_{m}+\psi_{m}\right) H_{i k h}^{i_{k h}} v^{h}+\sigma H_{i k m}^{i}=n \sigma_{k(m)} \tag{4.8}
\end{equation*}
$$

The above formula can also be re-written as

$$
\begin{equation*}
2 \sigma H_{i k m}^{i}=\left(\lambda_{k}+\psi_{k}\right) H_{i m h}^{i} v^{h}-\left(\lambda_{m}+\psi_{m}\right) H_{i k h}^{i} v^{h} \tag{4.9}
\end{equation*}
$$

Transvecting the last result by \boldsymbol{v}^{m} and using the fact that $H_{i k m} \boldsymbol{v}^{k} \boldsymbol{v}^{m}=0$, we get

$$
\begin{equation*}
\left(2 \sigma+\lambda_{m} v^{m}\right) H_{i_{k h}}^{i_{k}} \boldsymbol{v}^{h}=0 \tag{4.10}
\end{equation*}
$$

where we have used (4.3).
Hence, we have two cases to be discussed :

$$
\begin{equation*}
H_{i k h}^{i} v^{h}=0 \tag{4.11}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \sigma+\lambda_{m} \boldsymbol{v}^{m}=0 \tag{4.12}
\end{equation*}
$$

PROJECTIVE AFFINE MOTION GIVEN BY (4.11)

In such a case, from (2.1), we have

$$
\begin{equation*}
v_{(i)(k)}^{i}=0 . \tag{4.13}
\end{equation*}
$$

Thus, by virtue of the equations (2.3) and (4.13), we can get

$$
\begin{equation*}
n \sigma_{k}+\psi_{h(k)} v^{h}+\sigma \psi_{k}=0 . \tag{4.14}
\end{equation*}
$$

In view of the equations (1.12) and (4.3), the last formula takes the form

$$
\begin{equation*}
n \sigma_{k}-\psi_{h}\left(\sigma \delta_{k}^{h}+\psi_{k} v^{h}\right)+\sigma \psi_{k}=0 \tag{4.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{k}=0 \tag{4.16}
\end{equation*}
$$

Then, we shall have proved $\psi_{j}=0$. In what follows we shall always use (4.3) and (4.16). From the formula (2.3), we can get

$$
\begin{equation*}
\boldsymbol{v}_{(j)(i)}^{i}=\sigma_{j}+\psi_{j(i)} v^{i}+n \sigma \psi_{j} \tag{4.17}
\end{equation*}
$$

By virtue of (4.3), the equation (2.7) takes the form

$$
\begin{equation*}
\sigma \Psi_{j}=-\Psi_{j(k)} v^{k} \tag{4.18}
\end{equation*}
$$

Introducing the last result into the right-hand side of the formula (4.17), we obtain

$$
\begin{equation*}
{v_{(j)(i)}^{i}}_{i}=(n-1) \sigma \psi_{j}+\sigma_{j} \tag{4.19}
\end{equation*}
$$

But, with the help of the equation (4.16), the last relation reduces to

$$
\begin{equation*}
v_{(j)(i)}^{i}=(n-1) \sigma \psi_{j} \tag{4.20}
\end{equation*}
$$

From the equations (2.1) and (4.11), we can construct

$$
\begin{equation*}
v_{(i)(j)}^{i}=H_{i i_{k}} v^{k}=0 \tag{4.21}
\end{equation*}
$$

Therefore, commutating the formula (4.20) with respect to the indices j and i and using the equations (1.2) and (4.21), we have

$$
\begin{equation*}
(n-1) \sigma \psi_{j}=-v^{s} H_{s j i}^{i} \tag{4.22}
\end{equation*}
$$

Differentiating covariantly the above formula with respect to x^{m} and taking notice of the equations (1.10), the latter part of (1.12) and (4.16) we get

$$
\begin{equation*}
-\left(\lambda_{m}+\psi_{m}\right) v^{s} H_{s j i}^{i}-\sigma \dot{H}_{m j i}^{i}=(n-1) \sigma \psi_{j(m)} \tag{4.23}
\end{equation*}
$$

