İstanbul Üniv. Fen Fak. Mat. Der., 53 (1994), 1-2

SUPERSOLVABLE Q-GROUPS

1.

Ion ARMEANU

University of Bucharest, Physics Faculty, Mathematics Dept., Bucharest-Magurele, P.O. Box MG-11, ROMANIA

Summary: One important problem in Q-groups theory is to classify particular classes of Q-groups. In this note we will classify the supersolvable Q-groups.

SÜPER ÇÖZÜLEBİLİR Q-GRUPLARI

Özet: Q-grupları teorisinin önemli bir problemi, özel Q-gruplarının sınıflandırılmasıdır. Bu çalışmada süper çözülebilir Q-grupları sınıflandırılmaktadır.

Definition. A Q-group is a finite group whose all characters are rational valued.

Theorem 1. A finite group G is a Q-group if and only if for every $x \in G$, $N_G(\langle x \rangle) / C_G(\langle x \rangle) = \text{Aut } (\langle x \rangle)$ (see [3]).

Theorem 2 (see [2], pg. 716). Let G be a supersolvable group. Then:

(1) G' is nilpotent.

(2) Let p be a maximal prime number such that $p \mid |G|$. Then, a p-Sylow subgroup of G is normal in G.

(3) Let q be a minimal prime number such that $q \mid |G|$. Then, G is q-nilpotent.

Theorem 3. Let G be a supersolvable Q-group. Then :

(1) $|G| = 2^a 3^b$.

(2) Let H be a 2-Sylow subgroup of G. Then H is also a Q-group, no two elements of H are fused in H by G and $\operatorname{Foc}_G(H) = H' = G' \cap H$ (the notations are those of [4]).

(3) Let P be a 3-Sylow subgroup of G. Then P is normal in G and is a 3-rational group (Therefore G is 2-nilpotent).

ION ARMEANU

- (4) If $P \in Syl_{3}(G)$ is abelian, then P is elementary abelian.
- (5) $G' = R \times P$ where $R = G' \cap H$ is a 2-Sylow subgroup of G'.

Proof. By Gow Theorem (see [1]) if G is a solvable Q-group, then $|G|=2^a 3^b 5^c$. Since G/G' is an abelian Q-group, by Theorem 1,

$$G/G' \simeq \mathbf{Z}_2 \times \ldots \times \mathbf{Z}_2.$$

Let *H* be a 2-Sylow subgroup of *G*, *P* a 3-Sylow subgroup of *G* and *T* be a 5-Sylow subgroup of *G*. By Theorem 2 *G'* is nilpotent, so that $G = R \times P \times T$ where *R* is a 2-Sylow subgroup of *G'*. Let $x \in T$. Then $|\operatorname{Aut}(\langle x \rangle)| = 5^{k-1}4$ and since $\exp(G/G') = 2$, by Theorem 1 it follows that *T* is trivial and $|G| = 2^a 3^b$. By Theorem 2, *P* is a normal subgroup of *G* and *G* is 2-nilpotent. Since $G' = R \times P$ it follows that *P* is 3-rational. Since a factor group of a **Q**-group is also a **Q**-group, it follows that H = G/P is a **Q**-group. By Welandt Theorem (see [4], pg. 258) no two elements of *H* are fused by *G* in *H* and Foc_{*G*}(*H*) = *H'* = *G'* \cap *H* (see [4], pg. 255).

REFERENCES

[1]	GOW, R.	:	J. of Algebra, 40, 1 (1976), 280-289,
[2]	HUPPERT, B.	:	Endliche Grouppen, Vol. 1, Springer-Verlag, 1967.
[3]	KIETZING, D.	:	Structure and Representations of Q-Groups, Lecture Notes in Mathematics, Springer-Verlag, 1984.
[4]	ROSE, J.S.	:	A Course in Group Theory, Cambridge, 1978.

2