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PROJECTIVE CURVATURE COLLINEATION IN SYMMETRIC
FINSLER SPACE

H.D. PANDE - A. KUMAR - V.J. DUBEY

In this paper it has been investigated the different cases under which a
special conformal motion is a projective curvature collineation.

1. INTRODUCTION

Let us consider an n-dimensional Finsler space Fn [']V equipped with the
positively homogeneous metric function F(x, X) of degree one in its directional
arguments. The fundamental metric tensors g,; (x, ) and g¥ (x, X) are symmet-
ric in their indices and are defined by

g (x, X) ﬂ—z— 0; 9 F? (x, %) (L.1)
and
gy 8% =, (1.2)

where 8/ are Kronecker deitas. Mishra [?] has defined the projective covari-
ant derivative of a vector field X7 (x, ¥) with the help of projective connection
parameter II',, (x, X) as follows :

Xi((k))zaka_(éh Xi) Hh‘yk X7+ X* Hihk, (13)

where I’ (x, ¥) is positively homogeneous function being defined by

) . 1 . ..
I (x, X) 2 G7 o +T) (28%, Gy + ¥ G h) 2, ([.4)

The following identities hold :

Il ¥4 = 3, Wy, ¥4 =0, Wy &4 = T, (1.5)
The commutation formula [2] for the projective covariant derivative of a tensor
field T}/ (x, X) is expressed by

2T iameon = 177 Oer — T Qi — @y TP Qi ¥, (1.6)
where

1) The numbers in square brackets refer to the references given at the end of the paper.
D 24Gg) = App -+ Agn and 2A0g] = Ay — Ags -




158 H.D. PANDE - A, KUMAR - V.J. DUBEY

O, X) & 248y, 10,5 — (@, W) 1Y, 5% + Ty, T} )]
The projective entities Q' satisfy the following identities [*]:
a) Qif(a-m =0, b) Qi[hﬂ:l =0, ¢ Qijm‘ =Qj, d) Q= éj Q’}m- (1.8)

The contractions of @', are given by

a) 0, = Qik;‘, b) O, = Qj, %4, c) éj Q, =0y and d) 2Q1fj] = Qbhif . (19

Weyl’s curvature tensor can also be written in terms of Berwald’s and projec-
tive entities as follows [*]

. . 2 ' '
Wi = Qg — WD) {(n+ D Qi — Hyyy — Hy<i> +

+(n— D3, dy H — ¥ 9, H", 0 5%, (1.10)

where H'j, (x, X) are Berwald’s curvature tensor fields being defined by

Hip 5, %) = 2 {3y Gy — (Gyi) Gy, 55+ Gy, Gy} (1.11)
and Weyl’s curvature tensor field W7, (x, X) is given by
. . ; 1 . o
erkk (x, X) = thjk A —— {Skr HY'YI(J: =+ x! ah I-IT'rkf -
(n+1)

28y Ul caig + 80 9, D). (L.12)
We consider the i.nfinit(;simaf points transformation '
xf=x' + vi(x) dt, (i.13)

where vi(x) 1s any vector field and 4t is an infinitesimal constant, The Lie-deriv-
ative of any tensor field 77 (x, %) and the connection parameter I}, is given
by

£ T (x, X) = Tl " — T vl 1 T, vy + (0 T) Py 3 (L14)
and \ ‘
£ Iy, @6, X) = vign e + Ll ¥ + Ty v ¥ (1.15)
The followiﬂg_commutation formula holds for the operétors £v and ((k)) :
0 Tl — €0 Ty = T/ E0 T, — T,/ S0 1y — (3, T)) £ T4, 5 (L.16)
and the connection coefficients are related with respect to those operators by

28v Wi = £ @y + 2 Eu I, ) Ty, 7 (L.17)

%) The indices in { » are free from symmeiric and skew symmetric pars.
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The conformal transformation in a Finsler space Fn is characterized by
8= € &, (1.18)

where ¢ = o (x) is a scalar point function and g; are the components of a
covariant mefric tensor in a conformal Finsler space Fn. In a conformal
Finsler space, we have

G (v, %) = G (x, %) — Bva,), 1Y)
which gives

Gr (x, %) = Gl — B o, (1.20)

alhk (x’ x) = Gihk - B"an'c Us (1‘21)
and

alma (x, ¥) = Gy — B¥ 0, (1.22)

where B (x, x)f‘_ijEz ght — xh ik is positively homogeneous of degree two

in its directional argument. The function B" (x, xX) satisfies the following iden-
tities :
By s def. a'k B, Bis, def ék 3, B, B, ok ék 2, aﬁ Bis
By X7 2 0, By XF = BB (1.23)

Under the conformal change II';, (x, X) is given by

—. . , ) 1 , ..
Hﬁm”:“ﬁ%%—EﬁITm%Fm+w%ﬁm- (1.24)

Z. PROJECTIVE CURVATURE COLLINEATION

Definition 2.1 (Projective affine motion (Pande and Kumar [*])). An Fn is
said to admit a projective affine motion provided there exists a vector field
v’ such that

Eu iy = 0. 2.1)
Definition 2.2 (Projective curvature collineation (Pande and Kumar [®])).