With the help of the equations (4.22) and (4.23), we can obtain

$$
\begin{equation*}
\left(\lambda_{m}+\psi_{m}\right)(n-1) \sigma \psi_{j}-\sigma H_{m j i}^{i}=(n-1) \sigma \psi_{j(m)} \tag{4.24}
\end{equation*}
$$

Now, transvecting the above result by \boldsymbol{v}^{j} and taking care of the equation (1.4) and (4.3), we find

$$
\begin{equation*}
\sigma H_{m i j}^{i} v^{j}=(n-1) \sigma \psi_{j(m)} v^{j} \tag{4.25}
\end{equation*}
$$

In view of the equation (2.1), the last formula takes the form

$$
\begin{equation*}
\sigma v_{(m)(i)}^{i}=(n-1) \sigma \psi_{j(m)} v^{j} \tag{4.26}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{(m)(i)}^{i}=(n-1) \psi_{j(m)} v^{j} \tag{4.27}
\end{equation*}
$$

where we have neglected the non-vanishing $\sigma(x)$.
Introducing (4.20) into the left-hand side of the above result, we have

$$
\begin{equation*}
(n-1) \sigma \psi_{m}=(n-1) \psi_{j(m)} v^{j} \tag{4.28}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma \psi_{m}=\psi_{j(m)} v^{j}=\left(\psi_{j} v^{j}\right)_{(m)}-\psi_{j} v^{j}{ }_{(m)}=-\psi_{j}\left(\sigma \delta_{m}^{j}+\psi_{m} v^{j}\right)=-\sigma \psi_{m} \tag{4.29}
\end{equation*}
$$

or

$$
\begin{equation*}
2 \sigma \psi_{m}=0 . \tag{4.30}
\end{equation*}
$$

Hence, by virtue of $\sigma \neq 0$, we get $\psi_{m}=0$. This completes the proof of desired property. Thus, in this case the equation (1.12) becomes

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+v^{i}(x) d t, \quad v_{(j)}^{i}=\sigma \delta_{j}^{i} \quad(\sigma=\text { const }) . \tag{4.31}
\end{equation*}
$$

This is a concurrent form and such a motion is unable to exist in a general PRFn-space. This fact was shown by the author in the paper [${ }^{5}$].

2. PROJECTIVE AFFINE MOTION GIVEN BY (4.12)

From the equations (1.12) and (4.3) we can conclude

$$
\begin{equation*}
\psi_{h(m)} v^{h}+\psi_{h} \psi_{m} v^{h}+\sigma \psi_{m}=0 \tag{4.32}
\end{equation*}
$$

Subtracting the last formula with (2.7), we have

$$
\begin{equation*}
\psi_{h(m)} v^{h}=\psi_{m(k)} v^{h} . \tag{4.33}
\end{equation*}
$$

By virtue of the equations (1.4) and (1.6), the formula (2.10) can be re-written as

$$
\begin{equation*}
-H_{j_{h}} v^{h}=(n-1) \sigma \psi_{j}+\sigma_{j} . \tag{4.34}
\end{equation*}
$$

Differentiating covariantly with respect to x^{s} and using the equations (1.10) and the latter part of (1.12), we get

$$
\begin{equation*}
-\left(\psi_{s}+\lambda_{s}\right) H_{j_{h}} v^{h}-\sigma H_{j s}=(n-1)\left\{\sigma_{s} \psi_{j}+\sigma \psi_{j(s)}+\sigma_{j(s)}\right\} \tag{4.35}
\end{equation*}
$$

Commutating the above formula with respect to the indices j and s and taking care of the fact that $\left(\sigma_{j(s)}=\sigma_{s(f)}\right)$, we obtain

$$
\begin{align*}
& -\left(\psi_{s}+\lambda_{s}\right) H_{j_{h}} v^{h}-\sigma H_{j_{s}}-(n-1)\left(\sigma_{s} \psi_{j}+\sigma \psi_{j(s)}\right)= \\
& =-\left(\psi_{j}+\lambda_{j}\right) H_{s h} v^{h}-\sigma H_{s j}-(n-1)\left(\sigma_{j} \psi_{s}+\sigma \psi_{s(j)}\right) . \tag{4.36}
\end{align*}
$$

