ON A SPECIAL BPR Fn-SPACE

A. KUMAR

In this paper it has been investigated the basic properties of the space under the conditions

$$
\begin{aligned}
& H^{i_{h j k}(s)(m)}=b_{s m} H i_{h j k}, \\
& v^{i_{(j)}}=\Psi_{j} v^{i}, \\
& H_{h_{j}}=\Psi_{h} \varepsilon_{j} .
\end{aligned}
$$

1. Introduction. Let us consider an n-dimensional affinelly connected Finsler space $F n\left[{ }^{4}\right]^{1)}$ equipped with a linear symmetric Berwald's connection coefficient $G_{h k}^{i}(x, \dot{x})$. The covariant derivative of any tensor field $T_{j}^{i}(x, \dot{x})$ with respect to $G_{h k}^{i}(x, \dot{x})$ is given by

$$
\begin{equation*}
T_{j(k)}^{i}=\partial_{k} T_{j}^{i}-\dot{\partial}_{h} T_{j}^{i} G_{k}^{h}-T_{h}^{i} G^{h}{ }_{j k}+T_{j}^{h} G_{h k}^{i} . \tag{1.1}
\end{equation*}
$$

The well known commutation formula involving the above covariant derivative is characterized by

$$
\begin{equation*}
2 T_{j[(h)(k) I}^{i}=-\dot{\partial}_{s} T_{j}^{i} H_{\gamma h k}^{s} \dot{x}^{\gamma}-T_{s}^{i} H_{h j k}^{s}+T_{j}^{s} H_{s h k}^{i}{ }^{2)}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{h j k}^{i}(x, \dot{x}) \xlongequal{\text { def. }} 2\left\{\partial_{[k} G_{j J h}^{i}-G_{\gamma h j j}^{i} G_{k]}^{\gamma}+G_{h \mid j}^{\gamma} G_{k] \gamma}^{i}\right\} \tag{1.3}
\end{equation*}
$$

is called Berwald's curvature tensor and satisfies the following identities $\left[{ }^{4}\right]$:

$$
\begin{equation*}
H_{h j}=H_{h j i}^{i} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{h k j}^{i}=-H_{h k j}^{i} . \tag{1.5}
\end{equation*}
$$

In an Fn, if the Berwald's curvature tensor satisfies the following relation $\left[{ }^{1}\right]$:

$$
\begin{equation*}
H_{h j k(s)(m)}^{i}=b_{s m} \dot{H}_{h}^{i}{ }_{h k}, \tag{1.6}
\end{equation*}
$$

[^0]where $b_{s m}$ means in general a non-symmetric and non-vanishing covariant tensor, then the space is called bi-projective recurrent Finsler space or BPR Fnspace.

In what follows we shall assume to put the following two conditions in our space [$\left.{ }^{2}\right]$:

$$
\begin{equation*}
v_{(j)}^{i}=\psi_{j} v^{i} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{h j}=\psi_{h} \varepsilon_{j}, \tag{1.8}
\end{equation*}
$$

where ε_{j} means a suitable covariant vector.
In fact when the space under consideration admits a projective affine motion $\bar{x}^{i}=x^{i}+v^{i}(x) d t$, characterized by (1.7) we have a resolved form of projective Ricci tensor $H_{h j}(x, \dot{x})$ of the form (1.8) [$\left.{ }^{2}\right]$. In this paper leaving the existence of projective affine motion of recurrent type out of consideration we dare to assume the existence of recurrent contravariant vector $v^{i}(x)$ given by (1.7) and in addition the resolvability of $H_{h j}(x, \dot{x})$.

In the following we shall study on the basic properties of the space under the conditions (1.6), (1.7) and (1.8).