An Fn is said to admit a projective curvature collineation if there exists a vector
v’ such that :

fv Qihjk = 0. (2'2)

Definitien 2.3 (Projective Ricci collineation (Pande and Kumar [*])). An
Fn is said to admit a Ricct projective curvature collineation if there exists a
vector v’ such that
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£0 0, = 0. (2.3)

The variation of II'y (x, ¥) under the conformal transformation is II'j; . and
‘that under infinitesimal point transformation (1.13) is £2 1I';, . The two trans-
formations will coincide if the corresponding variations are the same. Thus we
have :

Theorem 2.1 (Pande and Kumar [']). A necessary and sufficient condi-
tion that the infinitesimal change (1.13) be a special conformal motion is that

. . 1 . .
£v Hrfrk = — 0, BJSM‘ - m (25‘@, BTSkY)T + X! BYSTMJ) . (2.4)
Thus for a special conformal, we also have
. 1 ; .
£v HihkT = — Gy ]iB”ﬁk'r - gi(;;:liii)'”{zsl(h ank)n'f + 6“!1 annk}! +
B 9

We shall now study the different cases under which a special conformal
motion is a projective curvature collineation. Let us suppose that the space
admits a special conformal motion then by using equations (1.17) and (2.4), we
get

o . 1 o
£ Qf (%, X) = — 2l ogqun 4B — —— - (B™y, 8, -+ 8, B¥,, +
n+1)

+ &t B“jm)g + 0 33"“;.;}«@)1 — Il By, X° —

1
(7 + 1)

— X7 Hl"(iﬂ[i Bmfdmg:I . (26)

3‘5;," B tigon + B ucan 871 + X B eon —

If the special conformal motion admits a projective curvature collineation then
in view of (2.2), the above equation reduces to

. 1 S
T 1875 — Y (B iy X7+ 8 BUY){ +
. 1 - _
+ o 3B'slj((k))l - m(B”ﬂmm By 8t =0 @27

Thus we have the following theorem :
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Theorem 2.2. A necessary condition for a special conformai motion to be
a projective curvature collineation is that the equation (2.7) holds.

Since the operators of Lie-derivative and the operation of contraction are
commutative, therefore, with the help of equations (2.2) and (2.6), we obtain

(7 + 1) (3, B )y — B,y X7 — 8 B, — B = 0. 2.8)
Theorem 2.3. A necessary and sufficient condition that a special confor-

mai motion in 2 Finsler space be a projective curvature collineation is that
(2.8) holds.

3. SPECIAL PROJECTIVE SYMMETRIC FiNSEER SPACE

Definition 3.1 (Pande and Kumar [']). If the entity O (x, ¥) satisfies
the relation

Qilz.ffc(("()) =0, (3 1)

then such a space is known as special projective symmetric Finsler space being
denoted by Fn*. The following relations are satisfied in Fn* :

a) Qe =10, b) yppn=20. (3.2

The commutation formula (1.16) can be written for O, (x, ¥) as follows which
after using the equation (3.2b) yields

— (&0 Q) = Q) v Wy, — Q) E0 Ty — (3, Q) E0 Ty, %5 (3.3)
Substituting the value of £» I¥',, from (2.4) in the above equation, we get

{£0 0 ) = O [ij B, — O B, — (3, o) B, —

v
(n+1}
+ a.fh Bn’\'.’c + Xk BYSYfk) - {ah jS) (skh BTS‘Ym + 6mh BTE‘YJ‘C -+

{th (Skf B “":‘.ﬁ + ahi B TSTk + x B Ts‘mk) - Q.ﬁf (afch B rs‘rf +

4 Xt BYs, ) J&’”}] . 3.9
Thus, we have the following theorems :

Theorem 3.1. A necessary condition that a projective symmetric space Fn
admits a special conformai motion is that equation (3.4) holds.

Theorem 3.2. The necessary condition that the projective affine motion
is satisfied in Fn is that (£v O}y — 0 holds. Since a Finsler space is said
to be isotropic if




202 H.D. PANDE - A, KUMAR - V.J. DUBEY

W, = 0. 3.5
Therefore from equation (1.10), we have . l
. 2
Qi = w0 (n+ 1) Qe — Hpye — Hye> +
+ (n— 1) d; 3y H — # §; HY*rs[ks & - (3.6)

Taking Lie-derivative of the above equation and using the fact that the opera-
tors £v and 9, are commutative, we get

, 2
£o Oy, = (nz—l)é(n' + 1) £v Qpy — £v Hy, — £o Hyoe +

- 1)3; oy Ev H— 3§ Ev H””[kg &y - (3.7

Now if the space admits a special Ricci collineation (i.e. £v H,, = 0) and pro-
jective Ricei collineation (i.e. £0 @, = 0) then from above equation, we get

£v Oy, = 0. (3.8
- Thus we have:

Theorem 3.3. In an isotropic Finsler space every special and projective
Ricci collineation is a special curvature collineation.
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OZET

Bu ¢alismada, &zel bir konform hareketin bir projektif egrilik kolineasyon
’ oldugu cesitli haller incelenmektedir. :
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