Now, transvecting the above formula by \boldsymbol{v}^{j} and remembering the relations (2:8) and (4.3), we find

$$
\begin{align*}
& -\left(\psi_{s}+\lambda_{s}\right) H_{J h} v^{j} v^{h}-\sigma H_{j s} v^{j}-(n-1) \sigma \psi_{j(s)} v^{j}= \\
& =-\lambda_{j} v^{j} H_{\mathrm{s} h} v^{h}-\sigma H_{s j} v^{j}-(n-1) \sigma \psi_{s(j)} v^{j} \ldots \tag{4.37}
\end{align*}
$$

By virtue of (4.33) and the hypothesis (4.12), the above equation reduces to

$$
\begin{equation*}
-\left(\psi_{s}+\lambda_{s}\right) H_{j h} v^{j} v^{h}-\sigma H_{j s} v^{j}=\sigma H_{s j} v^{j} \tag{4.38}
\end{equation*}
$$

In view of the equations (1.2), (2.1), (2.3), (2.8) and (4.3), we can deduce :

$$
\begin{align*}
-H_{j_{h}} v^{j} v^{h} & =-H_{j_{h} s} v^{j} v^{h}=-\left(v_{(h)(s)}^{s}-v_{(s)(h)}^{s}\right) v^{h}= \\
& =-\left[\left(\sigma \delta_{h}^{s}+\psi_{h} v^{s}\right)_{(s)}-\left(n \sigma+\psi_{s} v^{s}\right)_{(h)}\right] v^{h}= \\
& =-\left[\sigma_{h}+\psi_{h(s)} v^{s}+\psi_{h}\left(n \sigma+\psi_{s} v^{s}\right)-n \sigma_{h}\right] v^{h}= \\
& =-\Psi_{h(s)} v^{h} v^{s}=\left(\psi_{h} \psi_{s} v^{s}+\psi_{h}\right) v^{h}=0 . \tag{4.39}
\end{align*}
$$

Thus, introducing the last result into the left-hand side of the formula (4.38) and neglecting the non-zero $\sigma(x)$, we have

$$
\begin{equation*}
\left(H_{j s}+H_{s j}\right) v^{j}=0 \quad(\sigma \neq 0) \tag{4.40}
\end{equation*}
$$

Differentiating the above formula covariantly with respect to x^{m} and taking notice of the equations (1.10), (1.12) and (4.40) itself, we get

$$
\begin{equation*}
H_{m s}+H_{s m} \tag{4.41}
\end{equation*}
$$

On the other hand contracting the Bianchi's identity (1.5) for the Berwald's curvature tensor $H_{h i k}^{i}(x, \dot{x})$ with respect to the indices i and k, we obtain

$$
\begin{equation*}
H_{h i j i}^{i}+H_{j l h}^{i}+H_{i h j}^{i} \tag{4.42}
\end{equation*}
$$

By virtue of the above identity and (1,6), we find

$$
\begin{equation*}
2 H_{j_{j h}}+H_{i h j}^{i^{j}}=0 \tag{4.43}
\end{equation*}
$$

From the last formula, we can also have

$$
\begin{equation*}
\left(2 H_{j i h}^{i}+H_{i h h}^{i}\right) v^{j}=0 \tag{4.44}
\end{equation*}
$$

In view of the equations (2.1 b) and (2.3), we can construct

$$
\begin{equation*}
H_{j i h}^{i_{j i}} v^{j}=-v^{j} H_{j h i}^{i_{j h}}=v_{(h)(1)}^{i}-v_{(i)(h)}^{i}=(n-1)\left(\sigma \psi_{h}-\sigma_{h}\right) . \tag{4.45}
\end{equation*}
$$