Differentiating (1.7) covariantly with respect to x^{k} and remembering the formula (1.7) itself, we get

$$
\begin{equation*}
v_{(j)(k)}^{i}=\left(\psi_{j(k)}+\psi_{j} \psi_{k}\right) v^{i} . \tag{1.9}
\end{equation*}
$$

Commutating the above formula with respect to the indices j and k and using the commutation formula (1.2), we have

$$
\begin{equation*}
H_{s k_{k}}^{i} v^{s}=E_{J_{k}} v^{i}, \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{j k} \stackrel{\text { def. }}{=}\left(\psi_{i(k)}-\psi_{k(j)}\right) \tag{1.I1}
\end{equation*}
$$

Applying the fundamental definition (1.6) to the so-called projective Ricci tensor $H_{h j}(x, \dot{x})$, we find

$$
\begin{equation*}
H_{h j(s)(m)}=b_{s m} H_{h j} . \tag{1.12}
\end{equation*}
$$

In view of the condition (1.8) the last formula reduces to

$$
\begin{equation*}
\psi_{h(s)(m)}^{\prime} \varepsilon_{j}+\psi_{h(s)} \varepsilon_{j(m)}+\psi_{h(m)} \varepsilon_{j(s)}+\psi_{h} \varepsilon_{j(s)(m)}=b_{s m} \psi_{h} \varepsilon_{j} \tag{1.13}
\end{equation*}
$$

Commutating the indices s and m in the above result and using the commutation formula (1.2), we obtain

$$
\begin{equation*}
-\varepsilon_{j} \psi_{\gamma} H_{h s m}^{\curlyvee}-\psi_{h} \varepsilon_{\gamma} H_{j s m}=\Omega_{s m} \psi_{h} \varepsilon_{j}, \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{s m} \xlongequal{\text { def. }}\left(b_{s m}-b_{m s}\right) \tag{1.15}
\end{equation*}
$$

Transvecting the formula (1.14) by v^{h} and summing over the index h and noting the equation (1.10), we get

$$
\begin{equation*}
\psi\left(\Omega_{s m} \varepsilon_{j}+\varepsilon_{\gamma} H_{j s_{m}}^{\gamma}+\varepsilon_{j} E_{s m}\right)=0 \tag{1.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(x) \stackrel{\text { def. }}{=} \psi_{h} v^{h} \tag{1.17}
\end{equation*}
$$

Thus, we have to discuss here the next two cases:

$$
\begin{equation*}
\text { a) } \Omega_{s_{m}} \varepsilon_{j}-1-\varepsilon_{\gamma} H_{j_{s m}}^{\gamma}+\varepsilon_{j} E_{s m}=0 \quad \text { and } \quad \text { b) } \quad \psi=0 \tag{1.18}
\end{equation*}
$$

2. The case of $\varepsilon=0$. The above case can be obtained from (1,18a) by putting

$$
\begin{equation*}
\varepsilon=\varepsilon_{s} v^{s} \tag{2.1}
\end{equation*}
$$

We shall show the fact $\varepsilon=0$. Transvecting the former case (1.18a) by \boldsymbol{v}^{j} and using the equations (1.10) and (2.1), we can get

$$
\begin{equation*}
\varepsilon\left(\Omega_{s m}+2 E_{s m}\right)=0 \tag{2.2}
\end{equation*}
$$

Consequently, in the present case (1.18a), we have to consider two cases :

$$
\begin{equation*}
\text { a) } \varepsilon=0 \quad \text { and } \quad \text { b) } \quad \Omega_{s m}+2 E_{s m}=0 \tag{2.3}
\end{equation*}
$$

Multiplying the latter case (2.3b) by v^{i} and remembering the formula (1.10), we obtain

$$
\begin{equation*}
\Omega_{s m} v^{i}+2 H_{\gamma s m}^{i} v^{\gamma}=0 \tag{2.4}
\end{equation*}
$$

Contracting the above equality with respect to the indices i and m and noting (1.4), we have

$$
\begin{equation*}
\Omega_{s m} v^{m}+2 H_{\gamma s} v^{\gamma}=0 \tag{2.5}
\end{equation*}
$$

On account of the equations (1.8) and (1.17), the above result can be re-written as

$$
\begin{equation*}
\Omega_{s m} v^{m}+2 \psi \varepsilon_{s}=0 \tag{2.6}
\end{equation*}
$$

Again transvecting the last formula by \boldsymbol{v}^{m} and using (2.1), we find

$$
\begin{equation*}
\boldsymbol{\Omega}_{s m} \boldsymbol{v}^{m} \boldsymbol{v}^{s}+2 \boldsymbol{\varepsilon} \psi=0 \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\varepsilon \psi=0 \tag{2.8}
\end{equation*}
$$

In this way $\varepsilon=0$, i.e. the second case means the first case and (1.18a) may be replaced by (1.18b). By this reáson there exists only one case of $\varepsilon=0$.