Next, introducing the above result into (4.44), we get

$$
\begin{equation*}
2(n-1)\left(\sigma \psi_{h}-\sigma_{h}\right)+v_{(i)(h)}^{i}=0 \tag{4.46}
\end{equation*}
$$

or

$$
\begin{equation*}
2(n-1)\left(\sigma \cdot \psi_{h}-\sigma_{h}\right)+\left(n \varepsilon+\phi_{i} v^{i}\right)_{(h)}=0 . \tag{4.47}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\psi_{h}=\frac{(n-2)}{2(n-1)} \frac{\sigma_{h}}{\sigma}=\frac{(n-2)}{2(n-1)}\left(\partial_{h} \log \sigma\right), \tag{4.48}
\end{equation*}
$$

namely, we have found at last that ψ_{h} denotes a gradient vector. In this way, in the present case, we could find that the motion (1.12) under consideration
be a concircular projective affine motion. Such a motion has been investigated in detail by the author in [6].

5. THE CASE OF $\lambda_{s} v^{s}+2 \psi_{s} v^{s}+2 \sigma=0$

In this case the equation (2.13) can be written as

$$
\begin{equation*}
\sigma_{j}\left(\Psi_{s} v^{s}+\lambda_{s} v^{s}+2 \sigma\right)=0 \tag{5:1}
\end{equation*}
$$

So, we have two cases :

$$
\begin{gather*}
\sigma_{j}=0 \quad \text { or } \quad \sigma(x)=\text { non-zero const. }, \tag{5.2}\\
\dot{\psi}_{s} v^{s}+\lambda_{s} v^{s}+2 \sigma=0 \tag{5.3}
\end{gather*}
$$

But in view of the case (2.15 c), the condition (5.3) reduces to

$$
\begin{equation*}
\psi_{s} v^{s}=0 \tag{5.4}
\end{equation*}
$$

and such a case has been discussed in $\S 4$. So, we except this case.
Thus in what follows, we shall study the possibility of projective affine motion under (5.2). By virtue of this case the formula (2.12) becomes

$$
\begin{equation*}
(n-1) \psi_{j}\left(\psi_{s}+\lambda_{s}\right)+H_{j t s}^{i}=(n-1) \Psi_{j(s)}, \tag{5.5}
\end{equation*}
$$

where we have neglected the non-zero $\sigma(x)$.
With the help of the last equation we get the following commutation equality:

$$
\begin{equation*}
(n-1) \psi_{j}\left(\psi_{s}+\lambda_{s}\right)+H_{j i s}^{i}-(n-1) \psi_{s}\left(\psi_{j}+\lambda_{j}\right)-H_{s i j}^{i}=(n-1)\left(\psi_{j(s)}-\psi_{s(j)}\right) \tag{5.6}
\end{equation*}
$$

From the identity (1.5) we can deduce

$$
\begin{equation*}
H_{i j s}^{i}-H_{s i j}^{i}-H_{i s j}^{s}=0 \tag{5.7}
\end{equation*}
$$

Thus, by virtue of the above identity the formula (5.6) takes the form

$$
\begin{equation*}
H_{i j_{s}}=(n-1)\left(\psi_{j(s)}-\Psi_{s(j)}-\psi_{i} \lambda_{s}+\psi_{s} \lambda_{j}\right) \tag{5.8}
\end{equation*}
$$

Introducing the latter part of (1.12) into the equation (2.2), we have
$\left(v^{s} \lambda_{s}+2 \sigma\right) H_{h i k}^{i}-\psi_{s} v^{i} H_{h j k}^{s}+\psi_{h} v^{s} H_{s j k}^{i}+\psi_{j} v^{s} H_{h s k}^{i}+\psi_{k} v^{s} H_{h j s s}^{i}=0$.
Now, contracting the above formula with respect to the indices i and h we get

$$
\begin{equation*}
\left(v^{s} \lambda_{s}+2 \sigma\right) H_{i j k}^{i}+\psi_{j} v^{s} H_{i s k}^{i_{i s k}}+\psi_{k} v^{s} H_{i j j_{s}}^{i}=0 \tag{5.10}
\end{equation*}
$$

On the other hand, introducing (5.8) into the left-hand side of the above equality and neglecting $(n-1) \neq 0$, we obtain

$$
\begin{gather*}
\left(v^{s} \lambda_{s}+2 \sigma\right)\left(\psi_{j(k)}-\psi_{k(j)}-\psi_{j} \lambda_{k}+\psi_{k} \lambda_{j}\right)+\psi_{j} v^{s}\left(\psi_{s(k)}-\psi_{k(s)}-\psi_{s} \lambda_{k}+\psi_{(k)} \lambda_{s}\right)-1 \\
+\psi_{k} v^{s}\left(\psi_{j(s)}-\psi_{s(j)}-\psi_{j} \lambda_{s}+\psi_{s} \lambda_{j}\right)=0 . \tag{5.11}
\end{gather*}
$$

Now, introducing the hypothesis (2.15 c) into the above formula, we find

$$
\begin{align*}
& -2 \psi_{s} v^{s}\left(\psi_{j(k)}-\psi_{k(j)}-\psi_{j} \lambda_{k}+\psi_{k} \lambda_{j}\right)+\psi_{j} v^{s}\left(\psi_{s(k)}-\psi_{k(s)}-\psi_{s} \lambda_{k}+\psi_{k} \lambda_{s}\right)+ \\
& +\psi_{k} v^{s}\left(\psi_{j(s)}-\psi_{s(j)}-\psi_{j} \lambda_{s}+\psi_{s} \lambda_{j}\right)=0 \tag{5.12}
\end{align*}
$$

After little simplification, the above relation can also be re-written as

$$
\begin{align*}
\psi_{s} v^{s}\left[-2\left(\psi_{j(k)}-\psi_{k(j)}\right)+\psi_{j} \lambda_{k}-\psi_{k} \lambda_{j}\right] & +\psi_{j} v^{s}\left(\psi_{s(k)}-\psi_{k(s)}\right)+ \\
& +\psi_{k} v^{s}\left(\psi_{(s)}-\psi_{s(j)}\right)=0 . \tag{5.13}
\end{align*}
$$

In view of the equation (2.7) the last formula yields

$$
\begin{gather*}
\psi_{s} v^{s}\left[-2\left(\psi_{j(k)}-\psi_{k(j)}\right)+\psi_{j} \lambda_{k}-\psi_{k} \lambda_{j}\right]+\psi_{j} v^{s} \psi_{s(k)}-\psi_{k} v^{s} \psi_{s(j)}- \\
-\psi_{j}\left(-\psi_{s} \psi_{k} v^{s}-\sigma \psi_{k}\right)+\psi_{k}\left(-\psi_{j} \psi_{s} v^{s}-\sigma \psi_{j}\right)=0 \tag{5.14}
\end{gather*}
$$

or

$$
\begin{equation*}
\Psi_{s} z^{s}\left[-2\left(\psi_{j(k)}-\Psi_{k(j)}\right)+\psi_{j} \lambda_{k}-\psi_{k} \lambda_{j}\right]+v^{s}\left(\psi_{j} \psi_{s(k)}-\psi_{k} \psi_{s(j)}\right)=0 . \tag{5.15}
\end{equation*}
$$

Transvecting the above formula by \boldsymbol{v}^{k} and taking care of (2.7), we have

$$
\begin{equation*}
\psi_{s} v^{s}\left(\psi_{k(j)} v^{k}-\psi_{k} v^{k} \lambda_{j}\right)-\psi_{j} \psi_{k} \psi_{s} v^{s} v^{k}-\sigma \psi_{j} \psi_{s} v^{s}=0 . \tag{5.16}
\end{equation*}
$$

From the above result, neglecting the non-vanishing term $\psi_{s} v^{s}$, we get

$$
\begin{equation*}
\psi_{k(j)} v^{k}-\psi_{k} v^{k}\left(\lambda_{j}+\psi_{j}\right)+\sigma \psi_{j}=0 . \tag{5.17}
\end{equation*}
$$