In view of the basic condition (1.6) and the commutation formula (1.2), we can get

$$
\begin{align*}
\Omega_{s m} H_{h j k}^{i}= & -\dot{\partial}_{\gamma} H_{h i k}^{i} H^{\gamma}{ }_{s m}+H_{h j k}^{\gamma} H_{\gamma s m}^{i}-H_{\gamma j k}^{i} H_{h s m}^{\gamma}-H_{h \gamma k}^{i} H_{j s m}^{\gamma}- \\
& -H_{h h_{\gamma}}^{i_{\gamma}} H^{\gamma}{ }_{k s m}, \tag{2.9}
\end{align*}
$$

where we have used (1.15).
Contracting the last formula with respect to the indices i and k, and remembering the equation (1.4), we find

$$
\begin{equation*}
\Omega_{s m} H_{h j}=-H_{h \gamma} H^{\gamma}{ }_{j s m}-H_{\gamma j} H_{h s m}^{\curlyvee}-\dot{\partial}_{\gamma} H_{h j i}^{i} H_{s m}^{\gamma} \tag{2.10}
\end{equation*}
$$

Transvecting the last formula by v^{h} and noting the equations (1.8), (1.10) and (1.17), we obtain

$$
\begin{equation*}
\varepsilon_{\gamma} H^{\gamma}{ }_{s_{s}}=-\left(\Omega_{s m}+E_{s m}\right) \varepsilon_{j} \tag{2.11}
\end{equation*}
$$

where we have neglected the non-zero scalar $\psi(x)$.
Introducing the last formula into the left-hand side of the equality (1.14), we get

$$
\begin{equation*}
\varepsilon_{j}\left(\Psi_{\gamma} H_{h s m}^{\gamma}-\Psi_{h} E_{s n}\right)=0 \tag{2.12}
\end{equation*}
$$

Thus there occur the following two cases to be discussed:

$$
\begin{equation*}
\text { a) } \varepsilon_{j}=0 \quad \text { and } \quad \text { b) } \psi_{\gamma} H_{h s m}=\psi_{h} E_{s m} \text {. } \tag{2.13}
\end{equation*}
$$

The Bianchi's identity for the Berwald's curvature tensor $H_{h j k}^{i}(x, \dot{x})$ is given by

$$
\begin{equation*}
H_{h j k}^{i}+H_{j_{k h}}^{i_{k}}+H_{k h j}^{i}=0 . \tag{2.14}
\end{equation*}
$$

Transvecting the above identity by ψ_{i} and using the latter case (2.13b), we get

$$
\begin{equation*}
\psi_{h} E_{j_{k}}+\psi_{j} E_{k h}+\psi_{k} E_{h j}=0 . \tag{2.15}
\end{equation*}
$$

On account of the equations (2.3b), (2.5) and the fact that $E_{s m}=-E_{m s}$, we can deduce

$$
\begin{equation*}
E_{m s} v^{m}=-H_{\gamma s} v^{\gamma} \tag{2.16}
\end{equation*}
$$

By virtue of the relations (1.8) and (1.17), the last formula yields

$$
\begin{equation*}
E_{m s} v^{m}=-\dot{-i} \psi \varepsilon_{s}: \tag{2.17}
\end{equation*}
$$

Transvecting the equality (2.15) by v^{h} and noting the formula (2.16) and the fact that $E_{h j}=-E_{j h}$, we have

$$
\begin{equation*}
\psi_{h} v^{h} E_{j k}=-\Psi_{j} H_{h k} v^{h}-\psi_{k} H_{h j} v^{h} \tag{2.18}
\end{equation*}
$$