Now, subtracting the formula (2.7) with the last equation, we obtain

$$
\begin{equation*}
\psi_{k(j)} v^{k}-\psi_{j(k)} v^{k}-\lambda_{j} \psi_{k} v^{k}+\psi_{j} \lambda_{k} v^{k}=0, \tag{5.18}
\end{equation*}
$$

where we have used the hypothesis (2.15 c).
The above formula can also be re-written as

$$
\begin{equation*}
\left(\psi_{k(j)}-\psi_{j(k)}-\lambda_{j} \psi_{k}+\lambda_{k} \psi_{j}\right) v^{k}=0 \tag{5.19}
\end{equation*}
$$

Comparing the last relation with (5.8), we find

$$
\begin{equation*}
H_{u s}^{i} v^{j}=0 \tag{5.20}
\end{equation*}
$$

or

$$
\begin{equation*}
v^{i}{ }_{(i)(s)}=0 \text { or } n \sigma_{s}+\psi_{i(s)} v^{i}+\sigma \psi_{s}+\psi_{i} \psi_{s} v^{i}=0 \tag{5.21}
\end{equation*}
$$

or

$$
\begin{equation*}
n \sigma_{s}+\psi_{i(s)} v^{i}+\psi_{i}\left(\sigma \delta_{s}^{t}+\psi_{s} v^{\prime}\right)=0 \tag{5.22}
\end{equation*}
$$

Since $\sigma=$ const. therefore the above formula reduces to

$$
\begin{equation*}
\left(\psi_{i} v^{i}\right)_{(s)}=0 \quad \text { or } \quad \psi_{i} v^{i}=\text { const. }, \tag{5.23}
\end{equation*}
$$

where we have used the latter part of (1.12). The last result can also be re-written as

$$
\begin{equation*}
\psi_{k(j)} v^{k}+\psi_{k}\left(\sigma \delta_{j}^{k}+\psi_{j} v^{k}\right)=0 \tag{5.24}
\end{equation*}
$$

Comparing the above equation with (2.7), we find

$$
\begin{equation*}
\psi_{j(k)} v^{k}=\psi_{k(j)} v^{k} . \tag{5.25}
\end{equation*}
$$

Introducing the above relation in (5.18), we have

$$
\begin{equation*}
\lambda_{j} \psi_{k} v^{k}=\lambda_{k} \lambda_{j} v^{k} . \tag{5.26}
\end{equation*}
$$

Since σ and $\psi_{s} v^{s}$ denotes a non-zero constant respectively, so from the hypothesis (2.15 c), we obtain

$$
\begin{equation*}
\lambda_{s} v^{s}=\text { const. } \tag{5.27}
\end{equation*}
$$

From (5.26) we can put

$$
\begin{equation*}
\beta \lambda_{j}=\alpha \psi_{j}, \tag{5.28}
\end{equation*}
$$

where
a) $\beta \equiv \psi_{k} v^{k}=$ non-zero const. and
b) $\alpha \equiv \lambda_{c} v^{k c}=$ const.

Differentiating covariantly (5.20) by x^{m} and taking care of the equations (1.10), (1.12) and (5.20) itself, we get

$$
\begin{equation*}
\sigma H_{i m s}^{i}=0 . \tag{5.30}
\end{equation*}
$$

For the non-vanishing property of the function $\sigma(x)$ the last formula yields

$$
\begin{equation*}
\dot{H}_{i m s}^{i}=0 . \tag{5.31}
\end{equation*}
$$

By virtue of the last formula and the fact that $(n-1) \neq 0$, the relation (5.8) takes the form

$$
\begin{equation*}
\psi_{j(s)}-\psi_{s(j)}-\psi_{j} \lambda_{s}+\psi_{s} \lambda_{j}=0 \tag{5.32}
\end{equation*}
$$

From (5.28), we can deduce

$$
\begin{equation*}
\beta\left(\lambda_{j(m)}-\lambda_{m(j)}\right)=\alpha\left(\psi_{j(m)}-\psi_{m(j)}\right) . \tag{5.33}
\end{equation*}
$$