In view of the equations (1.8), (1.17) and (2.16), the last formula reduces to

$$
\begin{equation*}
E_{j k}=\psi_{k} \varepsilon_{j}-\psi_{j} \varepsilon_{k}, \tag{2.19}
\end{equation*}
$$

where we have neglected $\psi(x)$.
By virtue of the formula (1.8), we can deduce

$$
\begin{equation*}
H_{h j}-H_{j h}=\psi_{h} \varepsilon_{j}-\psi_{j} \varepsilon_{h} . \tag{2.20}
\end{equation*}
$$

With the help of the equations (1.11) and (2.19), the above result can be rewritten as

$$
\begin{equation*}
H_{h j}-H_{j h}=\psi_{j(h)}-\psi_{h(j)} . \tag{2.21}
\end{equation*}
$$

In view of the equations (1.10) and (2.13b), we can conclude

$$
\begin{equation*}
\psi_{\gamma} H_{h s m}^{\top} v^{i}=\psi_{h} H_{r s m}^{i} v^{\gamma} . \tag{2.22}
\end{equation*}
$$

On account of the basic formula (1.7), the above equality takes the form :

$$
\begin{equation*}
H_{h s m}^{\gamma_{h s}} v^{i}{ }_{(\gamma)}-H_{\gamma s m}^{i} v_{(h)}^{\gamma}=0 . \tag{2.23}
\end{equation*}
$$

By virtue of the commutation formula (1.2), the last formula reduces to

$$
\begin{equation*}
\left(v_{(b)}^{i}\right)_{(s)(m)}-\left(v_{(G)}^{i}\right)_{(m)(s)}=0 . \tag{2.24}
\end{equation*}
$$

Consequently we can imagine the existence of a gradient vector λ_{s} and we are able to put

$$
\begin{equation*}
v_{(h)(s)}^{i}=\lambda_{s} \dot{v}_{(h)}^{i} . \tag{2.25}
\end{equation*}
$$

With the help of the last definition the formula (1.9) can be re-written as

$$
\begin{equation*}
\lambda_{k} \psi_{j}=\psi_{j(k)}+\psi_{j} \psi_{k}, \tag{2.26}
\end{equation*}
$$

where we have used (1.7) and neglected the non-zero $v^{i}(x)$.
Transvecting the last equality by v^{f} and remembering the equation (1.17), we get

$$
\begin{align*}
\psi \lambda_{k} & =\Psi_{j(k)} v^{j}+\Psi_{k} \psi \tag{2.27}\\
& =\left(\psi_{j} v^{j}\right)_{(k)}+\psi_{k} \psi-\psi_{j} v_{(k)}^{j} \\
& =\Psi_{(k)}+\psi \Psi_{k}-\psi_{j} v^{j} \psi_{k} \\
& =\Psi_{(k)}+\psi \psi_{k}-\psi \psi_{k} \\
& =\Psi_{(k)}
\end{align*}
$$

where we have used (1.7) also.
In this way, the existence of λ_{j} is examined and we have here a characteristic condition on $v_{(h)}^{i}$:

$$
\begin{equation*}
v_{(b)(h)}^{i}=\lambda_{j} v_{(b)}^{i}, \quad \lambda_{j}=\psi_{(j)} / \psi . \tag{2.28}
\end{equation*}
$$

On the other hand, in view of the condition (2.13a), the supposition (1.8) takes the form :

$$
\begin{equation*}
H_{h j}=0 \tag{2.29}
\end{equation*}
$$

Summarizing the above all consideration, we can have :
Theorem 2.1. In a BPR Fn-space admitting a contravariant vector $\boldsymbol{v}^{i}(x)$ characterized by (1.7) and having a disjoint projective Ricci tensor $H_{h i}(x, \dot{x})$ of the form (1.8), there exists a case of $\varepsilon_{s} v^{s}=0$. In this case if $\varepsilon_{s}=0$, then we have the vanishing of projective Ricci tensor $H_{h j}$ and if $\varepsilon_{s} \neq 0$, we have (2.20). The mixed tensor $\boldsymbol{v}_{(h)}^{i}$ itself is a recurrent one characterized by (2.28).
3. The case of $\psi=0$. Let us consider the case (1.18 b), then using the analogous methods used in $\S 2$ with the help of the formula (2.10), we can easily conclude

$$
\begin{equation*}
\psi_{\gamma} H_{h s m}^{\gamma}=-\left(\Omega_{s m}+E_{s m}\right) \psi_{h} . \tag{3,1}
\end{equation*}
$$

Introducing the last formula into the left hand side of (1.14), we obtain

$$
\begin{equation*}
\Psi_{h}\left(\varepsilon_{\gamma} H^{\gamma}{ }_{j_{s m}}-\varepsilon_{j} E_{s n}\right)=0 . \tag{3.2}
\end{equation*}
$$

In this way we have here two cases to discuss:

$$
\begin{equation*}
\text { a) } \psi_{h}=0 \quad \text { and } \quad \text { b) } \varepsilon_{\gamma} H^{\gamma}{ }_{j s m}=\varepsilon_{j} E_{s m} . \tag{3.3}
\end{equation*}
$$

In view of the former case (3.3a) the suppositions (1.7) and (1.8) reduce to

$$
\begin{equation*}
\boldsymbol{v}_{(j)}^{i_{j}}=0 \quad \text { and } \quad H_{h j}=0 \tag{3.4}
\end{equation*}
$$

By virtue of the latter case (3.3b) and the identity (2.14), we can deduce

$$
\begin{equation*}
\varepsilon_{h} E_{j k}+\varepsilon_{j} E_{k h}+\varepsilon_{k} E_{h j}=0 \tag{3.5}
\end{equation*}
$$

With the help of the equations (1.8), (1.17), (2.16) and (3.3a), we can get

$$
\begin{equation*}
E_{h j} v^{h}=-H_{\gamma j} v^{\gamma}=-\psi_{\gamma} \varepsilon_{j} v^{\gamma}=-\psi \varepsilon_{j}=0 . \tag{3.6}
\end{equation*}
$$

Thus, transvecting the equality (3.5) by \boldsymbol{v}^{h} and using the equations (2.1) and (3.6), we obtain

$$
\begin{equation*}
\varepsilon E_{j_{k}}=0 \tag{3.7}
\end{equation*}
$$

where we have also used the fact that $E_{h j}=-E_{j h}$.
In this way, we have

$$
\begin{equation*}
E_{j_{k}}=0 \tag{3.8}
\end{equation*}
$$

In view of the last formula, the basic definition (1.11) takes the form :

$$
\begin{equation*}
\psi_{j(k)}=\psi_{k(j)} \tag{3.9}
\end{equation*}
$$

Thus, we can have:

Theorem 3.1. When $\psi=0$ in our space, there exist two cases (3.3). The former case (3.3a) satisfies (3.4) and the latter one satisfies (3.9).

REFERENCES

['] KUMAR, A. : On a BPR Fn-space (Communicated).
[${ }^{2}$] KUMAR, A. : On some types of projective affine motions in a projective recurrent Finsler space (Comm.).
$\left[{ }^{3}[\right.$ KUMAR, A. : On some types of projective affine motions in a projective recurrent Finsler space, II (Comm.).
[${ }^{4}$] RUND, H. : The differential geometry of Finsler space, Springer-Verlag (1959).
[${ }^{5}$] TAKANO, K. : On a special bi-recurrent space, Tensor, N.S. 27 (1973), 240-242.
DEPARTMENT OF APPLIED SCIENCES
MADAN MOHAN MALAVIYA ENGINEERING COLLEGE
GORAKHPUR U.P. (273010) INDIA

Ö Z E T

Bu çalı̧mada uzayın

$$
\begin{aligned}
& H_{h_{j} k(s)(m)}=b_{s m} H_{h_{j} k} \\
& v^{i}\left({ }_{j}\right)=\Psi_{j} v^{i} \\
& H_{h_{j}}=\Psi_{h} \varepsilon_{j}
\end{aligned}
$$

koşulları altında bazı temel özellikleri incelenmektedir.

[^0]: ${ }^{\text {1) }}$ Numbers in square brackets refer to the references given at the end of the paper.
 ?) $2 A_{[h k]}=A_{h k}-A_{k h}$.