In view of the equation (5.32), the above result reduces to

$$
\begin{equation*}
\beta\left(\lambda_{((m)}-\lambda_{m(f)}\right)=\beta\left(\psi_{j} \lambda_{m}-\psi_{m} \lambda_{j}\right) . \tag{5.34}
\end{equation*}
$$

With the help of (5.28) the above formula becomes

$$
\begin{equation*}
\beta\left(\lambda_{j(m)}-\lambda_{m(j)}\right)=\beta \lambda_{j} \lambda_{m}-\beta \lambda_{m} \lambda_{j}=0 \tag{5.35}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{j(m)}-\lambda_{m(j)}=0 . \tag{5.36}
\end{equation*}
$$

Thus; we can say that λ_{j} is a gradient vector.
By virtue of (5.36) the formula (5.33) takes the form

$$
\begin{equation*}
\alpha\left(\psi_{j(m)}-\psi_{m}(j)\right)=0 \tag{5.37}
\end{equation*}
$$

Thus, from (5.28) and (5.37), we can consider the two cases:
i) The case of $\alpha=0$. In this case we have $\lambda_{j}=0$. Therefore from the fundamental definition (1.10), we can say that the space under consideration becomes symmetric (i.e. $H_{r, j k}^{i_{j}}=\mathbf{0}$).
ii) The case of $\alpha \neq 0$. In this case from (5.37), we can find

$$
\begin{equation*}
\psi_{j(m)}=\psi_{m(j)} \tag{5.38}
\end{equation*}
$$

Hence the transformation (1.7) characterized by (1.12) becomes one of the concircular form.

From all the discussions above we can state:
Theorem 5.1. If a general PRFn-space admits a projective affine motion of torse-forming form, the following three cases occur :

1. The case of $\sigma=\mathbf{0}$. In this case, the motion is degenerated into a recurrent motion ($n \geqslant 2$),
2. The case of $\psi_{s} v^{s}=\mathbf{0}$ and $\lambda_{s} v^{s}+2 \sigma=\mathbf{0}$. In this case only one projective affine motion of concircular form may be considered ($n \geqslant 3$).
3. The case of $\lambda_{s} v^{s}+\mathbf{2} \psi_{s} \boldsymbol{v}^{s}+2 \gamma=\mathbf{0}$. In this case the motion must be a special one satisfying $\sigma=$ const. and furthermore we can regard the space reduces to a symmetric space or the motion can be degenerated into concircular motion ($n \geqslant 2$).

REFERENCES

[']	RUND, H.		The differential geometry of Finsler Spaces, Springer Verlag (1959).
[${ }^{2}$]	YANO, K.		The Theory of Lie-derivatives and its application, Amsterdam (1957).
[${ }^{3}$]	TAKANO, K.		Affine motion in non-Riemannian $K^{*}-$ space, V ; Tensor, 11 (3), (1961), 270-278.
[4]	KUMAR, A.		Projective affine motion in a PRFn-space (Communicated).
[${ }^{5}$]	KUMAR, A.		Projective affine motion in a PRFn-space II (Comm.).
[${ }^{\text {i }}$]	KUMAR, A.		Projective affine motion in a PRFn-space III (Comm.).
[${ }^{7}$]	KUMAR, A.		Projective affine motion in a PRFn-space IV (Comm.).

DEPARTMENT OF APPLIED SCIENCES
MADAN MOHAN MALAVIYA ENGINEERING GORAKHPUR GORAKHPUR (273010) U.P.
INDIA

$\ddot{O} Z E T$

Bu çalışmada, bir PRFn uzayında

$$
\vec{x}^{i}=x^{i}+v^{i}(x) d t
$$

ve $£ u G^{i}{ }_{j k}=0$ ile karakterize edilen çeșitli tiplerdeki projektif afin hareketin varlığı incelenmektedir.

[^0]: ${ }^{1}$) Numbers in brackets refer to the references at the end of the paper.
 2) $2 A_{[h k]^{\prime}}=A h k-A k h$.
 э) $\dot{\partial}_{i} \equiv \partial / \partial \dot{x}^{i}$ and $\partial_{i} \equiv \partial / \partial x^{i}$.

